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Abstract

Fauseweh et al. showed that the observed asymmetry of the spectral function in
inelastic neutron scattering experiments of some dimer systems can be understood solely
by the thermal behavior of free hardcore boson excitation in one dimension. In this thesis
we investigate the behavior of the Brückner approach they used in higher dimensions. We
will make use of effective models to describe the 2D-crystals VOPO and Cs2CuCl4 on
the basis of hardcore bosons. In addition, a toy model was used to examine the influence
of the dimensionality in a more systematic fashion. We find that the approach leads
to similar results in higher dimensions. In particular we confirm that the additional
space leads to a decrease in the effects of broadening and asymmetry. On the other
hand we also find that the change in particle number and peak position differs from the
hypothesized behavior.
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1 Introduction

To describe the dynamics of many-body quantum systems, we need to combine var-
ious techniques to break down the problem into solvable parts. Two phenomena in
particular lead to complications in practical calculations: Quantum fluctuations and
thermal fluctuations. These problems often arise in the context of magnetic models,
which are particularly interesting since they can be described with some of the simplest
Hilbert-spaces in many-body physics and are experimentally well accessible. Some of
these systems can be modeled with effective hardcore bosonic particles. Their quan-
tum fluctuations might be treated with CUTs [1, 2, 3] or variational approaches [4],
resulting in particle-conserving Hamiltonians that can be understood as an effective
model of ground state, propagation and scattering of the conserved excitations. How-
ever, the thermal fluctuations lead to dynamics that cannot yet in general be analyt-
ically captured: For the simplest of such cases, the free hardcore bosonic model in
2 or 3 dimensions, most strategies suffer from either being applicable only to small
systems, like direct diagonalization [5], or exhibiting non-physical behavior like the
1/z expansion by Jensen [6]. A recent perturbative approach by Fauseweh et al. [7,
8] overcomes these issues and provides a description of this model in the low temper-
ature limit and in the presence of a gap in the dispersion relation. This approach has
the advantage that it is applicable to arbitrary dimensions. The extension to higher
dimensions seems promising, since there is more space to avoid a pile-up of excitations
even at higher temperatures, making the hardcore constraint less problematic.

In this thesis we want to describe this approach, present a software framework to
find numerical solutions for the propagator and use that to investigate the effect of
dimensionality on the behavior of the system. Magnetic systems that are believed to be
accurately described by hardcore excitations show asymmetric broadening and band
narrowing in their neutron scattering spectrum which we want to understand. Since
most substances behave like effective two- or three-dimensional systems, we want to
confirm that the findings from one dimension are still valid in higher dimensions.

We start with experimental observations that raised the interest in the description
of thermal effects in free hardcore bosonic models. In chapters 3 and 4 we review two
substances that can be described as effective 2D hardcore bosonic systems as a moti-
vation for the importance of such models and as the setting for our later calculations.
We then describe the perturbative Brückner approach for the calculation of the spec-
tral function of the propagator in chapter 5. In chapter 6 we outline how to perform
the calculations on a computing cluster with a framework optimized for performance
and memory efficiency. In the following chapter we present our findings in terms of
numerical calculations. Finally, we conclude and give an outlook in chapter 8.

1





2 Experimental Observations on Hardcore Bosonic

Systems

In this chapter we give a brief overview of the observations in experiments that moti-
vate the investigation of the properties of hardcore bosonic models with the Brückner
Method. In the first section we outline what experimentally observed effects we are
focusing on in our numerical study. The second section introduce hardcore bosons as
a possible theoretical foundation.

2.1 Anomalies in Scattering Data

While earlier experiments seemed to suggest a universal symmetric Lorentzian curve
shape for the propagator’s spectral function Aα(p, ω) in frequency space[9, 10] in all
magnetic models, recent studies however find asymmetric curve shapes in some dimer-
ized systems[11]. Besides the asymmetry a narrowing of the band with increasing
temperature for the single particle mode was observed as well [12]. Figure 1 shows an
example of an observation of asymmetry in Cu(NO3)2 · 2, 5D2O crystals and Figure 2
depicts a measurement that has observed the band narrowing effect.

This data is accessible by inelastic neutron scattering. Figure 3 depicts a schematic
neutron scattering experiment. Assuming ~ω = E − E′ denotes the energy transfer,
Q = k − k′ the momentum transfer and Sα(t) the spin operator at time t, we define
our observable, the dynamic structure factor, as

Sαβ(Q, ω) =
1

N

∑
l,n

∫ ∞

−∞
dt exp [−i(Q · Rn − ωt)]

〈
Sα
l (t)S

β
l+n(0)

〉
, α, β ∈ {x, y, z}.

(1)
It is the time and space Fourier transform of the spin-spin correlation. By the
fluctuation-dissipation theorem it is related to the spectral function of the propa-
gator. As an example, a relation for the crystal Cs2CuCl4, which we discuss in the
next chapter, is given by

Sxx(Q, ω) =
1

4

1

1− e−βω
(A(k, ω) +A(−k, ω)). (2)

One thing all systems which exhibit effects like the asymmetry of the spectral
function have in common is the existance of hardcore bosonic excitations with a gapped
band. Therefore we focus on hardcore bosonic models and show that all it takes to
describe these effects are free hardcore bosonic systems.
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FIG. 1. Inelastic neutron scattering experiment on the Cu(NO3)2 · 2, 5D2O crystal. Upper half shows
the gap mode and the lower half the maximum mode. Figure taken from Ref.[13].
Copyright American Physical Society©

FIG. 2. Spectrum of Sr3Cr2O8 in an inelastic neutron scattering experiment. Performed constant-
wave-vector scans at a) (0, 0, 3)h, b) (0.5, 0.5, 3)h on FLEX. c) shows a integrated intensity with respect
to temperature of the excitation at (0, 0, 3)h . Dashed lines depict random phase approximations.
Figure taken from Ref.[14].
Copyright American Physical Society©

2.2 Hardcore Boson Systems

In quantum magnets, a variety of elementary excitations like spin flips and triplon
excitations have at least one thing in common: They obey a local hardcore constraint,
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FIG. 3. Schematic experimental inelastic neutron scattering setup. Figure taken from Ref.[15]

exhibiting the peculiar commutation relations

[bj,α, b
†
i,β] = δi,j

(
δαβ

(
1−

∑
γ

b†iγbiγ

)
− b†i,βbi,α

)
, [bi,α, bj,β] = 0, (3)

where b†j,α is the creation operator, latin indices specify a lattice position and greek
indices label the flavor of the hardcore boson. We use a simple single index notation
without a vector arrow to denote positions and momentum in one, two or three di-
mensions. The commutator behaves like a bosonic commutation relation on different
sites, but forbids the occupation of a single site for more than one boson of an arbi-
trary flavor, just like fermions do. This is a strong restriction for the hilbert space.
Surprisingly, this combination of both statistics creates a much more complicated be-
havior in the free theory. We consider the Hamiltonian

H = E0 +
∑
i,d,α

wα
d b

†
i,αbi+d,α + H.c. . (4)

In contrast to the bosonic or fermionic free theory, this model is neither solved nor
well understood. We Fourier-transform

b†j,α =
1√
N

∑
q

eiqjb†q,α (5)

into momentum space, yielding

H =
∑
qα

ωα(q)b†q,αbq,α. (6)

The commutator now takes the form

[bk,α, b
†
k′,β] =

1

L

∑
q

(
δα,β

(
1−

∑
γ

b†k′+q,γbk+q,γ

)
− b†k′+q,βbk+q,α

)
. (7)

For the description of the propagator we introduce the Greens-function

Gα(j, τ) = −〈Tb†j,α(−iτ)b0,α(0)〉 τ ∈ R. (8)
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Here, τ represents the imaginary time, the T is the time ordering superoperator and
b†j,α(t) is the creation operator at time t and site j on a lattice of the quasi-particle
of type α. We denote the momentum space Matsubara representation of the Greens-
function as Gα(p, ω) and introduce the spectral function Aα(p, x) via

Gα(p, ω) =:

∫ ∞

−∞

Aα(p, x)

ω − x
dx. (9)

If a single quasi-particle is isolated by a gap and if the Hamiltonian is block-diagonal
in the one-particle subspace, then the particle can propagate freely, yielding a spectral
function

Aα(p, ω) = δ(ω − ωα(p)). (10)

For bosons and fermions, the sum-rule is a constant with respect to temperature. Since
the commutator of hardcore bosons is not a scalar we instead obtain a temperature-
dependent sum rule given by∫ ∞

−∞
A(x, k)dx =

〈
[bk,α, b

†
k,α]
〉
= 1− (1 +Nf )n(T ), (11)

where Nf should be interpreted as the number of different flavors and define n(T ) :=
1
N

∑
k < b†kbk >. This equation requires that the Hamiltonian is degenerate with

respect to the flavor. For zero temperature the thermal occupation vanishes, since our
vacuum is particle-free, and we retrieve the bosonic sum rule. In the high temperature
limit, each state has the same probability to be occupied and therefore n(T ) = 1

1+Nf

holds. For temperatures in between, there exist no exact known solution in every
dimension to our knowledge. In the one-dimensional case with next neighbor hopping
n(T ) is given by the Fermi-function [8].
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3 Review of the Effective Theory of Cs2CuCl4

This chapter will describe properties of Cs2CuCl4 and their description in a hardcore
bosonic model. We will start by presenting the crystal structure of Cs2CuCl4 and
proceed to outline the most important interaction paths. An effective model containing
these interactions in the presence of an external magnetic field will then be transformed
into a hardcore bosonic model and a mean-field approximation will be applied for the
residual interaction to end up with a non-interacting hardcore bosonic model. This
will allow us to use the techniques of chapter 5 to calculate the spectral function of
the propagator. Finally we provide a sampling mesh of the Brillouin zone needed for
numerical calculations.

3.1 Crystal Structure

Cs2CuCl4 is an antiferromagnetic Mott insulator with an orthorhombic crystal struc-
ture (Pnma). Its structure is depicted in Figure 4. At T = 0.3 K its lattice param-
eters are given by a = 9.65 Å , b = 7.48 Å, and c = 12.26 Å [16]. The bc-plane is
spanned by CuCl2−

4 -tetrahedra separated by by Cs2+ ions in a-direction. The crystal
has been studied for various effects such as spin-liquid behavior[17], dynamic structure
factor[18], Bose-Einstein condensation of magnons[19], electron spin resonance spec-
tra[20] and more.

FIG. 4. The crystal structure of Cs2CuCl4. Figure is taken from Ref. [16]
Copyright American Physical Society©
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FIG. 5. Reduced lattice model of Cs2CuCl4 with respect to the spins of the Cs2+ ions. Solid
lines denote the strongest exchange path with coupling J . Dashed lines represent the next strongest
diagonal nearest-neighbor interaction J ′. Red circles mark the Dzyaloshinskii-Moriya interactions
along the diagonal in direction ẑ, where a dot represent a positive and a cross a negative orientation.
A magnetic field B points along the ẑ-direction. Figure is taken from Ref. [21]

3.2 Spin Hamilton Operator

The Spin Hamiltonian we derive will describe the interaction of the Cu2+ ions, which
each carry a spin of 1/2. The superexchange paths are mediated by the Cl− ions. Since
this path is non-magnetic it lies extremely low in energy at 1–4 K[16]. It is therefore
appropriate to describe this substance as an effective 2D-model. The strongest path,
which we denote with its coupling strength J , connects nearest-neighbor spins along the
b−axis and the next strongest path with coupling J ′ connects spin along the diagonals.
Small spin-orbit couplings lead to Dzyaloshinskii-Moriya interactions D = ±Dẑ which
also connected neighboring spins along the diagonals. Depending on the diagonal path
it has different orientations, see figure 5. In addition we assume an external magnetic
field B along the ẑ direction. This will lead to a gap in the dispersion relation, which
is necessary for the techniques in chapter 5. Coldea, Tennant et al.[19] find for the
coupling constants J = 0.374(5) meV= 4.34(6) K, J ′/J = 0.34(3) and D/J = 0.053(5).
The neglected weak interlayer coupling has a value of J ′′/J = 0.045(5)[19].

The full Hamiltonian reads

H =
1

2

∑
i,j

[Ji,jSiSj +Di,j · (Si × Sj)]− h
∑
i

Sz
i , (12)

where Ri is the vector to lattice site i so that Si = S(Ri) is the spin-1/2 operator
at site i. The exchange couplings Ji,j = J(Ri −Rj) and Di,j = D(Ri −Rj)ẑ should
be understood in the same manner. The first term of the Hamiltonian represents the
exchange interaction, the second the Dzyaloshinskii-Moriya interactions and the last
the coupling to the external magnetic field h. The effective g-factor of the substance
is g = 2.19(1) [21].

Their couplings depend on the connection path Ri−Rj . We introduce the symbol
δk, k ∈ {1, 2, 3} for the three possible paths as

δ1 = bx̂, δ2 = − b

2
x̂+

c

2
ŷ, δ3 = − b

2
x̂− c

2
ŷ, (13)
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where x̂, ŷ, ẑ are the unit vectors of the regular Cartesian coordinate system. With
respect to this symbol the paths have the following coupling constants: J(±δ1) = J ,
J(±δ2) = J(±δ3) = J ′ and D(±δ2) = D(±δ3) = ∓D.

3.3 Effective Hardcore Boson Description

Starting from the Hamiltonian (12) in terms of spin ladder operators we will now
switch to a hardcore bosonic representation. We relate the ladder operators to the
hardcore bosonic creation and annihilation operators through

S+
i = bi, S−

i = b†i , Sz
i = 1/2− b†ibi, (14)

so that an excited hardcore boson corresponds to a magnon excitation of the spin
system. We treat hardcore bosonic operators as regular bosonic operators with infinite
on-site repulsion, which was shown to be possible in [7] . In the rest of this chapter
we implicitly assume the existence of such an interaction term. The exact procedure
is outlined in chapter 5. The Fourier-transformed coupling constants, which we need
in the momentum space representation of the Hamiltonian, are defined via

Jk =
∑
R

J(R)e−ik·R = 2J cos(kxb) + 4J ′ cos
(
kxb

2

)
cos
(
kyc

2

)
(15)

Dk =
∑
R

D(R)e−ik·R = −4iD cos
(
kxb

2

)
cos
(
kyc

2

)
, (16)

Using the momentum space representation b†k = 1√
N

∑
i e

ikRib†i of the bosonic opera-
tors we bring the Hamiltonian into the form

H =
∑

k
ω(k)b†kbk +

1

2N

∑
k,k′,q

Jqb
†
k+qb

†
k′−qbk′bk + E0, (17)

where we introduced the dispersion relation

ω(k) = 1

2
(Jk − iDk − J0 + iD0) + h (18)

and energy offset

E0 = N

(
J0
8

− h

2

)
. (19)

The vacuum of no excited hardcore bosons, which is equivalent to a fully polarized spin
system, is only the ground state for a sufficiently strong magnetic field of at least 8.4 T.
A magnetic field of B = 9 T leads to a vacuum state with a gap ∆ of approximately
19% of the coupling J .

3.4 Mean-Field Decoupling

Since the diagrammatic approach in chapter 5 is designed to treat free models, we
need to decouple the interaction terms of the Hamiltonian (17) given by

Hint =
1

2N

∑
k,k′,q

Jqb
†
k+qb

†
k′−qbk′bk =

1

2

∑
i,j

Ji,jb
†
ibib

†
jbj . (20)
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We start by applying Hartree-Fock decoupling to its real space representation

Hint =
1

2

∑
i,j

Ji,jb
†
ibib

†
jbj . (21)

In the bosonic case this takes the form

b†ibib
†
jbj ≈ nb†jbj + b†ibin− n2 + τj,ib

†
ibj + τi,jb

†
jbi − τijτji, (22)

where we used
n =

〈
b†ibi

〉
, τi,j =

〈
b†ibj

〉
. (23)

n is independent of i because of the translation invariance of the system. Inserting
this approximation into the Hamiltonian Hint yields

1

2

∑
i,j

Ji,jb
†
ibib

†
jbj ≈

∑
i,j

Ji,j(nb
†
ibi + τj,ib

†
ibj) + EMF, (24)

where the last term EMF is the constant mean-field contribution given by

EMF = −1

2

∑
i,j

Ji,j(n
2 + τi,jτj,i), (25)

which will be neglected since it is constant. For brevity, we define the constants
τi, i ∈ {1, 2, 3} as

τ1 = τ(δ1), τ2 = τ(δ2), τ3 = τ(δ3). (26)

The reflection invariance of ky → −ky of the Hamiltonian implies τ2 = τ3. Returning
to the momentum representation we obtain

1

2N

∑
k,k′,q

Jqb
†
k+qb

†
k′−qbk′bk ≈

∑
k
(Jτ

k + nJ0)b
†
kbk, (27)

where
Jτ

k = 2JRe(τ1eikδ1) + 2J ′Re(τ2eikδ2 + τ3e
ikδ3). (28)

The constants could be calculated from momentum space quantities as

τi = τ(δi) =
1

N

∑
k

nke
−ikδi (29)

n =
1

N

∑
k

nk (30)

nk =
〈
b†kbk

〉
. (31)

We conclude that the mean-field decoupling leads to a renormalization of the dispersion
relation as

ω̂(k) = 1

2
(Jk − iDk − J0 + iD0) + h+ Jτ

k + nJ0. (32)

We will apply a selfconsistent treatment to this equation, which we will discuss in
section 6.5. We could now consider adding the the on-site repulsion term to enforce the
hardcore constraint or consider the operators of the Hamiltonian as hardcore bosonic
again. This will be the starting point for the further treatment in chapter 5.
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3.5 Discretization of the Brillouin Zone

Since the later treatment of the Hamiltonian requires numerical calculations using
Fourier transforms we need to sample the Brillouin zone with respect to an appropriate
basis. The requirements that this basis needs to fulfill are described in section 6.1. If
the basis of the lattice vectors is given as

a1 = bx̂, a2 = − b

2
x̂+

c

2
ŷ, (33)

we obtain for the reciprocal basis the vectors

b1 =
2π

b
x̂+

2π

c
ŷ, b2 =

4π

c
ŷ. (34)

With respect to this basis each point of the sampling mesh is given by

k = k1b1 + k2b2. (35)

To achieve an uniform sampling of the Brillouin zone the coefficients can take the values

k1 =
l1
N

, l1 ∈ {0, . . . , N − 1} (36)

k2 =
l2
N

, l2 ∈ {0, . . . , 2N − 1}, (37)

where the parameter N ∈ N controls the overall sampling rate.
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4 Review of the Effective Theory of (VO)2P2O7

In this chapter we will discuss properties of the Vanadyl pyrophosphate crystal (VOPO)
and derive a free effective hardcore bosonic model to describe its physics. The hard-
core bosonic picture will be the starting point for the calculation of the propagator in
chapter 5.

We will first give a brief description of the crystal structure and relevant interac-
tion paths. Starting from a first model of the relevant interactions we turn over to
a description in terms of effective magnetic excitations as hardcore bosonic triplons.
To obtain a simpler Hamiltonian, we then introduce and apply the Continuous Uni-
tary Transformation (CUT) technique, which allows us to then derive the dispersion
relation. Finally, we reference a fit of model parameters.

4.1 Crystal Structure

The crystal structure of VOPO is depicted in Figure 6. The quantum magnets that
will be described in this system are the V4+ ions with S=1/2. They exhibit a singlet
ground state with a spin gap ∆ = 3.1 meV[23].

The ions interact via an antiferromagnetic Heisenberg superexchange interaction.
Measurements of the structurally related material VODPO4•1/2D2O revealed which
interaction paths are the most important: The strongest interaction path, to which
we will assign the coupling strength J1, is given by the double V-O-P-O-V link along
b̂. The second-strongest interaction path with coupling J2 proceeds along the edge-
sharing VO5 square pyramids in direction b̂. The ratio of their interaction strengths
is given by γ = J2/J1 ≈ 0.8. An additional exchange path along V-O-V in direction â
is negligible. Measurements by inelastic neutron scattering [24] revealed a weak ĉ axis
coupling, leading to separated planes in the â, b̂ direction.

Even though there is no obvious reason to expect different behavior among the
V4+ ions and PO4 groups in each plane there certainly are two species of planes. This
was revealed by NMR measurements of the Knight Shift and relaxation rate 1/T1 [25].
The results for the hypothesis of different species of ions however is not completely
consistent but still it is clearly related to a different magnetic environment.

The strongest relative deviations in atom spacing between the two types of planes is
the interatomic distance in the P-V spacing of order O(10−2) and the deviation in the
distance of the V-V spacing of order O(10−3). Although these are relatively small, ab
initio calculations of the superexchange interaction show a strong dependence on the
interatomic positions and angles [26]. However, a quantitative description with these
calculations is still out of reach. Inside each plane two models have been proposed,
one is a spin-ladder and the other an alternating chain model. VOPO was long believed
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FIG. 6. The crystal structure of VOPO. Vanadium, phosphorus and oxygen atoms are depicted as a
white, gray and black circles, respectively. The planes along the b,c direction are stacked in direction
a. The VO6 octahedra form two separated ladders. The P2O7 double tetrahedra connect these. The
axes b and c are rotated by 45◦with respect to x and y. The black line represents a superexchange
path. Figure is taken from Ref. [22].
Copyright American Physical Society©

to be the first known crystal that resembles a spin ladder, but newer results from
inelastic neutron scattering showed a second low-lying excitation with a gap energy of
5.7 meV which the spin ladder model cannot account for[27]. The alternating chain
model on the other hand provides an explanation for this effect as an dimerization.

For this reason we adapt the alternating chain model. They have the couplings
(J1, J2)A,B and gaps ∆0,A and ∆0,B, where the indices A,B label different planes.

The chains correspond to eight distinct V atoms per cell grouped into two chains
with two dimers each. The reported gap energies ∆0,A = 68K and ∆0,B = 35K
are consistent with the interpretation of two different dispersion curves of magnetic
excitations on each plane [25].

4.2 Effective Spin Hamilton Operator

We will now describe an effective Hamiltonian to model the behavior of the system
using a minimal set of strongly coupled paths that fit the experimental observations.
A complete description of the superexchange paths is still not possible due to a lack
of knowledge and computational power[26]. The couplings of the obtained effective
Hamiltonian can then be fitted to the experimental data. The most important cou-
plings are related to the dx,y orbitals of the V ions, namely J1 and J2, which will
therefore be part of the model. The first coupling we discard is the V-O-V path along
â since it is orthogonal to dx,y. Despite their length, two of the V-O-P-O-P-O-V paths
are significant since they form an almost 180◦angle with the dx,y orbital: Ja represents

14



FIG. 7. Effective Lattice Model. γ denotes the two possible types of decoupled subsystems A,B. Taken
from Ref. [28].
Copyright American Physical Society©

the path connecting V ions only separated along the â axis and Jb is path along the â
axis and the b̂ axis one ion spacing each. They are of comparable magnitude and can
lead to frustration. Couplings in the c-direction seem to be of minor importance as
experimental data shows [27].

A graphical representation of the resulting simplification of the VOPO-model is
given in Figure 7. Its Hamiltonian takes the form

Hs =
∑

γ=A,B

∑
i,j

J1,γS
1
i,jS

2
i,j + J2,γS

2
i,jS

1
i+1,j +

∑
m=1,2

[Ja,γS
m
i,jS

m
i,j+1 + Jb,γS

m
i,jS

m+1
i,j+1]


(38a)

=
∑

γ=A,B

J1,γ
∑
i,j

S1
i,jS

2
i,j + λγS

2
i,jS

1
i+1,j +

∑
m=1,2

[µ1,γS
m
i,jS

m
i,j+1 + µ2,γS

m
i,jS

m+1
i,j+1]

 ,

(38b)

where γ denotes the separate subsystems, i, j the dimer, and m represents the left or
right spin of a given dimer. Sm

i,j represent the usual spin operators. The second line
expresses the Hamiltonian with coupling strengths relative to J1,γ , namely the factors
λγ = J2,γ/J1,γ , µ1,γ = Ja,γ/J1,γ and µ2,γ = Jb,γ/J1,γ , which are all smaller than one.

4.3 Effective Hardcore Bosonic Hamiltonian

Starting from the effective Hamiltonian (38b) we now want to combine the two strongly
coupled spins to one effective state. As a first step we transform our Hamiltonian into
a form whose action on the tensor product basis of the total spin state is simple to
work with. The triplet states of a single dimer could be written as

|0〉 = |s〉 = 1√
2
(|↑↓〉 − |↓↑〉), (39a)

−t†+,i,j |0〉 = |↑↑〉 , (39b)
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t†−,i,j |0〉 = |↓↓〉 , (39c)

t†0,i,j |0〉 =
1√
2
(|↑↓〉+ |↓↑〉), (39d)

thereby relating them to the single spin states with respect to the component Sz. The
singlet state is |0〉 = |s〉 and the other three the excited triplet states, which we will
interpret as different flavours of one hardcore boson. The creation operators t†α,i,j on
the left-hand side create such a triplon at site (i, j), where α ∈ {+,−, 0} is treated like
a flavor index. Since these excitations exclude one another they behave fermionic at
the same side and bosonic at different sites, motivating the hardcore boson statistic.

With the definition of the triplon’s creation and annihilation operators we can find
the appropriate linear combinations to express the previously used spin-operators in
the Hamiltonian. This allows us to bring the Hamiltonian into the form

H = H0 + T−2 + T−1 + T0 + T1 + T2, (40)

where Ti are operators that change the number of triplons by i and H0 represents the
free triplon Hamiltonian. We find that the free Hamiltonian H0 is given by

H0 =
∑
i,j

S1
i,jS

2
i,j =

∑
i,j

∑
α∈{+,−,0}

(
t†α,i,jtα,i,j −

4

3

)
. (41)

Since all prefactors of the contributions of the Ti are smaller than one we can treat
them with a perturbative approach as described in the next section. The change in
the number of triplons can be at most two due to the structure of the perturbation
terms, which act only on neighboring sites. In particular, the lowest state available is
a double singlet and the highest a linear combination of triplon states. Since triplons
are maximum angular momentum states, this difference adds up to two. For particle
destruction the identity T †

i = T−i could be used to connect to the previous argument.
A systematic way to obtain a representation of the operators Ti is to calculate the

matrix elements for specific dimer states like

〈0|x†i,jx
†
i−1,jx

†
i,j−1Hintxi,j−1xi−1,jxi,j |0〉 (42)

where xi,j ∈ {1, t†+,i,j , t
†
0,i,j , t

†
−,i,j} are triplon states of the dimer (i, j) and Hint =

H −H0.

4.4 Flow Equation

Since the Hamiltonian is not particle-conserving, we will first transform it into an effec-
tive particle-conserving model. A general scheme to find diagonal effective Hamiltoni-
ans at zero temperature is known as flow equations or continuously unitary transforms
(CUT). This section will describe how CUTs could be applied in a relatively general
form as given in Ref. [1] and later on how it could yield the wanted quantity for the
given problem following the discussion in Ref. [29]. CUTs or the flow equation are
used to find a systematic way to smoothly transform a given Hamiltonian into a di-
agonal form. This technique was invented by Wegner [30]. Since then many advanced
forms have been developed like deepCUT, gCUT and epCUT[3, 2, 1]. In the following
treatment, we will make additional assumptions beyond the most general setting for
CUTs. The restrictions for our system are
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• The unperturbed Hamiltonian H0 has an equidistant spectrum of states,

• The perturbing Hamiltonian Hint only connects subspaces with a finite difference
in particle number.

In this case a Hamiltonian can be written as in equation (40), if the maximal particle
number difference is two, which we assume in the following. We now introduce the
continuously transformed Hamiltonian as

H(l) = U(l)HU(l)†, (43)

where l ∈ R is the so called flow parameter and U(l) is a unitary operator. It should
fulfill the requirements

H(0) = H0 + T−2 + T−1 + T0 + T1 + T2, (44a)
H(∞) = Heff, (44b)

where Heff is the diagonal Hamiltonian we want to obtain with this transformation. It
should be particle-conserving and therefore commute with the free Hamiltonian H0.
We want the operator U(l) to be generated by the anti-hermitian generator η(l) as

U(l) = Le
∫ l
0 η(l′)dl′ , (45)

where L denotes the l-ordering operator, which acts analogously to the well-known
time ordering operator T . Taking the derivative of H(l) with respect to l yields the
so-called flow equation of the Hamiltonian H(l), namely

∂lH(l) = [η(l),H(l)]. (46)

In Wegner’s original ansatz[30] the Hamiltonian H = Hd +Hnd was separated into a
diagonal part Hd and a non-diagonal part Hnd, with the generator

η(l)Wegner = [Hd(l),Hnd(l)]. (47)

This generator however has the unpleasant property to link subspaces of arbitrarily
many particles. To conserve the particle count we introduce a different generator analo-
gously to [1]. First we will introduce a more general representation for the Hamiltonian,
which is given by

H(l) = H0 +
∞∑
k=1

λk
∑
|m|=k

F (l;m)T (m), (48)

where F (l;m) are real-valued functions and we use the following notation for particle
difference multiindices:

m = (m1,m2,m3¸ . . . ,mk), (49)
mi ∈ {0,±1,±2}, (50)
|m| = k, (51)

T (m) = Tm1Tm2 . . . Tmk
, (52)
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M(m) =
∑
i

= 1kmi, (53)

so that H(l) expresses all possible combinations of the previously given Tm, m ∈
{0,±1,±2} with its functional dependence on the flow parameter. This leads to a
generator of the form

η(l) =
∞∑
k=1

∑
|m|=k

sgn(M(m))F (l;m)T (m) (54)

Using this as the starting point, we can find a nonlinear recursive differential equation
system for the F (l;m). It was solved and also shown that it preserves the restriction
in connection of subspaces[1]. This means in the limit the Hamiltonian will take the
form

Heff = H0 +

∞∑
k=1

λk
∑

|m|=k,M(m)=0

F (∞;m)T (m), (55)

where we truncate the the perturbation series in λ at finite order for practical cal-
culations. Solutions for the coefficients up to order k = 10 are provided in [1], also
describing their computer-aided solution for this problem. Here, we nevertheless want
to obtain a free effective theory and find the appropriate dispersion relation.

4.5 Linked Cluster Calculations of the Dispersion Relation

Assuming we have brought our model for VOPO into the form (40) and have applied
the CUT given above, we now have an effective Hamiltonian that preserves the particle
number. In this paragraph, we will describe how we can obtain a dispersion relation
from this intermediate result. In the case of our antiferromagnetic model the ground
state is given by

|0〉 := |
∏
i

si〉 (56)

which is the product state of all singlet states of the dimers. The ground state of the
full effective Hamiltonian is then given as

E0 = 〈0|Heff |0〉 . (57)

It is known from the linked cluster theorem that the finite order contribution of a
short range interaction becomes independent of the cluster size if the size is large
enough. This statement could be used to perform finite cluster calculations since our
model only includes next-neighbor interactions. To obtain the dispersion relation we
need to compute the dynamics of a single triplon. So we set our state to

|j〉 = |s, s, . . . , j, . . . , s〉 , (58)

where the multiindex j denotes the dimer site and flavor of the excitation. Since the
effective Hamiltonian conserves the particle number its action can only describe the
excitation hopping to other sites. Therefore we can write

Heff |j〉 = J1
∑
i

ti |j + i〉 , (59)
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FIG. 8. This figure depicts a cluster for a hopping at order 8. Circles represent dimers, the yellow dot
represents the starting point and the blue one the end point. All possible paths at the given order are
represented by black circles and lines that mark the path. Taken from [29].
Copyright American Physical Society©

where J1 is the dimer coupling constant and ti are real-valued coefficients with a
multiindex i labeling the corresponding hopping site. The coefficients ti can again be
calculated by finite cluster calculations. A cluster for hopping of order 8 is depicted
in Figure 8. Once we have the coefficients ti we can obtain the dispersion relation by
a fourier transform as

ω(k) =
J√
N

∑
j

tj exp (ijk). (60)

Here we used the previously suppressed vector notation for clarity. In Reference [28]
and [31] this scheme was used up to third order in the inter-dimer coupling. The
results for the hopping elements are given by

t00 = 1− λ2/16 + 3λ3/64 + 3µ2
−/4 + 3µ2

−µ+/8, (61)
t01 = µ−/2− µ3

−/8− 5λ2µ2
−/32, (62)

t02 = −µ2
−/8− µ2

−µ+/8, (63)
t03 = µ3

−/16, (64)
t10 = −λ/4− λ2/8 + λ2/64 + λµ2

−/16, (65)
t11 = λµ−/8− λ2µ−/32 + λµ−µ+/16, (66)
t12 = −3λµ2

−/32, (67)
t20 = −λ2/32− λ3/64, (68)
t21 = 3λ2µ−/64, (69)
t30 = −λ3/128, (70)
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where λ = J1,γ/J2,γ , µ− = (Ja,γ − Jb,γ)/J1,γ), µ+ = (Ja,γ + Jb,γ)/J1,γ). We split
the multiindex into the first index representing the dimer bond and the second the
corresponding chain. Since only the difference counts we set the position to zero for
convenience. Because we have a simple square lattice shape in dimer representation
we obtain for the dispersion relation

ω(k) = J
∑
ij

22−δi0−δj0tij cos(iky) cos(jkx). (71)

4.6 Fit to Experimental Data

Since we started with a model with unspecified coupling constants we now need to fit
them to the experimental data from inelastic neutron scattering. This was done with
the square ω2(q) since it has a smoother form. The parameter µ+,γ can be fixed using
the maximum of the measured susceptibility χmax instead of being fitted [31]. This
leads to the coupling coefficients [31]

(J1A, J2A, JaA, JbA) = (144.9K, 95.5K, 11.6K, 16.4K), (72)
(J1B, J2B, JaB, JbB) = (122.9K, 95.0K, 13.4K, 18.6K). (73)

For further details refer to [31, 28]. The fitted coupling constants are all it takes to
derive the free pure hardcore bosonic behavior of the system. For example these values
lead to a gap energy of the dispersion relation of about 45 K. Beside this the effective
Hamiltonian yielded by the CUT could be used as a starting point to include further
interactions of the system. For further information refer to [32]. This was done on a
mean field level for Cs2CuCl4[21] and in one dimension for BaCu2V2O8[33] even within
the same perturbation order as the later outlined Brückner approach in chapter 5.
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5 Brückner Approach

In this chapter, we will outline the Brückner method for the calculation of the spectral
representation for the propagator in a free model of hardcore bosons with a single
gapped ground state and unbroken flavour symmetry. The name comes from the
well-known method for treating nuclear matter [34], but it has also been applied to
spin systems by Sushkov et al. [35], but at zero temperature to deal with quantum
fluctuations. We will instead use it to account for the effects of thermal fluctuations,
which complicate the description of the propagator at finite temperatures. This chapter
follows the discussion of Fauseweh et al.[8, 7]. To use this approach in a more general
setting a diagonalization with respect to flavor space needs to be applied. In the first
section, we will discuss the treatment of hardcore bosons though bosons with finite
repulsion. In the second and third section, we use the Brückner approach to derive the
spectral function of the propagator and the self energy to first order in eβ∆

α , where ∆α

is the gap of the dispersion relation of the hardcore excitation. We will then extend
this framework by using full propagators in a self-consistent iteration. Finally we will
give some remarks on how to implement this approach algorithmically.

5.1 Bosonic Ansatz with Infinite Repulsion

We will treat the free hardcore boson model by a bosonic ansatz which has the form

H = H0 + U
∑
i,α,β

b†i,αb
†
i,βbi,βbi,α, (74)

where U is a positive interaction strength and all operators in the given equation
should be interpreted as regular bosonic operators. H0 is the initial Hamiltionian and
the last term is an on-site local interaction, where we will later take the limit U → ∞.
This repulsion acts between all possible flavored excitations. The idea is that if we
take the limit for the occupation of multiply occupied state to infinity, regardless of
flavor, the hardcore constraint will be retrieved. We first consider this theory and only
afterwards take the limit to infinity in order to avoid the more complicated commutator
and Wick’s theorem of hardcore bosons. However, a regular perturbation theory in
U will fail in this limit. For this reason we select a different parameter in the next
paragraph.

Perturbation Parameter We use a bosonic perturbation theory as given in the
book [36]. The main object we have to deal with is the Greens-function of the form

Gα(j, τ) = −〈Tb†j,α(−iτ)b0,α(0)〉 τ ∈ R. (75)
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FIG. 9. Feynman rules of interaction vertex and bare boson propagator

We assume to have an infinite lattice and therefore describe the problem in momentum-
space by using Fourier transforms. For the free bosonic propagator G0,α

k in momentum
space this yields

G0,α
k (τ) =

{
− exp(−τω(k))(1 + 〈nα

k 〉0) for τ > 0

− exp(−τω(k))〈nα
k 〉0 for τ ≤ 0,

(76)

where 〈nα
k 〉0 denotes 〈b†, αk bαk 〉0, the expectation value of the occupation of a momentum

state k with respect to the Hamiltonian H0. The property of interest is the behavior
of this function in the limit of low temperature:

〈nα
k 〉0 =

1

eβωα(k) − 1

β�0
≈ e−βωα(k). (77)

If there is a finite gap, the propagator going backward in imaginary time are suppressed
by at least e−β∆α where ∆α represents the gap. With this we found our perturbation
parameter that is small in the low temperature regime.

5.2 Calculation of the Propagator

To calculate the full propagator, we need to sum up all diagrams with two external
legs that contribute to first order. Since we saw that propagators going backwards in
imaginary time are suppressed with our expansion parameter, we can drop diagrams
with more than one of these. The Hartree- and Fock-diagrams in Figure 10 clearly
contribute, the other diagrams are just the two types represented in Figure 11. These
are the only possible types of diagrams at this order: Since we have just one propagator
going in and one coming out of each diagram, all other need to be connected in a loop.
Suppose all propagators are lined up, then there always needs to be one propagator
running back in time as in the case of the mentioned types of diagrams. But since
we restrict ourselves to just one propagator going backwards in imaginary time, there
could be no additional diagram type but the ones already considered.

On the other hand, it is immediately clear that we cannot stick to any finite set
of diagrams, since these types of diagrams have in principle arbitrarily many large
couplings. We will sum up these contributions using an implicit calculation. To do
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FIG. 10. Hartree- and Fock-Diagram

FIG. 11. Representatives of two types of diagrams in first order of the perturbation theory.

FIG. 12. Scattering amplitude diagrams that contribute to the propagator in first order

this, we first consider the scattering amplitude Γα(P,K,Q), depicted in Figure 12. We
have introduced the notations P = (p, iωp) to combine momenta and frequencies. The
dependencies P,K,Q represent the independent frequencies and momenta in a scatter-
ing of two excitations. The Bethe Salpeter equation relates the scattering amplitude
and the propagator through

Γα,β(P,K,Q) =
U

Nβ
− U

Nβ

∑
L

Γα,β(P,K,Q)Gα
0 (P + L)Gβ

0 (−L), (78)

which is shown in Figure 14. The negative sign in front of the second term is generated
by the Feynman rules and the fact that the term represents a contribution of one order
higher in the coupling interaction than the bare scattering amplitude.

We now give an argument that the scattering amplitude only depends on the
total momentum P , which simplifies the problem dramatically. First we consider the
diagram with two propagator lines shown in Figure 13 which is the first diagram that
can depend on more than the total momentum P . We translate it into an mathematical
form as

− U2

β2

∑
L

Gα
0 (P + L)Gβ

0 (−L). (79)

Since the interaction does not depend on the momentum, this depends on neither K nor
Q. Therefore both the diagrams with one and two vertices don’t depend on anything
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FIG. 13. Diagrams with two propagator in first order of the perturbation theory

FIG. 14. Bethe Salpeter Equation

else than P . Because all the rest of the diagrams are concatenations of these types of
diagrams, the complete statement is a consequence of mathematical induction.

Taking this simplification into account we can easily calculate by basic algebra that

Γα,β(P ) =
U/(Nβ)

1 + UMα,β(P )
(80)

holds, where we introduced the function

Mα,β(P ) :=
1

Nβ

∑
L

Gα
0 (P + L)Gβ

0 (−L). (81)

It is handy to represent this quantity by a Hilbert representation

Mα,β(ω, p) =:

∫ ∞

−∞

ρα,βp (x)

ω − x
dx. (82)

This representation exists because M(P ) is a convolution of two greens-functions and
therefore is at least of order O( 1ω ). We now employ the Matsubara technique: Inserting
the bare bosonic propagator in the Matsubara-representation

Gα
0 (P ) =

1

iωp − ωα(p)
(83)

into equation (81) yields

Mα,β(ω, p) =
1

Nβ

∑
l,iωl

1

i(ωp + ωl)− ωα(p+ l)

1

iω−l − ωβ(−l)
. (84)
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Since we want to apply our approach to a situation in which the excitations are de-
generated, we now drop the index of the dispersion ω(l) = ωα(l) to avoid a cluttered
notation. We use a common trick from complex analysis to integrate rather than sum
over the Matsubara-frequencies. For this we introduce a function h(z) := 1

eβz−1
which

has a simple pole at the position of the Matsubara-frequencies. Applying the residue
theorem to the simple closed curve γ as shown in Figure 15 we obtain

Mα,β(P ) =
1

2πi

∫
γ
h(z)

1

N

∑
l

1

iωp + z − ω(p+ l)

1

−z − ω(−l)
dz, (85)

This equation also differs by a factor 1
β which is hidden in the residue as

eβx
x≈iωp
= 1 + β(x− iωp) +O((x− iωp)

2). (86)

We exploit the fact that the function vanishes for ω → ∞: This could be used to wrap
the path of the integral around the other two poles that don’t reside on the imaginary
axis by tearing the loop apart in infinity. A sign flip results from reversing the path
orientation from counterclockwise to clockwise.

FIG. 15. Path transformation from the (solid) path around the Matsubara poles to the (dotted) paths
around the propagator poles for M(P ).

Using the new curve we find after some algebra that

Mα,β(P ) =
1

N

∑
l

1

iωp − [ω(−l) + ω(p+ l)]
·
(

1

e−βω(−l) − 1
− 1

eβω(p+l) − 1

)
(87)

holds. Using the Dirac identity∫
R

1

x− (ω + i0+)
= P

[
1

x− ω

]
−
∫
R
iπδ(x− ω), (88)
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and taking the limit ρα,βp (x) = − 1
π Im

[
lim

iωp→x+iδ
Mα,β(ωp, p)

]
we get

ρα,βp (x) = − 1

N

∑
l

δ (x− [ω(−l) + ω(p+ l)]) ·
(

1

eβω(p+l) − 1
− 1

e−βω(−l) − 1

)
, (89)

so that ρα,βp (x) is always negative. Since it has a constant contribution, there exists
no spectral representation for Γ(P ) and it is also not possible to take the limit of
U → ∞ because we know no reasonable expansion in 1/U . Instead we consider an
object that has a spectral representation by eliminating the constant part in Γ(P )Nβ.

Since U
1+UMα,β(ω,p)

− U
|w|�1
∝ 1

ω , we can define ρ̄α,β
p through

U

1 + UMα,β(ω, p)
− U =

∫ ∞

−∞

ρ̄α,β
p (x)

ω − x
dx. (90)

The left-hand side has a pole since Mα,β is negative for ω ≈ U and ρα,βp is negative.
This is an anti-bound scattering state. It will leave an important trace even after
taking the limit of U → ∞ which we discuss later. First off, we will calculate the
spectral function as before and later on take a closer look at additional contributions
that turn out to be of major importance. Using the Dirac-identity we get

− 1

π
lim

ω→x+iδ
Im
[

U

1 + UMα,β(ω, p)
− U

]
(91)

(88)
= − 1

π
Im

 U

1 + U

(
−iπρα,βp (x) + P

∫∞
−∞

ρα,β
p (y)
x−y dy

) − U

 (92)

=
−U2ρα,βp (x)[

1 + UP
∫∞
−∞

ρα,β
p (y)
x−y dy

]2
+
[
Uρα,βp (x)π

]2 (93)

Now we can take the limit in a reasonable way and define for U → ∞ the new function

fα,β
p (x) :=

−ρα,βp (x)[
P
∫∞
−∞

ρα,β
p (y)
x−y dy

]2
+
[
ρα,βp (x)π

]2 . (94)

To understand the limit better we investigate what happens for ω ≈ U . With the help
of the Laurent series

1

ω − x
=

1

ω

1

1− x
ω

(95)

|ω|>|x| =⇒ | x
ω
|<1

=
1

ω

∞∑
k=0

(x
ω

)k
, (96)

we approximate M for the case ω ≈ U , which is reasonable since ρp(x) has a com-
pact support with respect to x as one can see from the δ-functions. So we use this
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approximation to write the term in the form

U

1 + UMα,β(ω, p)
− U ≈ U

1 + Uρα,β0 (p) 1ω + Uρα,β1 (p) 1
ω2

− U (97)

Here we introduced the weight and first moment of ρp as

ρα,β0 (p) =

∫ ∞

−∞
ρα,βp (x)dx, (98)

ρα,β1 (p) =

∫ ∞

−∞
xρα,βp (x)dx. (99)

At this stage, the function ρα,β0 is a constant, because integrating ρα,β cancels the δ-
function in equation (89) and leaves two independent summations. One is a shifted
Bose function and the other a Bose function with a negative argument. Summing over
all momentums yields a constant. This will change when we take a dressed propagator
into account. Again we employ the usual trick to calculate the new contribution to
ρ̄α,β.

−1

π
lim

ω→x+iδ
Im

[
Uω2

ω2 + Uρα,β0 ω + Uρα,β1 (p)

]
(100)

=
−U

π
lim

ω→x+iδ
Im

[
ω2

(ω − ωα,β
1 )(ω − ωα,β

2 )

]
(101)

Where we introduced the short hand notation

ωα,β
1 := −Uρα,β0

2
+

√
U2(ρα,β0 )2

4
− Uρα,β1 (p), (102)

ωα,β
2 := −Uρα,β0

2
−

√
U2(ρα,β0 )2

4
− Uρα,β1 (p). (103)

In the following we will also drop the flavor indices for ω1 and ω2. Investigating the
behavior of these frequencies we notice that ωα,β

1 scales with O(U) but ωα,β
2 scales with

O(U0), considering that ρα,β0 is negative since ρα,β is also negative. Carrying on with
the help of the Dirac-identity and the partial fraction decomposition

x2

(x− ω1)(x− ω2)
=

ω2
1

(ω1 − ω2)

1

(x− ω1)
+

ω2
2

(ω2 − ω1)

1

(x− ω2)
(104)

we conclude that (101) is equal to

U

(
ω2
1

ω1 − ω2
δ(x− ω1) +

ω2
2

ω2 − ω1
δ(x− ω2)

)
. (105)

Since we are interested in the limit of U → ∞, the pole at ω2 becomes unreasonable
because the expansion at this value in frequency space is unreasonable as well and
we sought for neglected contributions by taking the limit at this step. Therefore they
should disappear in the limit. Because of this ω2 could be interpreted as an artifact of
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FIG. 16. Relation of the self energy and the scattering amplitude

the expansion and will be dropped out of the calculation. The complete contribution
to ρ̄ is then given by

ρ̄α,β
p (x) = fα,β

p (x) + U

(
ω2
1

ω1 − ω2
δ(x− ω1)

)
. (106)

The next step is to calculate the self energy and find out where the high energy anti-
bound state leaves traces if we take the limit U → ∞.

5.3 Calculation of the Self Energy

The definition of the self energy Σα with respect to one loop contributions in the
first order of our approximation is represented in Figure 16. Since we have to deal
with multiple flavors there is one important difference in the two types of diagrams.
The Fock-like diagrams have a propagator line which connects to all propagators and
since we have no interaction that interconnects different flavors, all propagator are
associated with the same flavor. In the case of the Hartree-like diagram type there is
an independent loop instead. This loop can in fact have a propagator line for every
flavor. Therefore we have two diagrams with different multiplicities. As an equation
it reads

Σα(P ) =
−1

βN

∑
α

∑
K

(1 + δα,β)G
β
0 (K)eiωk0

+
Γα,β(P +K) (107)

The convergence factor is needed for propagation at the same imaginary time as in the
Hartree-contribution. Taking into account that the degeneracy causes all propagators
Gα(P ) = G(P ) and their spectral function to be equal, we can conclude

Σα(P ) =
−(1 +Nf )

βN

∑
K

Gβ
0 (K)eiωk0

+
Γα,β(P +K). (108)

Since we have now accounted for the flavor indices, and the rest of the calculation
is indifferent with respect to them, we suppress them on the right hand side of the
equations. Inserting the equation for Γ(P ) yields

Σα(P ) = −2
∑
K

G0(K)eiωk0
+ U

1 + UM(P +K)
. (109)
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FIG. 17. Poles in the complex plain of the self energy and integration paths

Now we insert the spectral function including the contribution from the Hartree-Fock
diagram:

Σα(P ) =
−(1 +Nf )

Nβ

∑
K

G0(K)eiωk0
+

(∫ ∞

−∞

ρ̄p+k(x)

iωp + iωk − x
dx+ U

)
. (110)

Evaluating the last term by carrying out the Matsubara summation in the same form
as before yields

Σα(P ) =
−(1 +Nf )

Nβ

∑
K

G0(K)eiωk0
+

(∫ ∞

−∞

ρ̄p+k(x)

iωp + iωk − x
dx

)
+

2

N

∑
k

U

eβω(k) − 1
.

(111)
Once again we need to calculate the Matsubara-summation transformed to an inte-

gration along the path depicted in Figure 17. We also exploited again the fact that
the spectral function vanishes for large frequencies to transform the integral into a
summation over two residues. A simple calculation which yields

−(1 +Nf )

Nβ

∑
K

1

iωk − ω(k)
eiωk0

+

∫ ∞

−∞

ρ̄p+k(x)

iωp + iωk − x
dx (112)

=
(1 +Nf )

N

∑
k

∫ ∞

−∞

(
ρ̄k+p(x)

iωp − (x− ω(k))

[
1

eβω(k) − 1
− 1

eβx − 1

])
dx (113)

Next we replace ρ̄ with the expression (130) and cancel one integration with the δ-
function. This yields

Σα(P ) =
(1 +Nf )

N

∑
k

U

eβω(k) − 1
+

2

N

∑
k

∫ ∞

−∞

fk+p(x)

iωp − (x− ω(k))

[
1

eβω(k) − 1
− 1

eβx − 1

]
(114)
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FIG. 18. Dyson Equation

+
2

N

∑
k

U

(
ω2
1

ω1 − ω2

)
1

iωp − (ω1 − ω(k))

[
1

eβω(k) − 1
− 1

eβω1 − 1

]
. (115)

The last term of this equation still depends on U explicitly and implicitly in the
variables ω1 and ω2, so we try to find an expansion in 1/U to identify a reasonable
limit for this expression. We find

U

(
ω2
1

ω1 − ω2

)
1

iωp − (ω1 − ω(k))
= U

(
−1 +

[
iωp

ρ0
− ρ1(p+ k)

ρ20
+

ω(k)

ρ0

]
1

U
+O

(
1

U2

))
.

(116)
The only part that diverges as U → ∞ cancels out in the equation for the self energy
since we previously added this contribution, the Hartree-Fock-term, to define the spec-
tral function. So we are now safe to take the limit U → ∞. As we have a complete
description of the self energy we are now able to use the Dyson equation to obtain the
dressed propagator up to the given order in our perturbation approach. The Dyson
equation is given in graphical form in Figure 18. From this equation we retrieve our
spectral function as

Aα(ρ, ω) =
−1

π
Im lim

iωp→ω+iδ
Gα(iωp) (117)

=
−1

π

Im[Σα(ω, p)]

[ω − ω(p)− Re[Σα(ω, p)]]2 + [Im[Σα(ω, p)]]2
. (118)

For this calculation we split the self energy into its real and imaginary part. The
strongest influence on the position of the peak comes from the real part of the self
energy while the imaginary part mainly influences the width. A simple calculation
using the Dirac-identity and equation (88) yields

Re[Σα(ω, p)] =
(1 +Nf )

N

∑
k

[
ω

ρ0
− ρ1(p+ k)

ρ20
+

ω(k)

ρ0

]
1

eβω(k) − 1
(119)

+ P
∫ ∞

−∞

ρΣ,p(x)

ω − x
dx

Im[Σα(ω, p)] = −πρΣ,p(ω). (120)

Here we introduced the spectral function of the self energy in the usual manner. By a
simple application of the Dirac identity, it is given as

ραΣ,p(ω) =
(1 +Nf )

N

∑
k

fk+p(ω + ω(k))

[
1

eβω(k) − 1
− 1

eβ(ω+ω(k)) − 1

]
. (121)

Now we finally have all information to calculate the spectral function for a given dis-
persion relation within the accuracy of our perturbation theory. In the next section
we are going to extend the diagrams we accounted for to diagrams with dressed prop-
agators. This opens the opportunity to include also higher order contributions in a
non-perturbative fashion.
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FIG. 19. The dressed scattering amplitude

5.4 Selfconsistent Extension

In this section we are going to extend the previously derived diagrams to dressed
diagrams. For the bosonic case it is known that this kind of selfconsistent approach
can predict the conservation of certain quantities like the particle number correctly[37].
This approach will lead us to a selfconsistent iteration scheme that has proven superior
to the non-selfconsistent approach. The general idea is to replace the bare propagator
with dressed ones in every diagram. This is possible since all presented diagrams are
skeleton diagrams[36] and therefore we don’t overcount any diagrams. The first af-
fected diagram is the diagram of the scattering amplitude, depicted in Figure 21. This
yields

Γα,β(P,K,Q) =
U

Nβ
− U

Nβ

∑
L

Γα,β(P,K,Q)Gα(P + L)Gβ(−L). (122)

Since we don’t know the exact solution for the full propagator we replace it by its
density

Gα(j, τ) =:

∫ ∞

−∞

Aα(x)

ω − x
dx. (123)

This leads to the modified expression for

Mα,β(P ) =
1

N

∑
l

∫ ∞

−∞

∫ ∞

−∞
dxdx′

Ap+l(x)A−l(x
′)

iωp − (x′ + x)

(
1

e−βx′ − 1
− 1

eβx − 1

)
. (124)

As a next step we want to compute the Matsubara summation by turning over to the
spectral representation with the help of the Dirac-identity as before. This results in

ρα,βp (y) =
−1

N

∑
l

∫ ∞

−∞
dx

(
Al(x)

eβx − 1
Ap−l(y − x)−Al(x)

Ap−l(y − x)

e−β(y−x) − 1

)
. (125)

The delta function binds the two integrations into an single convolution. In total
we now have to calculate two convolutions, one with respect to frequencies and the
other with respect to momentum. The next step in the non-selfconsistent calculation
is to derive the representation of fp(x). Since the complete calculation relies solely
on the spectral function ρp(x) and no special assumption about its properties have
been made, the result is the same with respect to the function ρp(x). It is given in
equation (94), but has to be interpreted with the spectral function given in (125). In
addition the discussion of the additional pole of spectral function ρ̄ stays the same.
The only problem that might arise is that we don’t know if ρ has a compact support,
but the application of the technique does not show that this is a problem. In general
all spectral functions can have long tails in frequency space. Another difference is that
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FIG. 20. ρ0 fluctuations for a spin ladder model in 1D with next neighbor hopping. The dispersion
has a gap energy ∆ = 1 and bandwidth W = 0.5∆ at 1 K. The used resolution is 16384 frequency
and 128 momentum mesh points.

ρ0(p) also depends on momentum, since the previous argument no longer holds. On
the other hand we can consider it to be approximately constant for another reason.
Assuming the sum rule

∫∞
−∞A(x, k)dx = 1−(1+Nf )n(T ) =: C(T ) holds, which clearly

should be the case in the low temperature limit, if our approximation is right. We now
exploit a property of the integral convolution ∗ related to the Fubini theorem which
reads ∫

R
(f ∗ g)(x)dx =

(∫
R
f(x)dx

)(∫
R
g(x)dx

)
. (126)

Using this property in combination with the sum rules yields∫
R
ρα,βp (y) =

−1

N

∑
l

∫ ∞

−∞
dx

(
Al(x)

eβx − 1
C(T )− C(T )

Al(x)

e−βx − 1

)
. (127a)

= −(n(T )C(T )− C(T )ñ(T )). (127b)

In the last line we used the fact that C(T ) is independent of l, resulting in a simple
summation, as well as

n(T ) =
1

N

∑
k

nk :=
1

N

∑
k

∫ ∞

−∞
Ak(x)

1

eβx − 1
, (128)

ñ(T ) :=
1

N

∑
k

ñk =
1

N

∑
k

∫ ∞

−∞
Ak(x)

1

e−βx − 1
. (129)

We therefore expect ρ0 to approximately be a temperature-dependent constant. Nu-
merical data seem to support this argument as well as shown in Figure 20. Similar
tricks might yield interesting relations for ρ1 as well.

The full expression for ρ̄ now reads

ρ̄α,β
p (x) = fp(x) + U

(
ω1(p)

2

ω1(p)− ω2(p)
δ(x− ω1(p))

)
, (130)
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FIG. 21. The dressed Self Energy Diagram

where we defined the two poles in a similar fashion as before by

ω1(p) := −Uρ0(p)

2
+

√
U2ρ20(p)

4
− Uρ1(p), (131)

ω2(p) := −Uρ0(p)

2
−
√

U2ρ20(p)

4
− Uρ1(p). (132)

The dressed self energy contribution is represented in Figure 21. A calculation in the
same fashion as before starting from equation (109) and using the equations for the
dressed quantities yields

Re[Σα(ω, p)] =
(1 +Nf )

N

∑
k

∫ ∞

−∞
dxAk(x)

[
ω

ρ0(p+ k)
(133)

−ρ1(p+ k)

ρ20(p+ k)
+

x

ρ0(p+ k)

]
1

eβx − 1
+ P

∫ ∞

−∞

ρΣ,p(x)

ω − x
dx (134)

Im[Σα(ω, p)] = −πρΣ,p(ω).

Assuming the sum rule holds, similar simplifications for the real part of the self energy
exist like in the case of ρ0. The spectral function of the self energy is given as

ραΣ,p(y) =
(1 +Nf )

N

∑
l

∫ ∞

−∞
dx

(
Al−p(x− y)

eβ(x−y) − 1
fp(x)−Al−p(x− y)

fp(x)

eβx − 1

)
. (135)

This is again a convolution, but one where one function has a negative argument. This
is obvious in the following alternative form.

ραΣ,p(y) =
(1 +Nf )

N

∑
l

∫ ∞

−∞
dx

(
A−(p−l)(−(y − x))

e−β(y−x) − 1
fp(x)−A−(p−l)(−(y − x))

fp(x)

eβx − 1

)
(136)

Now we have expressed all necessary equations with respect to the full propagator.
Using the Dyson equation given in (118), we now have a scheme for a selfconsistent
fixed-point iteration.

5.5 Algorithm

In this section we will give a short overview on the main steps the calculation takes in
practice. We will emphasize the structure of the equations previously given and restrict
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ourselves to the selfconsistent calculation since it outperforms the non-selfconsistent
method in speed and quality of the results. For a clear notation we drop flavor indices
in this section.

The initial guess for the spectral function of the propagator is a Gauss-shaped peak
at the position of the dispersion, since at zero temperature we would get delta-peak
right at this position as in the boson case. The reason for this is that we have a non-
degenerated ground state and a finite gap. The calculation of one iteration takes six
major steps. We need to calculate the spectral function in the following order. We start
with the calculation of ρ and then we turn over to f followed by ρΣ and the calculation
of the zero and first moment of ρ to finally calculate the self energy. This could be used
then to calculate A again. We introduce the symbol ∗ to denote a convolution that is
performed with respect to momentum and frequency if the function also depends on
that. Since the Bose function

nB(x) =
1

eβx − 1
(137)

is often used we use the given short hand notation. We also introduce the operator S
which acts as

Sρp(x) := ρ−p(−x) (138)
Sρ0(p) := ρ0(−p) (139)
SnB(x) := nB(−x) (140)

and the operator of the principle value hilbert transform as

ph(ρ)(x) := P
∫ ∞

−∞

ρp(y)

x− y
dy. (141)

The first spectral function we need to calculate is ρ, which is given in this notation as

ρ = A ∗ (A · [nB − SnB]). (142)

The spectral function f now reads

f =
−ρ

ph(ρ)2 + (πρ)2
. (143)

We are now able to obtain the spectral representation of the self energy as

ρΣ = (1 +Nf ) [f ∗ (S[A · nB])− (f · nB) ∗ (SA)] . (144)

We also need to calculate the zeroth and first moment of ρ by simple integration to
express the self energy as

Re[Σ(ω, p)] = (1 +Nf )

(
ω

[
nk ∗

1

ρ0

]
−
[
nk ∗

ρ1
ρ20

]
+

[
n1,k ∗

1

ρ0

])
+ ph(ρΣ) (145)

Im[Σ(ω, p)] = −πρΣ,p(ω). (146)

Here we have introduced the new shorthand

n1,k =

∫ ∞

−∞

(
Ak(x)

x

eβx − 1

)
dx. (147)

All in all we find that we need to implement, beside basic arithmetic operations, con-
volutions, integration and principle value hilbert transforms for an automated calcu-
lation. We refer the reader to chapter 6 for further information on the details of our
implementation.
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6 Computational Implementation

Since not all of the steps in the perturbation theory of the last chapter can be carried
out analytically for arbitrary dispersion relations, we now build a numerical framework
to deal with them. On the way we obtain a program which could be useful in a more
general manner and works in one, two and three dimensions. In this chapter, we will
go through the basic structure of the implementation in order to obtain a description
of the asymmetry and broadening to be described in gapped hardcore bosonic models.
The aim of our program is to calculate the spectral function of the propagator and
related quantities. The calculation is performed on the computing cluster CL1 of the
department of physics at TU Dortmund and is written in C++ using the C++11 standard.

This chapter is divided into 5 parts. The first section describes the design philoso-
phy of the program. The next two outline the structure of the main two classes. The
following section outlines some usage hints and the last describes how the calculations
are performed in practice.

6.1 Design Philosophy

The key ingredients of our implementation are the following:

• Class Design

• Memory Efficiency

• Intrinsically Parallel Operations

• Discretisation

• Fast Convolution Algorithms

Class Design Considering the equations in section 5.5 that we need to implement,
an object-oriented approach which represents be mathematical objects we deal with
seems to be a good choice. If we take a look at for example Eq. (146), we notice
what kind of mathematical objects exists beside plain numbers. We see two types
of functions that we need to represent. One type is momentum dependent and the
other depends on frequency and momentum. We will call these objects kFunction
and discreteDensity, respectively. We sample functions on a mesh to represent
them. The next question that arises is what kind of operations we need to perform
with these objects, which will further restrict our possible design decisions. These
include arithmetic operations, integration routines, convolutions of the two types and
a Hilbert transform. Arithmetic operations that change the class type, such as the
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multiplication of a kFunction with a frequency variable ω, yield a discreteDensity
and is not dealt with in operator notation for clarity of notation.

Memory Efficiency Memory efficiency is an important issue since a spectral func-
tion in dimension two has a data tensor of rank three and since very sharp functions
need to be resolved especially in frequency space. It is clear that at least this dimension
needs many data points. Assuming we model a square lattice and taking a resolution
of 128 points per dimension in k-space and 32768 points in frequency-space, we would
make the discreteDensity more than 4.4 gigabytes in size. Therefore all arithmetic
operations are performed on the object itself. The reason why there exists an operator
*= but not * is, that this is the only practicable way to stick to the object-oriented
approach without the need for unnecessary amounts of memory since in every opera-
tion a temporary object would be generated otherwise. All other functions make use
of this ’in-place’ philosophy as far as possible.

Intrinsically Parallel Operations The reason parallelization is used is the obvious
advantage in speed. The execution time roughly halves when the number of threads
running on individual cores doubles assuming that your problem becomes reasonable
big in size as well. The object-oriented design makes it possible to make use of intrin-
sically parallel operations that don’t need to be considered on the level of equation
implementation. Operations on the objects are performed in a fashion that minimize
the calculation of addresses in the tensor, exploiting the fact that some operands only
depend on frequency or momentum in order to produce code that runs the best in
parallel on the big data chunks. In general, all functions that perform operations on
the often big data set are carried out in parallel with the help of OpenMP[38]. Since
operations on the objects already happen in parallel, the user should not use these ob-
jects for own parallelization techniques. Otherwise the thread forking would stack up.
Since these classes are intended to be mainly used, it is possible to avoid own paral-
lelization and still benefit from multiple procession units. In the case of convolutions,
that is done with the help of the FFTW3[39] unit methods.

Fast Convolution Algorithms Convolutions employ Fast Fourier Transform (FFT)
routines, which make use of the circular convolution theorem and therefore force us
to use a spatially uniform mesh in each variable of the function that was sampled.
The principal value Hilbert transform is also carried out as a special kind of con-
volution using the Liu and Kosloff technique[40]. This means that instead of using
this integral transform over frequencies we are using a faster and better suited ap-
proximation. It consists of making a convolution of the frequency dependence of the
discreteDensity for every point in k-space with a suitable function that yields ap-
proximately the same result. In the limit of infinite sampling points and a compact
support of the transformed function, this scheme would also be exact. We must also
consider that the FFTW3 performs discrete Fourier transforms which are periodic.
This is exactly what we want for the case of the k-space dependence if done right but
wrong for the frequency dependence. To take this into account, we need to make use
of the fact that a circular convolution is the same as a linear convolution if one half of
the data points are zeros. The technique is called zero padding. This means, that be-
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fore any convolution the half of both involved discreteDensitys in frequency-space
has to be set to zero in a reasonable way. In the calculation we perform, the selected
scheme for this procedure didn’t have any significant influence on the results. The one
we selected sets the continuous block of half data size to zero which has the least ab-
solute integral weight. This scheme also intrinsically takes care of the fact that the
integral convolution and the linear convolution are related by a shift in the sampled
region up to a scaling factor. Therefore we don’t need to adjust the padding scheme
by hand for every convolution. Another important thing that one has to keep in mind
is that a convolution performed in this way is still circular in the sense that data could
be wrapped around from the highest to the lowest frequencies. This can be avoided by
simply selecting a wide enough and well-positioned interval. Now consider the k-space
sampling again: It has to fulfill the following properties to work as a fourier transform
of our k-space sampling. We call Ai, i = 1, 2, 3, our set of primitive lattice vectors of
the Brillouin zone and ai will denote the vectors of the sampling mesh, so that a point
p on the mesh takes the form

p =

3∑
i=1

niai, (148)

where ni are integer numbers. We want our vectors ai to have at least the symmetry
operations of the original lattice, which ensures that the periodicity of the FFT will
be the same as the periodicity of the lattice and we need to be capable of writing the
primitive lattice vectors as

Aj =

3∑
i=1

aiNij , Nij ∈ Z. (149)

The last two constraints are that Nij = Niδij must be diagonal for the FFT to perform
correctly and that the mesh should be evenly distributed since we want to approximate
the thermodynamic limit. To find an optimal pair of those vectors that fulfill the
desired conditions and have an optimal resolution with respect to memory consumption
could be a hard task if the lattice symmetry is complex. For further information on
this topic, see [41].

6.2 The kFunction Class

In this section we will go through the interface of the class kFunction, which will
represent all functions that only depends on momentum. We begin with the creation
of an instance of the class.

Constructors/Assignment Operators The constructors and copy/move construc-
tors/assignment operators present are

kFunction(unsigned int m_dimensionality,double *data,
const ptrdiff_t* kPeriodicity,const double *k_low,
const double *k_high);

kFunction(const kFunction& copy_from_me);
kFunction(kFunction&& copy_from_me);.
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kFunction& operator=(const kFunction& Arg_kFunction);
kFunction& operator=(kFunction&& Arg_kFunction);

If the kFunction is not created by integrating a discreteDensity, it can be copied or
moved from an already existing kFunction or created by handing over the initial data
in the form specified in section 6.4. The last option usually happens in the beginning
of the calculation when we bring the dispersion in the compatible format. In the case
of the dispersion it is just sampled with a mesh as described above to bring it into a
uniform format. To do so one has to use the row major format with the last dimension
padded as noted in the FFTW3 manual [39] for in-place transforms, which is again
done to reduce the memory requirements. Since a move constructor and assignment
operator is provided, the performance of dynamical objects is the same as of stack
objects. But dynamical objects make resource management easier.

Arithmetic Operations Next we list all operations that we want to apply to
kFunctions.

kFunction& operator-=(const kFunction& Arg_kFunction);
kFunction& operator+=(const kFunction& Arg_kFunction);
kFunction& operator*=(const kFunction& Arg_kFunction);
kFunction& operator*=(double x);
kFunction& operator-=(double x);
discreteDensity multiply_by_x(ptrdiff_t xLength, double x_low,

double x_high);
kFunction& square_kFunction();
kFunction& invert_kFunction();

The operators in operator notation are just used as the equally named ones for double
values. Operations are carried out pointwise and in parallel. The righthand operand
could then be a kFunction or a simple double factor. The function multiply_by_x()
multiplies the kFunction by a frequency variable in the range given in the argument
and with the resolution specified through xLength, which yields a discreteDensity
object. This variable has to fit to the other used discreteDensity objects in a
given calculation to yield reasonable results. The functions square_kFunction() and
invert_kFunction() calculate the square of the kFunction ρk as ρ2k , as well as 1/ρk
in place.

Convolution

kFunction& convolution( kFunction& Arg_kFunction,
bool keep_arg_unchanged);

This function calculates the cyclic convolution with Arg_kFunction and stores it in
the initial kFunction. Arg_kFunction is kept unchanged if the last flag is set to true,
otherwise it becomes useless after the operation. On the other hand setting the flag
to false safes calculation time.
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Data Access

const double* get_data_read_access() const;

This function returns a readable pointer to the data chunk, which is kept in row
major format with the last dimension padded. For further information see the usage
hints section. There also exists a header which calculates the logical address, called
row_major_order_access.h and containing the function

ptrdiff_t row_major_order_access(int rank,
const ptrdiff_t *dimensions,ptrdiff_t k, ... ).

Here, rank has to be the rank of the tensor, that is the dimension+1. The following
argument contains the tensor layout and the next arguments contain the index at each
dimension whose address should be calculated.

6.3 The discreteDensity Class

In this section we will discuss the class discreteDensity, which will represent all
spectral functions of the theoretical calculation of the Brückner approach. For this,
we go through the layout of the class and discuss how it can be used. We again start
with the construction of an object.

Constructors/Assignment operators The constructors and copy/move construc-
tors/assignment operators defined for discreteDensity are

discreteDensity();
discreteDensity(unsigned int dimensionality, bool initialize,

const ptrdiff_t* x_kMeshsize, double x_low,double x_high,
const double* k_low,const double* k_high);

discreteDensity(unsigned int dimensionality, double* data,
const ptrdiff_t* x_kMeshsize, double x_low,double x_high,
const double* k_low, const double* k_high);

discreteDensity(const discreteDensity& copy_from_me);
discreteDensity(discreteDensity&& copy_from_me);
discreteDensity& operator=(const discreteDensity& argDensity);
discreteDensity& operator=(discreteDensity&& argDensity);.

Similarly to the previous case, a discreteDensity could be copied or moved from an
already existing discreteDensity or created by handing over the initial data. Oth-
erwise it could be created by calling the function multiply_by_x() on a kFunction.
Handing over the initial data is typically used to set up the initial guess for the den-
sity as it is described in section 6.5. The array format has to be a row major format,
with the last dimensin padded as described in the section on usage hints. Again, a
move constructor and assignment opertor provides the same performance for dynami-
cal objects as with stack objects.
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Arithmetic Operations Listing all needed arithmetic operation to implement the
Brückner-approach leads to the following operators:

// operators related to densities
discreteDensity& operator-=(const discreteDensity& argDensity);
discreteDensity& operator+=(const discreteDensity& argDensity);
discreteDensity& operator*=(const discreteDensity& argDensity);
discreteDensity& operator/=(const discreteDensity& argDensity);
discreteDensity& square_density();

// operators related to scalars
discreteDensity& operator*=(double Arg_Scalar);

// operators related to xFunctions
discreteDensity& operator*=(double (*x_Arg_Function)(double));
discreteDensity& operator+=(double (*x_Arg_Function)(double));

// operators related to kFunctions
discreteDensity& operator*=(const kFunction& Arg_kFunction);
discreteDensity& operator+=(const kFunction& Arg_kFunction);
discreteDensity& operator-=(const kFunction& Arg_kFunction);.

An xFunctions is a function that depends on frequencies only. It has no special class
because it would introduce unnecessary overhead. Instead regular functions having
one double valued argument and return a double value are used to describe those.
These operator’s usage is largely self-explanatory.

Convolution

discreteDensity& convolution(discreteDensity &Arg_Density,
bool keep_arg_unchanged);

discreteDensity& negative_convolution(discreteDensity &Arg_Density,
bool keep_arg_unchanged);

In our calculation scheme we come across those two types of convolutions. Both the
regular and negative convolutions are taken with respect to frequency and momentum.
Since these convolutions are carried out using fast convolution algorithms which relay
on FFTs we need to be aware of errors introduced which come along with this ap-
proximation. Further details could be found in section 6.1. The result is always saved
in the discreteDensity you call from. As before, you can keep the other argument
discreteDensity intact but sacrifice performance by setting keep_arg_unchanged to
true. The function negative_convolution() should be interpreted as taking a regu-
lar convolution with the argument discreteDensity used with a minus sign in front
of its momentum and frequency argument as in (144).

The Principal Value Hilbert Transform

discreteDensity& principalValueHilberttransform();
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This function calculates the principal value Hilbert transform of the parent object in
place.

Data Access In this paragraph, we give a short summary on how to access the data
directly when needed.

• double* get_data_read_access() works as described in the section on kFunctions.

• ptrdiff_t* get_Meshsize() returns a pointer to array containing the sam-
pling rates along all dimensions. You can access it with []. In 2D the resulting
output would be an array of size three starting with the frequency dimension.

• double get_x_low() returns the lower frequency bound.

• double get_x_high() returns the upper frequency bound.

• double Element(ptrdiff_t k=0,ptrdiff_t l=0,ptrdiff_t m=0,ptrdiff_t n=0)
gives access to the element in the tensor at the given index (k,l,m)

The header row_major_order_access.h, as mentioned in the kFunction section,
could be used as well.

Integration

kFunction xIntegrationWeighted(double (*x_Arg_Function)(double)) const;
kFunction Integration() const;

Here xFunctions represent a function with a single frequency dependence as before.
These integration routines integrate the frequency part of the discreteDensity and
yield a kFunction. In the case of the xIntegrationWeighted() the function in the
argument will be multiplied and the result integrated.

Serialization This class is capable of being serialized with boost serialization meth-
ods[42]. This is particularly useful since it takes a lot of time to calculate a spectral
function and it may be necessary to continue working with it. To this end, it is pos-
sible to store it to disc and load it again later on. Below, an example for saving and
loading this object is given.

// create and open a character archive for output
std::ofstream ofs("rho.obj");
// save data to archive
{
boost::archive::text_oarchive oa(ofs);
// write class instance to archive
oa << *tmp_d1;
// archive and stream closed when destructors are called
}

// ... some time later restore the class instance to its orginal state
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FIG. 22. Row major format in the case of two dimensions. Lower part represents the memory layout
of the upper matrix. Taken from Ref.[43].
Copyright AMD©

delete tmp_d1;
tmp_d1=nullptr;
tmp_d1=new discreteDensity();
{
// create and open an archive for input
std::ifstream ifs("rho.obj");
boost::archive::text_iarchive ia(ifs);
// read class state from archive
ia >> *tmp_d1;
// archive and stream closed when destructors are called
}

6.4 Hints for Usage

In this section we will give you some advice to keep in mind when using the provided
code. Among these is information about the internal structure of the data, perfor-
mance, numerical stability concerns, parallelization, useful headers and files as well as
cleanup of remaining allocated memory after execution. The last paragraph lists all
libraries the program relies on.

Format of the Double Data Block While the usage of the FFTW3 routines
forces us to use their format, we decided to consistently stick to it since it has a
good performance and the smallest possible memory footprint. It is important to
mention that we use the in-place format that is special from the out-of-place format.
The format we use is the so-called row major format with the last dimension padded.
That means that the index of the last rank of the tensor varies the quickest, see Figure
22. The padding has to be understood in the following manner: Assuming we decide
to create a sampling mesh of the dimensions ni with i ∈ {0, .., d} where d is the k-
space dimension. In that case we need to create a row major format data array of the
dimensionality n1, . . . 2 ·(bnd/2c+1). Than we use the addresses as they are in created
object and leave the ones with the last index bigger than d undefined. They are for
internal purpose only. Memory needs to be allocated using the method fftw_malloc()
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FIG. 23. In-place format with padding in the case of two dimensions. The lower matrix depict input
structure and the upper matrix represent the output format of a FFT. Taken from Ref.[39].
Copyright FFTW©

instead of new or malloc(). Once this data chunk is handed over to the constructor of
either objects it takes care of destroying them. This means that memory cells which
have a last index bigger than d carry no data needed on the outside of the object. The
last one or two memory cells in this dimension have no meaning to the tensor before
the FFT is applied, see Figure 23. For the user not interested in anything else but the
complete convolution, the interpretation of the output format of the FFTW3 is of no
importance. For further details refer to the manual [39]. Since the FFTW3 is used it
is necessary to allocate the memory used for all object by a call to fftw_malloc() .
The last point to mention here is that it is important to choose the first index to refer
to the frequencies. This arbitrary choice was made to keep calculation simpler in the
majority of of cases, but the internal interpretation of the object relies on it.

Performance Optimization For the optimal performance of this method, the same
considerations have to be taken into account as for usual double arithmetic: That
means keeping the count of needed operations as low as possible since all implemented
arithmetic operations on the object need an execution time that scales linearly with the
size of the object. Additionally, copying an object at the right time can save calculation
time. For example: When operations have to be applied to multiple copies of one
object it works faster to make one copy, apply the operation and then copy from
the final object. For optimization it often makes sense to write two files of code. One
where it is easy to follow the meaning of objects as a unit test and another which is
optimized with respect to memory and calculation time consumption to compare the
results of each in order to trace back errors. Another influence on the performance is
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given by the tensor layout. The reason for this is the use of FFTW3 routines. For the
size and dimensions of the data array, there are currently no limitations other than
the accessible amount of memory on our machine, but since FFTs are used, the classes
perform best with sampling rates of each dimension composed of small prime numbers.
Especially powers of two are recommended wherever possible.

Numerical Stability Numerical stability is an important issue in dealing with it-
eration schemes like this. It is often useful to trace back this issue by plotting results
and taking a look at how they behave when certain cut-offs are applied. In the case
of the Brückner-Approach used in this thesis, functions with a frequency dependence
have to be multiplied to the discreteDensity that had a pole at zero. This needed to
be cut off by setting the function value close to zero which does not matter neverthe-
less since we know that the discreteDensity as spectral function has to be zero as
well. It often is not precisely zero due to numerical fluctuations. Divisions have been
cut off in the order of magnitude of the numerical fluctuations as well. And as the last
point to mention, left over wraparound effects of the FFT used in convolutions can
sum up on iterations. This can be avoided in our case by setting the sampled inter-
val reasonably large. To trace these effects it is usually a good idea to investigate the
behavior of a convolution over a few iterations.

Parallelization In order to use the parallelization provided by the classes, it is
necessary to initialize OpenMP[38]. Therefore the header omp.h needs to be included
and the following lines should be added at the the beginning of your main method:

omp_set_num_threads(n_cores);
std::cout << "Running with "<<omp_get_max_threads()<<" threads!"

<< std::endl;
if(!fftw_init_threads())

std::cerr << "Failed to initialize parallelization" << std::endl;
else

fftw_plan_with_nthreads(omp_get_max_threads());

Here, n_cores is an int-type and has to be set to the number of threads you want to
use. This is usually the number of available cores of the system.

Useful Headers and Files Beside the outlined classes there exist a few other files
we want to mention here. Some of them just contain helper functions for the actual
classes, while others have a more general purpose.

The headers that are necessary for the classes to operate are invert_dataArray.h
and zeropadding_optimizer.h. invert_dataArray.h is used to transform a discrete
Density to a version with the opposite sign in all arguments. zeropadding_optimizer.h
is a padding routine which selects the best padding interval on its own by measuring the
absolute weight. It would be possible to select the padding scheme by hand as well,
but since it showed no difference it was kept in this state for comfort and because it
makes it easier to notice wraparound errors. The header padding_transform.h which
contains a routine that transforms the padding scheme in-place, is not in use anymore.
This is due to its major negative impact on the runtime, but it was kept because it
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could be used two further reduce the memory consumption at the downside of longer
operation time. If an extension to run in full parallel becomes feasible, it might be a
good option to consider, when memory becomes an issue. The padding transformation
is needed because the hilbert transform and regular convolutions depend on different
Fourier transforms. The previous version is commented out but still in place. Some
other headers exists two make it easier to work with the uncomfortable row major or-
der format. These are row_major_order_access.h and stride_pointer.h. The first
one contains a function

ptrdiff_t row_major_order_access(int rank,
const ptrdiff_t *dimensions,ptrdiff_t k, ... )

as described in the section on kFunctions in the paragraph on data read access. It
makes it possible to get an address from an index for a padded row major format as used
by FFTW3. For further detail refer to this section. stride_pointer.h is a header
that provides a random access iterator that behaves like a pointer with a step width of a
multiple of the data type it refers to. It could be used to iterate through every frequency
point for one k-space point. It is designed as a template and works for all data
types. The last headers to mention are calc_iteration_step[_multiflavour].h,
which could be called to calculate a step in the Brückner approach calculation. This is
described more precisely in the next section. Beside that, there also exists an unit test
for both classes named test.cpp that should be extended to continue the unit test
driven development. It could be used to test and debug the program. Any upcoming
errors should be added here as a test case if possible. It is based on the framework
UnitTest++[44].

Libraries and Requirements The code provided here should be compiled with a
C++11- and OpenMP[38]-compatible compiler. The libraries required for compilation
are:

• boost[42]

• FFTW3[39]

• UnitTest++[44]

• OpenMP[38]

UnitTest++ is required just for testing.

Cleanup At the end of the calculation make a call to the function

fftw_cleanup()

to free all memory acquired by the FFTW3 routines since it is called from within the
two classes. This is needed to free all resources that were not allocated explicitly, since
FFTW3 saves acquired knowledge of efficient calculation to speed up the process of
finding such routines in later runs.
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6.5 Calculation of the Propagator Spectral Function

In this section we describe how our code can be used to calculate the propagator
spectral function and all the other quantities that could be derived from it. The usual
use case is divided into four steps. In pseudo code notation, these steps are

initialization()
begin loop over temperatures

begin loop over Brückner approach calculation steps until convergence
mean field update if required

end
calculate quantities of interest

end

The initial guess for the spectral function of the propagator is a Gauss-shaped peak
at the position of the dispersion, since at zero temperature we would get a delta-peak
right at this position as in the boson case. The reason for this is that we have a non-
degenerated ground state and a finite gap (one particle does not know its statistic).

Initialization Firstly we set the initial guess of the spectral function to a gaussian
peak at the position of the dispersion relation as discussed in section 5.5. Secondly, we
need to initialize the dispersion with a mesh that fulfills the requirements mentioned
in the paragraph on fast convolution algorithms to bring it into a uniform format.
Naturally, both need to be described with the same mesh in k-space. Due to our class
design it is important the frequency is associated with the first index. For the format
of the sampled input it is necessary to stick to what was outlined in the paragraph on
the Format of the Double Data Block.

Loops Once the initial data-sets are created, we can start to define a loop over
temperatures for which we want to calculate the quantities we are interested in. In
this loop we need a inner loop that iterates the Brückner approach steps until the
selfconsistent calculation reaches a stationary state. If we also apply a mean-field-
approximation for an additional interaction we need to calculate the new dispersion
from the new propagator guess in each iteration step and create a mixing update for
stability reasons. That means that we average over the old dispersion relation and
the retrieved one. How this is done from the theoretical perspective is described in
chapter 3. In practice, it was done by a direct access to values of the kFunction
nk =

〈
b†kbk

〉
=
∫∞
−∞A(k, x)nB(x)dx (nB(x) denotes the Bose function) since it is

easier to calculate in complex numbers and the k-space resolution was low enough
that the calculation speed was no real problem. After convergence is reached, we are
safe to calculate results and start over with next temperature value. As a measure
for convergence the last three particle numbers n(T ) := 1

N

∑
k < b†kbk > were used by

taking the relative error to their average for two pairs.

Brückner Approach Iteration Step The calculation of the self-consistent Brück-
ner approach steps should be performed using the methods that are defined in the
header calc_iteration_step[_multiflavour].h. The part in the braces should be
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omitted in the single flavour case and has to be used in the triplon case. If we want to
use it we need to pass the needed information to this interface, which has the following
signature:

calc_iteration_step(kFunction *dispersion_disc, discreteDensity *&A,
double arg_beta, bool energy_output, bool A_output).

The first argument is the spectral function of the propagator, the second the dispersion
relation and the third, arg_beta, is the inverse temperature. The last two flags trigger
an output method for the discreteDensity after this iteration step and for the real
and imaginary part of the self energy. All this output is just given for the k-space
point k = 0. We recommend to use this function since it is designed to work with the
least amount of memory and computation. One the other hand it makes it hard to
recognize the equation given in the chapter of the theoretical description. This should
be kept in mind if working on this file or creating a custom calculation scheme from
it. Since this file has simple output capabilities for a minimal script, no own output
functions are needed. For details on the output format refer to the header source.
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7 Numerical Studies of the Spectral Density in 2d

In this chapter we will numerically investigate the properties of the spectral function of
the propagator as described by the Brückner approach. As described in chapter 2, we
want to understand effects from non-trivial scattering processes in hardcore bosonic
models: The asymmetric curve shape of the propagators spectral function, the band
narrowing with increasing temperature and the broadening of the peaks associated
with particle states. We discuss these effects in the context of the effective models for
VOPO and Cs2CuCl4 as well as a toy model proposed to pin down effects that are
related to the change of the dimensionality.

For one-dimensional systems the existences of the hardcore bosonic effects was
already confirmed by Fauseweh et al. [8, 7] and for Cs2CuCl4 in two dimensions but
with a focus on other effects, by Simon et al. [21]. These results provide an additional
check for the consistency of our calculations. For the one-dimensional case we retrieved
and verified the same results, but since our focus lies on 2D-systems these are not
presented here.

The momentum space will be described in the following form: VOPO and the toy
model are parameterized with regular Cartesian coordinates and for Cs2CuCl4 we use
the the vectors given in chapter 3. All plots are generated using 128 points for each
momentum space direction and 131072 points for the frequency space. In the case of
VOPO, one momentum space direction is sampled with twice this resolution to form
a uniform mesh. For the sampling of the temperature axis 6 points were used since
they have a strong influence on the computation time.

We will start with the discussion of the VOPO and Cs2CuCl4 crystals without
mean-field interaction and will keep our discussion minimal by giving one example for
both crystals, where the findings will apply to both systems. Then we will outline how
the mean-field interaction renormalize the dispersion relation. Finally, we will take a
closer look on the effects of dimensionality with the help of our toy model.

7.1 Observations on VOPO and Cs2CuCl4

This section will present our findings for of VOPO and Cs2CuCl4 as representatives
of more general hardcore bosonic models. Since our results are obtained with the
Brückner approach, their plausibility reflects back on the validity of its assumptions.

General Shape of the Spectral Density In all calculations curve shapes exhibited
the form represented in Figure 24 throughout the considered temperature regions. We
take VOPO as an example but obtain similar plot for Cs2CuCl4. It shows asymmetry
with the tail oriented to be middle of the band, broadening and peak position shift with
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(a) Maximum mode (b) Gap mode

FIG. 24. Line shape of the gap and maximum mode of the crystal VOPO

increasing temperature which is the behavior that we associated with these gapped
hardcore bosonic models. Since the general shape stays the same in all cases we
further investigate the behavior of these models using a set of different parameters
that are related to this curve shape.

(a) VOPO (b) Cs2CuCl4

FIG. 25. Temperature dependence of the particle number of VOPO and Cs2CuCl4

Particle Number The particle number can be obtained for the spectral function of
the propagator using equation (128). In the case of 1D systems, where a benchmark
against an analytically solvable spin chain with next neighbor hopping exists, the
particle number seems to be preserved by the self consistent approximation in the
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single flavour case[7] up to numerical accuracy. However, in the multiflavor case the
approximation showed unphysical behavior since it is not monotonic and a drop in the
population of particles with increasing temperature doesn’t make sense. This effect
was observed in one dimension in Ref.[8], but the reasons behind this are still unclear.
Our calculations for VOPO which are displayed Figure 25 exhibit the same unphysical
behavior, showing that it is also present in higher dimension. On the other hand
the particle number curve of Cs2CuCl4 seems plausible, which is consistent with the
hypothesis that the effect only appear in multiflavor systems like VOPO.

(a) Cs2CuCl4 dispersion (b) Cs2CuCl4 relative peak shift

FIG. 26. Dispersion relation of Cs2CuCl4 and relative shift of the peak position at T = 4 K relative
to the dispersion relation which is also the peak position at zero temperature

Peak Shift and Band Narrowing Since A(k, ω) is given at zero temperature as
a δ-peak located at the band energy it is reasonable to compare the shift in position
relative to the dispersion as ω∆max(k) = ωmax(k)−ω(k), where ωmax(k) is given by the
frequency of the maximum of the spectral function A(k, ω). This quantity is depicted
in Figure 26. We see that low-lying regions have a positive shift in the energy and
high-lying a negative shift leading to a narrowing of the band. The shift nevertheless
is not equally pronounced for higher and lower lying modes. This is clear from Figure
27, which shows the shift of the highest and lowest mode with temperature: The
lower lying modes have a more pronounced upwards shift than the high modes move
downwards. Since the rising density of hardcore bosons at higher temperatures blocks
free propagation, states with low-lying energy are favored.

Asymmetry We now take a closer look at asymmetry of the curves. Figures 29(b)
and 30(b) depict the asymmetry described as ωasym(k) = ωmax(k) − a(k), where a
represents the middle of both points around the maximum that have half height on
the curve as depicted in figure 28. In the first regime up to 0.8 ∆ we notice that tails
point to the middle of the band as expected. Again the tendency for a stronger tail
at the low end of the band is visible. This could also be explained as an asymmetry
in the accumulation of particles towards in low-lying states. In the case of VOPO

51



FIG. 27. Absolute peak position of gap and maximum mode of VOPO

FIG. 28. Measure of asymmetry

the tail direction of the high energetic states changes and point upwards as well at
elevated temperatures. Since no obvious reason exists for this and the particle number
becomes unphysical around the same temperature, we interpret this as a break down
of the Brückner approximation.

Broadening Broadening effects are depicted in Figure 29(a) and 30(a). We use the
full width at half maximum for measuring the width. The figures show that higher
modes tend to show stronger broadening. This seems reasonable since the width is
related to the lifetime of particles. The overall exponentially-shaped increase with
temperature is also expected since scattering between the rising number of particles
should become more and more important.

Mean Field Approximation Effects As we discussed in chapter 3, mean-field
interactions lead to a renormalization of the dispersion relation. To compare the effect
of the additional terms we subtracted the dispersion relation from the renormalized
dispersion relation to make effects visible that are purely related to the additional
interaction. As we can see from Figure 31, we have an overall shift in the energy
leading to an increase of the effective gap. This leads to a range of applicability of
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(a) FWHM (b) Asymmetry

FIG. 29. Temperature dependence of the asymmetry and FWHM of VOPO

(a) FWHM (b) Asymmetry

FIG. 30. Asymmetry and FWHM of Cs2CuCl4 at T = 4 K

the theory up to higher temperatures since our perturbative suppression is related to
this gap energy. Beside the overall shift we also notice that lower energies are shifted
stronger than higher-lying modes, leading to a additional narrowing of the band.

7.2 Observations on a ToyModel

Our toy model Hamiltonian is given as

Hλ =
∑

k

(
∆+

W

2(λ+ 1)
(1 + λ− cos(kx)− λ cos(ky))

)
b†kbk. (150)

For λ = 0 we have a completely decoupled effective 1D system, whereas for λ = 1 the
system is homogeneously coupled in both directions and behaves two-dimensional. In
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FIG. 31. Difference of the dispersion and the renormalized mean-field dispersion for Cs2CuCl4 at
T = 4 K

the case of λ = 0 we replicate the results from Ref. [7] for the cosine band as expected.
We keep the parameter ∆ = 1 fixed and consider two different values for the bandwidth
W , W = 0.5∆ and W = 4∆. Since the plots don’t differ significantly we only present
the behavior at the band gap. We select this k-point since it is stationary with respect
to λ. Since the only observation that strongly depends on the band width is the particle
number, we will omit plots for the wide band. The line shape of the spectral function
are not given since all observed line shapes look rather similar as the previously given
ones.

(a) W = 0.5∆ (b) W = 4∆

FIG. 32. Temperature dependence of the particle number of the W = 0.5∆ and W = 4∆ bandwidth
toy model

Particle Number When we take a look at the particle number of the toy model
for different band types in Figure 32, we observe two quite distinct behaviors for both
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FIG. 33. λ dependence of the peak shift of the W = 0.5∆ toy model

bands. In the case of the small band the additional coupling has just only a small
effect on the particle number whereas for a wide band there is a drastic decrease in
the number of particles. Fauseweh et al. [8] hypothesize that for a band with fixed
bandwidth and gap energy the particle number of the 2D model should roughly scale
with the square of the particle number of the 1D model with the same parameters. The
argument relies on the fact that the additional space at low frequencies that avoids a
pile up should grow quadratically. This argument seems to fail in the flat band case.
On the other hand for low temperature regime of the wide band this argument might
hold. The gradual decline of the particle number with increasing coupling strength
could be understood in terms of particle states laying at low band edges being related
to the inverse of the gradient of the band, as known from the discussion of van Hove
singularities, and therefore additional curvature leads to fewer particle states.

Band Narrowing Taking a look at the peak shift as given in Figure 33, we get a
different effect regarding the influence of the dimensionality on the bands than in the
case of particle numbers. Here for both bands the peak shifts become stronger with
increasing coupling constants. The reason for this remains unclear.

Asymmetry Considering Figure 34, we find the opposite observations as in the
case of the peak shift. For both bands the the additional coupling make the curve
shape more symmetric. This is consistent with the hypothesis that particles pile up
less, leading to less asymmetry yielded by complex scattering processes.

Broadening We notice that for the same reasons the width of the peak becomes
sharper with increasing coupling strength which is related to less coherence loss by
particle scattering.
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FIG. 34. λ dependence of the asymmetry of the W = 0.5∆ toy model

FIG. 35. λ dependence of the FWHM of the W = 0.5∆ toy model
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8 Summary

The appeal of the perturbative Brückner approach we presented is its independence
of dimension and its extensibility to include additional interactions or possibly higher
orders of the perturbation series. It has proven to work well in one dimension where
it could be benchmarked against simple next-neighbor hopping models. Its one-
dimensional self-consistent extension even seems to retain the sum rule at finite tem-
peratures in the single flavour case up to numerical accuracy.

In general all observations on the lines shapes asymmetry, broadening and shift of
the peak position from 1D models could be confirmed to extend into higher dimen-
sions. That also includes the unphysical behavior of multiflavour systems in higher
dimensions. We considered for this as candidates for a hardcore bosonic description
the VOPO and Cs2CuCl4 crystals. Observations on a toy model confirmed that the
influence of the additional space that particles can propagate into decreases the pile
up of excitations and therefore leads to a decrease in broadening and asymmetry, but
also suggested a more complex dependence of the particle number. Since scattering
processes seem to decrease, one could expect the expansion to perform better in higher
dimensions. Clearly our numerical studies could not pin down exact relations. We
developed a flexible code framework for this and similar calculations that can handle
high memory loads for high resolutions. This framework might also be considered as
a starting point for future development of this method. Further we noticed that the a
posteriori assumption that the sum rule is conserved leads to further simplifications in
the equations of the selfconsistent approach. This idea might be used to obtain new
insights on the equations itself.

In future work, it would be interesting to find exact reasons for the observed be-
havior. It would also be possible to include additional interactions as performed in 1D
to study its influence on the dimensionality or take into account higher perturbation
orders.
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