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Abstract

Topological superconductivity and the ensuing Majorana zero modes form the ba-
sis of topological quantum computing due to their non-Abelian braiding statistics.
Magnet-superconductor hybrid (MSH) structures can nowadays be custom-engineered
through atomic manipulation and interface engineering techniques. Experimentally,
these structures have been proven to exhibit topological superconductivity as well as
chiral edge modes emerging in two-dimensional MSH systems or zero-energy vortex
bound states occuring at the center of a vortex core in a topological superconductor.
In this thesis, we show from a theoretical perspective that topological superconduc-
tivity is a robust phenomenon in two-dimensional MSH structures with non-collinear
spin structures, namely the recently experimentally discovered triple-Q (3Q) struc-
ture as well as a magnetic skyrmion lattice. Furthermore, the emergence of chiral
Majorana edge modes at domain walls is investigated. Here, it is demonstrated that
topological edge modes can be distinguished from trivial in-gap states through the
relative spatial orientations of the occurring supercurrents at the domain wall.
Finally, the reactions of a metallic and superconducting system towards magnetic
perturbations are discussed, in order to lay the foundations for a theoretical descrip-
tion of moving vortex cores. As these vortex cores possess a localized Majorana
zero-energy mode at their center, this could be a future realization of braiding
operations of Majorana zero-energy modes, which are a necessity for the realization of
topological quantum computation. For this purpose, the induced currents between a
singular perturbed metallic or superconducting system site and a scanning tunneling
microscopy (STM) tip are simulated as well as the perturbed superconducting order
parameter for the case of a superconducting system site.

Kurzfassung

Topologische Supraleitung und die zugehörigen Majorana Moden bilden die Basis zur
Realisierung eines topologischen Quantencomputers aufgrund ihrer nicht-abelschen
Vertauschungsrelationen. Magnet-Supraleiter Hybrid Strukturen sind hierfür vielver-
sprechende Kandidaten, die inzwischen individuell erstellt werden können mittels
Atomic Manipulation-Methoden und Interface Engineering-Techniken. Experimentell
wurde bestätigt, dass sowohl zweidimensionale Beispiele solcher MSH Strukturen
chirale Majorana Moden aufzeigen, aber auch sogenannte Null-Energie Vortex Bound
States, in Form einer lokalisierten Majorana Mode, im Zentrum eines Vortex in einem
topologischen Supraleiter auftreten.
In der nachfolgenden Arbeit wird zunächst für zweidimensionale MSH Strukturen
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mit nicht kollinearen Spinstrukturen theoretisch gezeigt, dass topologische Supra-
leitung auftritt und diese ein robustes Phänomen darstellt. Dies wird sowohl für
die vor kurzem experimentell entdeckte 3Q Struktur als auch für ein Gitter ma-
gnetischer Skyrmionen durchgeführt. Desweiteren wird untersucht, welche Art von
Domänenwänden in solchen Strukturen zum Auftreten chiraler Majorana Moden
führt. Hier wird demonstriert, dass solche topologischen Randmoden von trivialen
In-Gap-Zuständen mithilfe der räumlichen Verteilung der auftretenden Superströme
an der Domänenwand unterschieden werden können.
Zuletzt werden die Reaktionen jeweils eines metallischen und eines supraleitenden
Systems auf magnetische Störungen untersucht, um die Grundlagen einer theoreti-
schen Beschreibung für bewegte Vortex-Zentren zu legen. Da eine Majorana Mode
in deren Zentrum lokalisiert ist, ergibt sich durch dieses Vorgehen ein Kandidat für
die Realisierung der Vertauschungsoperationen. Diese sind zwingend notwendig für
den Erfolg topologischer Quantencomputer. Zu diesem Zweck werden die induzierten
Ströme zwischen einem einzelnen Gitterplatz eines metallischen oder supraleitenden
Systems und einer STS Spitze simuliert. Darüber hinaus wird für den Fall des su-
praleitenden Systems die Zeitabhängigkeit des supraleitenden Ordnungsparameters
berechnet.
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1 Introduction

Majorana fermions, exotic particles that are their own antiparticle, have been an
object of interest in particle physics since they were predicted in 1937 [1]. More
recently, these particles also raised the interest of condensed matter physicists in the
context of topological superconductivity. Here, Majorana zero-energy modes occur,
which can be employed as a new platform of topological quantum computing due
to their robustness against local decoherence effects [2]. The basis of this type of
quantum computing is formed by the non-Abelian braiding statistics of Majorana
zero modes [3, 4] However, in order to make use of these, the abilitiy to create,
control and manipulate topological superconducting phases is a necessity.
The first, theoretical example of a topological superconductor was the Kitaev chain
[5], which is a chain of electronic sites that exhibit 𝑝-wave superconductivity. This
system is depicted in Fig. 1.1 (a). Here, two Majorana modes can be perceived as
edge modes when the electrons at each site are expressed in terms of two Majorana
fermions. In the topological phase, one can rearrange two Majorana fermions from
neighboring sites into an electron, leaving two Majorana fermions at the ends of the
chain, as depicted in Fig. 1.1 (b).

(a)

(b)

Fig. 1.1: Kitaev chain (a) in the trivial phase with each electron 𝑐𝑖 separated
into two Majorana fermions 𝛾𝑖,1 and 𝛾𝑖,2, (b) in the topological phase, where the
Majorana fermions couple to one at a neighboring site leaving two edge modes [4].

However, as materials exhibiting 𝑝-wave superconductivity are rare, experimentally
more realizable systems are required. Promising candidates avoiding this problem are
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1 Introduction

magnet-superconductor hybrid (MSH) systems. In this approach, a layer of magnetic
adatoms is placed onto a substrate with 𝑠-wave superconductivity. Through the
proximity effect, superconductivity is also induced within the magnetic layer.
In both theoretical [6–9] and experimental [10–13] investigations of one-dimensional
MSH structures, topological superconductivity has been found and the expected
Majorana zero modes have been observed. Following this progress in one dimension,
two-dimensional MSH structures have been analyzed from theoretical [14–17] and
experimental [18–22] points of view as well, which exhibit chiral Majorana edge
modes. Still, the engineering of these modes at the atomic level and their clear
identification remain a problem.
Atomic manipulation techniques [13] and interface engineering techniques [23] enable
the construction of MSH structures and thereby the design of topological supercon-
ductors. Thereby, chains of magnetic adatoms in one dimension, so-called Shiba
chains, or islands of magnetic adatoms in two dimensions, so-called Shiba islands,
can be constructed. The emerging edge modes can be investigated using scanning
tunneling spectroscopy (STS) [23].
MSH systems with non-collinear magnetic structures, such as skyrmions, have raised
great interest, as they do not only exhibit topological superconductivity, but also en-
able tuning between different topological phases by varying the skyrmion radius [24].
The wide range of possibilities they offer, originates from a spatially inhomogeneous,
effective Rashba spin-orbit coupling. As this coupling is induced by the magnetic
skyrmion lattice, there is no need for a material with a Rashba spin-orbit coupling in
experimental realizations. In this thesis, some of the topological properties of these
helical spin structures in real-space models are assessed.
Furthermore, the recent experimental advance in creating an MSH system, where
a triple-Q (3Q) magnetic structure [25] was deposited on the surface of an 𝑠-wave
superconductor [26] in Mn/Re (0001), creates the question whether this spin struc-
ture also exhibits topological superconductivity below the critical temperature for
superconductivity. In addition, a theoretical prediction, which type of domain wall
can be employed to engineer Majorana modes, can be tested experimentally due to
the observation of domain walls in FeSe0.45Te0.55 [22]. These domain walls can be of
structural, electronic or magnetic character. Assessing this outstanding question also
helps in determining how topological modes can be distinguished from trivial in-gap
states, which is thereby an important step towards the unambiguous identification of
topological states.
In the end, a realization for the braiding of Majorana zero modes also remains an
unanswered question in need of a solution. Vortices in superconductors for exam-
ple are predicted theoretically to exhibit a Majorana fermion at their core [27–30],
which was already shown experimentally [20], enabling the creation and control of
Majorana modes. Recent experimental advances allow for these vortices to be moved
dynamically, presenting a possible strategy of manipulating them at will. However, if
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this approach is to develop into a strategy towards the braiding of Majorana modes,
a theoretical construct is required for this type of mechanism.

In chapter 2.1, the theoretical methods for the study of magnet-superconductor
hybrid structures will be introduced. In the following chapter, the spatial structure
and the symmetries of the 3Q magnetic structure will be presented. Next, the
band structure and phase diagram of an MSH structure with the 3Q spin structure
employed will be discussed for a simple as well as an experimentally motivated model.
Furthermore, the occurrence of edge modes in real-space structures such as magnetic
islands and ribbons will be investigated.
Based on this assessment of the 3Q structure, chapter 4 then studies the topological
properties of a magnetic skyrmion lattice. For this ordering of the magnetic layer,
the occurring edge modes on magnetic ribbons will be analyzed as well.
Chapter 5 then provides an overview which domain walls lead to edge modes and
explores the question whether these are Majorana zero-energy modes or trivial modes.
Finally, chapter 6 focuses on a method for the analysis of magnetic perturbations
applied to metallic and superconducting sites in real-time, in order to lay the
foundation for the simulation of perturbations moving in space.
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2 Theoretical Methods for
Magnet-Superconductor Hybrid Structures

2.1 Theoretical Model

In order to study the topological phase diagram of an MSH structure, the starting
point here is a model where the spins of the magnetic layer are placed directly above
the atoms of the superconducting substrate. This kind of model is described through
the Hamiltonian

ℋ = ℋ0 + ℋm (2.1a)

with

ℋ0 = −𝑡 ∑
r∈𝐴,𝜹,𝜎

𝑐†
r,𝜎 𝜏𝑧 ⊗ 𝜎0 𝑐r+𝜹,𝜎 − 𝜇 ∑

r∈𝐴,𝜎
𝑐†

r,𝜎 𝑐r,𝜎 + ∑
r

(Δ 𝑐†
r,↑ 𝑐†

r,↓ + h.c.) ,

(2.1b)

ℋm = 𝐽 ∑
r∈𝐴,𝛼,𝛽

𝑐†
r,𝛼 (Sr ⋅ 𝝈)𝛼𝛽 𝑐r,𝛽 , (2.1c)

where −𝑡 is the hopping parameter between nearest neighboring sites connected by
the vector 𝜹, 𝜇 is the chemical potential, 𝐽 is the strength of the magnetic exchange
coupling and Δ is the superconducting 𝑠-wave order parameter. On the chosen lattice
denoted by 𝐴, an electron of spin 𝜎 is created by the fermionic creation operator 𝑐†

r,𝜎.
In the following, a triangular lattice is chosen in contrast to a quadratic one, because
the investigated non-collinear spin ordering only corresponds to the ground state of
the system on a triangular lattice.
Sr is the spin 𝑆 of the magnetic moment at the site r of the lattice, which thereby
encodes the chosen ordering of the magnetic layer. As the hard superconducting gap
suppresses Kondo screening, the magnetic moments are represented by classical spins.
This approximation is valid, provided the spin of the adatoms is sufficiently large
[31, 32]. Furthermore, in this model the Fermi energy 𝐸F is set to zero for simplicity.
Finally, 𝝈 = (𝜎𝑥, 𝜎𝑦, 𝜎𝑧)T is a vector containing all three of the Pauli matrices

𝜎𝑥 = (0 1
1 0) 𝜎𝑦 = (0 −i

i 0 ) 𝜎𝑧 = (1 0
0 −1) . (2.2)
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2.2 Topological Invariants and Phase Transitions

2.2 Topological Invariants and Phase Transitions

Topological properties of quantum states of matter have become of great interest in
condensed matter physics since the discovery of the integer quantum Hall effect [33].
Before, topology was already an established field in mathematics, which assesses
the global properties of a geometrical object that are preserved under continuous
deformations. Such deformations include stretching, bending or twisting, in contrast
to tearing or gluing. Here, tearing or gluing are examples of non-adiabatic processes,
which are the only way of changing these global properties. Therefore, they are
characterized by discrete topological invariants. As the global properties are linked
to the intrinsic structure of the investigated system, the invariants have to be
inextricably connected to them as well and have to be preserved under adiabatic
local transformations. Thereby, two objects are called topologically equivalent when
they can be transformed into one another through this type of transformation. Then,
their topological invariants have the same values.

A concrete example of this principle can be constructed using the genus 𝑔 of an
orientable surface. It corresponds to the number of holes in the surface and thereby
is intuitive to understand. For example, a sphere such as a basketball has no holes
and therefore has genus 𝑔 = 0, while a bagel and a cup each have one hole implying
𝑔 = 1 for them. Thus, the bagel can be transformed into the cup continuously, but
not into the basketball. Overall, the genus can only be changed by integer amounts,
when holes are added or removed. Thereby, the bagel and the basketball are assigned
to different topological classes, while the bagel and the cup belong the same class.
In the following, a similar topological invariant, the Chern number, is employed to
characterize the investigated system from section 2.1.

Following the discovery of the integer quantum Hall effect in 1980 by von Klitzing
[34] and the following theoretical explanation by Thouless, Kohmoto, Nightingala
and den Nijs in 1983 [35], the research on topological phases became one of the
most popular branches in condensed matter physics. In the integer quantum Hall
effect, the Hall conductance changes in a step-wise manner in response to a reduction
of the applied strength of the magnetic field. This behaviour was theoretically
described through the TKNN integer [35], in order to classify the quantum Hall
states, which occur on the boundary of the system. These edge states were shown to
be exponentially localized at the boundary of the system. The number of occurring
edge states corresponds to the Chern number 𝐶 [36, 37] of the filled electronic bands,
which also renders the well-known quantized Hall conductivity 𝜎𝑥𝑦 = 𝐶𝑒2

ℏ , where 𝑒
is the electric charge.

Since then, the number of different topological materials and phases has increased
rapidly. In condensed matter physics, the topological invariants in question stem
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2 Theoretical Methods for Magnet-Superconductor Hybrid Structures

from the properties of the Hamiltonian. Here, a topological phase with a symmetry-
protected topologcial order, which is the case we are interested in here, although
there are also others, is described by a finite energy gap and certain symmetries in
the system. This kind of phase cannot be continuously deformed into a different
phase, as long as the energy gap and the symmetries are preserved [38]. Thereby, the
topological nature of the phase creates the necessity to close the energy gap in order
to change the phase. Here, topological superconductors are investigated, which are
well-known examples of topological phases with a symmetry-protected order. They
are defined as superconductors, in which a topological invariant takes a non-trivial
value.

These topological invariants, like the genus of an oriented surface, can only be changed
by non-adiabatic processes. Thereby, a quantum phase transition between different
phases implies that the gap between distinct phases is closed and then opened again,
as depicted in Fig. 2.1.

C=0 C=2C=1

connected by
continuous 
transformations

not connected by 
continuous 
transformations

x
x

x
x

Fig. 2.1: Schematic plot of distinct topological phases, where 𝐶 refers to the
topological invariant describing the investigated system. All three phases share the
same symmetries. The phase transitions between different phases, where a gap has
to be closed and openend again, are marked in red.

The topology of the phase stems not from the eigenenergies of the system, but is
rooted in the eigenstates. Therein, a non-trivial value of a topological invariant leads
to the emergence of conducting edge modes, which is explained by the bulk-boundary
correspondence [39–42].

Depending on the dimensionality of the system and the present symmetries, numerous
possibilities exist for topological superconductors and topological insulators, which
are illustrated in the periodic table introduced by Kitaev [43]. Therein, Altland
and Zirnbauer [44, 45] pointed out that all possibilities are classified into ten unique
classes, which are characterized by the eigenvalues of the squares of the time-reversal
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2.3 The Chern Number and the Bulk-Boundary Correspondence

𝒯, particle-hole 𝒞 and chiral symmetry operators 𝒮. An excerpt of this table up to
three dimensions, which applies to fermionic systems, is shown below in Tab. 2.1
[46].

As can be seen here, the Hamiltonian from section 2 corresponds to a class D
topological superconductor, as the particle-hole symmetry is preserved in the system
and the spins break the time-reversal symmetry. Thereby, the appropriate topological
invariant for this system, the Chern number, takes integer values. In the following
section, this invariant and its calculation will be explained. Furthermore, the implied
consequences of the bulk-boundary correspondence are introduced.

class 𝒯2 𝒞2 𝒮2 𝑑 = 1 𝑑 = 2 𝑑 = 3

Wigner-Dyson A - - - - ℤ -
symmetry classes AI +1 - - - - -

AII -1 - - - ℤ2 ℤ2

chiral AIII - - 1 ℤ - ℤ
symmetry classes BDI +1 +1 1 ℤ - -

CII -1 -1 1 ℤ - ℤ2

Bogoliubov - de D - +1 - ℤ2 ℤ -
Gennes C - -1 - - ℤ -

symmetry classes DIII -1 +1 1 ℤ2 ℤ2 ℤ
CI +1 -1 1 - - ℤ

Table 2.1: Separation of all possible topological insulators and topological super-
conductors for non-interacting fermionic Hamiltonians into the ten symmetry classes
[46]. The different cases are distinguished by the spatial dimension 𝑑 ∈ {1, 2, 3} as
well as the eigenvalues of three discrete symmetries, namely the time-reversal sym-
metry 𝒯, the particle-hole symmetry 𝒞 and the chiral symmetry 𝒮. The case that a
symmetry is absent is denoted by -. A present symmetry is indicated by ±1, which
corresponds to the system’s transformation behavior under twofold application of
the symmetry operation.

2.3 The Chern Number and the Bulk-Boundary
Correspondence

The Chern number was originally employed in mathematics for the description of
fiber bundles [47]. Its significance in physics was discovered as part of the theoretical
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2 Theoretical Methods for Magnet-Superconductor Hybrid Structures

description of the integer quantum Hall effect by Thouless, in which context it was
known as the TKNN integer [35]. Its connection to the Chern number was established
in 1985 [36].

For the 𝑛-th band, the Chern number is defined as

𝐶(𝑛) = 1
2𝜋

∫
BZ

d𝑘𝑥d𝑘𝑦 𝐹 (𝑛)
𝑥𝑦 (k) (2.3)

with the field strength of the Berry connection 𝐹 (𝑛)
𝑥𝑦 (k) = ∂𝑘𝑥

⟨𝑢𝑛(k)|∂𝑘𝑦
𝑢𝑛(k)⟩ −

∂𝑘𝑦
⟨𝑢𝑛(k)|∂𝑘𝑦

𝑢𝑛(k)⟩ [42]. Here, the eigenstates |𝑢𝑛(k)⟩ of the Hamiltonian are
required for the calculation.
When this formula is summed over all bands of the Hamiltonian, an alternative way
of calculation [48] is

𝐶 = 1
2𝜋i

∫
BZ

d2𝑘 Tr {𝑃k[∂𝑘𝑥
𝑃k, ∂𝑘𝑦

𝑃k]} (2.4)

with the projection operator

𝑃k = ∑
𝐸𝑛(k)<0

|𝑢𝑛(k)⟩ ⟨𝑢𝑛(k)| . (2.5)

As mentioned in the previous section, this topological invariant can only change
when the system’s energy gap closes, for example when a band crosses the level of
the Fermi energy due to a change of parameters. By calculating the Chern number
for different parameter sets, the phase diagram can be calculated for a specific MSH
structure. The phase transitions of the corresponding Hamiltonian can be found
by observing its gap closings, which separate the parameter space into regions of
different values for the Chern number.
For the case of MSH structures, there are two prerequisites that have to be fulfilled,
so that non-trivial values of the Chern number can occur. Firstly, an effective Rashba
spin-orbit coupling 𝛼 has to be present. However, this interaction can also be induced
intrinsically through non-collinear spin structures. As will be discussed later, this
can be shown through a local gauge transformation.
Secondly, the magnetic exchange coupling 𝐽 has to be greater than the chosen
superconducting order parameter Δ. Because time-reversal symmetry is preserved
for 𝐽 = 0, the system is then in a trivial phase. In order to reach a topological
phase, the gap first has to be closed. This is achieved at a critical value for the
magnetic exchange coupling 𝐽, which is reached approximately at the magnitude of
the superconducting order parameter [49, 50]. As a consequence, only trivial phases
were observed so far in MSH structures with ferromagnetic spins for 𝐽 < Δ [16] and
this also holds for the spin structures that are discussed in chapters 3 and 4.

8



2.4 Local Density of States

Furthermore, the fact that the Chern number can only change when the gap of the
Hamiltonian closes, is a consequence of the bulk-boundary correspondence [39]. It
states that when a trivial phase of 𝐶 = 0 is placed next to a topological phase of
𝐶 ≠ 0, as shown in Fig. 2.2.

E

Vacuum
C = 0

Topological Superconductor
C ≠ 0Su

rfa
ce

∆

−∆

Fig. 2.2: Schematic depiction of the bulk-boundary correspondence [51].

Therefore, the bulk gap of the Hamiltonian must close, which results in the emergence
of edge modes with an energy equal to zero. Transferred to the example of Magnet-
Superconductor Hybrid structures, the common case will be for a magnetic layer to
be placed onto a superconducting substrate. As this will be done experimentally
through atomic manipulation techniques, a finite number of magnetic adatoms is
put on top of the substrate. The rest of the superconducting substrate, which is left
uncovered by magnetic adatoms, is in a trivial phase. Therefore when the hybrid
structure composed of magnetic adatoms and the superconducting substrate is in
a topological phase, the border of the magnetic layer forms a boundary between a
topological and a trivial phase. Accordingly, on the edge of the magnetic structure,
edge modes will form that can be observed experimentally and simulated theoretically
through the quantities introduced in the following section, the local density of states
as well as the supercurrents. These occuring edge modes are Majorana modes [15],
analogous to the Kitaev model [5] and for two-dimensional systems exhibiting chiral
𝑝-wave superconductivity [29, 52, 53]. As they are thereby their own antiparticle,
they have an energy equal to zero.

2.4 Local Density of States

One possibility to observe the existence of Majorana modes is by measuring the local
density of states (LDOS). This quantity can be employed to illustrate where the
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2 Theoretical Methods for Magnet-Superconductor Hybrid Structures

eigenmodes of the Hamiltonian are located spatially at a specific energy. Due to
the fact that the edge modes in question are located at the boundary of the system
according to the bulk-boundary correspondence, the LDOS can be employed to check
for their occurrence on the boundary of the magnetic layer. As Majorana fermions
are their own antiparticle, these modes are found at zero energy and thus the LDOS
needs to be calculated at an energy of 𝐸 = 0.
The LDOS 𝑁𝑖(r), where 𝑖 ∈ {0, 1, 2, 3} refers to an index in Nambu space, can be
derived from the imaginary part of the retarded Green’s function as

𝑁𝑖(r) = − 1
𝜋

Im[𝑔𝑅
𝑖,𝑖(r, r, 𝜔)] , (2.6)

where the retarded Green’s function is obtained [54] by first diagonalizing the
Hamiltonian to find the eigenenergies 𝐸𝑘 and eigenstates 𝑢𝑘,𝑖(r) and inserting them
into

𝑔𝑅
𝑖,𝑗(r, r′, 𝜔) = ∑

𝑘
𝑢𝑘,𝑖(r)𝑢∗

𝑘,𝑗(r′) 1
𝜔 − 𝐸𝑘 + i𝛿

. (2.7)

The index 𝑘 ∈ {1, 2, ⋯ , dim �̂�} is used here as a counting index for the different
eigenenergies of the eigenmodes in real space. Here, dim �̂� refers to the dimension
of the matrix representation �̂� of the Hamiltonian in a finite-sized system. The
imaginary part is then given by

Im [𝑔𝑅
𝑖,𝑗(r, r′, 𝜔)] = ∑

𝑘
𝑢𝑘,𝑖(r)𝑢∗

𝑘,𝑗(r′) 𝛿
(𝐸𝑘 − 𝜔)2 + 𝛿2 (2.8a)

= 𝜋 ∑
𝑘

𝑢𝑘,𝑖(r)𝑢∗
𝑘,𝑗(r′)𝛿(𝐸𝑘 − 𝜔) (2.8b)

for 𝛿 → 0+. Over the course of this thesis, the two electronic components of the
LDOS 𝑁𝑖(r), which correspond to 𝑖 = 0 = ↑ and 𝑖 = 1 = ↓, are summed over, yielding
the total LDOS

𝑁(r) = 𝑁↑(r) + 𝑁↓(r) . (2.9)

2.5 Supercurrents

Supercurrents are defined as currents that flow in the system even when no voltage
is applied to it from the outside of the system. In general, the supercurrent [16]
between two sites r, r′ is obtained from

𝐼 𝑖
r,r′ = −2𝑒

ℏ
∫ d𝜔

2𝜋
Re [𝑡𝑖𝑖

r,r′𝑔<
𝑖,𝑖(r, r′, 𝜔)] , (2.10)
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2.5 Supercurrents

where 𝑡𝑖𝑗
r,r′ refers to the hopping parameter between sites r and r′, with (𝑖, 𝑗) referring

to indices in Nambu space. In Eq. (2.10), only diagonal elements of the supercurrent
in Nambu space are taken into account, because the Hamiltonian in Eq. (2.1c) does
not contain any spin-flipping processes. In Nambu space, the spinor for one site r is
given as 𝛹r = (𝑐†

r,↑, 𝑐†
r,↓, 𝑐r,↓, −𝑐r,↑). In real time, the greater, lesser, retarded and

advanced Green’s functions are respectively given as

𝑔>
𝑖,𝑗(r, r′, 𝑡) = −i ⟨(𝛹r)𝑖 (𝑡) (𝛹†

r′)
𝑗
(0)⟩ , (2.11a)

𝑔<
𝑖,𝑗(r, r′, 𝑡) = i ⟨(𝛹†

r′)
𝑗
(0) (𝛹r)𝑖 (𝑡)⟩ , (2.11b)

𝑔𝑅
𝑖,𝑗(r, r′, 𝑡) = −iΘ(𝑡) ⟨{(𝛹r)𝑖 (𝑡), (𝛹†

r′)
𝑗
(0)}⟩ (2.11c)

and

𝑔𝐴
𝑖,𝑗(r, r′, 𝑡) = iΘ(−𝑡) ⟨{(𝛹r)𝑖 (𝑡), (𝛹†

r′)
𝑗
(0)}⟩ , (2.11d)

where ℏ is set to unity during the course of the calculation of 𝑔<
𝑖,𝑖(r, r′, 𝜔). From

these formulas, we directly obtain the relations

𝑔𝑅
𝑖,𝑗(r, r′, 𝑡) = Θ(𝑡) (𝑔>

𝑖,𝑗(r, r′, 𝑡) − 𝑔<
𝑖,𝑗(r, r′, 𝑡)) , (2.12a)

𝑔𝐴
𝑖,𝑗(r, r′, 𝑡) = −Θ(−𝑡) (𝑔>

𝑖,𝑗(r, r′, 𝑡) − 𝑔<
𝑖,𝑗(r, r′, 𝑡)) , (2.12b)

and
𝑔𝑅

𝑖,𝑗(r, r′, 𝑡) − 𝑔𝐴
𝑖,𝑗(r, r′, 𝑡) = 𝑔>

𝑖,𝑗(r, r′, 𝑡) − 𝑔<
𝑖,𝑗(r, r′, 𝑡) . (2.13)

By calculating the spectral representation of these Green’s functions, another relation
between them can be established. The greater Green’s function is given through

𝑔>
𝑖,𝑗(r, r′, 𝑡) = − i

𝑍
Tr (𝑒i𝐻𝑡 (𝛹r)𝑖 𝑒−i𝐻𝑡 (𝛹†

r′)
𝑗
𝑒−𝛽𝐻) (2.14a)

= − i
𝑍

∑
𝑚,𝑛

⟨𝑚 ∣(𝛹r)𝑖∣ 𝑛⟩ ⟨𝑛 ∣(𝛹†
r′)

𝑗
∣ 𝑚⟩ 𝑒i(𝐸𝑚−𝐸𝑛)𝑡 𝑒−𝛽𝐸𝑚 , (2.14b)

which renders

𝑔>
𝑖,𝑗(r, r′, 𝜔) = 2𝜋i

𝑍
∑
𝑚,𝑛

⟨𝑚 ∣(𝛹r)𝑖∣ 𝑛⟩ ⟨𝑛 ∣(𝛹†
r′)

𝑗
∣ 𝑚⟩ 𝑒−𝛽𝐸𝑚𝛿 (𝐸𝑚 − 𝐸𝑛 + 𝜔) (2.14c)

when it is expressed in dependence of 𝜔 with the eigenstates |𝑛⟩ and eigenvalues 𝐸𝑚
of the Hamiltonian. Analogously, the lesser Green’s function reads

𝑔<
𝑖,𝑗(r, r′, 𝑡) = i

𝑍
Tr ((𝛹†

r′)
𝑗
𝑒i𝐻𝑡 (𝛹r)𝑖 𝑒−i𝐻𝑡 𝑒−𝛽𝐻) (2.15a)

= i
𝑍

∑
𝑚,𝑛

⟨𝑛 ∣(𝛹†
r′)

𝑗
∣ 𝑚⟩ ⟨𝑚 ∣(𝛹r)𝑖∣ 𝑛⟩ 𝑒i(𝐸𝑚−𝐸𝑛)𝑡𝑒−𝛽𝐸𝑛 , (2.15b)
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2 Theoretical Methods for Magnet-Superconductor Hybrid Structures

resulting in

𝑔<
𝑖,𝑗(r, r′, 𝜔) = 2𝜋i

𝑍
∑
𝑚,𝑛

⟨𝑚 ∣(𝛹r)𝑖∣ 𝑛⟩ ⟨𝑛 ∣(𝛹†
r′)

𝑗
∣ 𝑚⟩ 𝑒−𝛽𝐸𝑛𝛿(𝐸𝑚 − 𝐸𝑛 + 𝜔) . (2.15c)

From the Dirac 𝛿-distribution follows 𝐸𝑛 = 𝐸𝑚 + 𝜔, resulting in the relation

𝑔<
𝑖,𝑗(r, r′, 𝜔) = −𝑔>

𝑖,𝑗(r, r′, 𝜔) 𝑒−𝛽𝜔 . (2.16)

Since Eq. (2.13) can be Fourier transformed to frequency space, the relation

𝑔>
𝑖,𝑗(r, r′, 𝜔) − 𝑔<

𝑖,𝑗(r, r′, 𝜔) = 𝑔𝑅
𝑖,𝑗(r, r′, 𝜔) − 𝑔𝐴

𝑖,𝑗(r, r′, 𝜔) (2.17)

follows, which then yields

−𝑔<
𝑖,𝑗(r, r′, 𝜔) (1 + 𝑒𝛽𝜔) = 𝑔𝑅

𝑖,𝑗(r, r′, 𝜔) − 𝑔𝐴
𝑖,𝑗(r, r′, 𝜔) (2.18)

and can be rearranged to

𝑔<
𝑖,𝑗(r, r′, 𝜔) = −𝑛F(𝜔) (𝑔𝑅

𝑖,𝑗(r, r′, 𝜔) − 𝑔𝐴
𝑖,𝑗(r, r′, 𝜔)) (2.19)

with Eq. (2.16) and the Fermi-Dirac distribution function 𝑛F(𝜔).
As previously explained in section 2.4, the retarded and advanced Green’s functions
can be expressed through the eigenfunctions 𝑢𝑘,𝑖(r) and eigenenergies 𝐸𝑘 of the
diagonalized Hamiltonian as

𝑔<
𝑖,𝑗(r, r′, 𝜔) = −𝑛F(𝜔) ∑

𝑘
𝑢𝑘,𝑖(r)𝑢∗

𝑘,𝑗(r′) ( 1
𝜔 + i𝛿 − 𝐸𝑘

− 1
𝜔 − i𝛿 − 𝐸𝑘

) (2.20a)

= −𝑛F(𝜔) ∑
𝑘

𝑢𝑘,𝑖(r)𝑢∗
𝑘,𝑗(r′) −2i𝛿

(𝜔 − 𝐸𝑘)2 + 𝛿2 (2.20b)

= 2𝜋i 𝑛F(𝜔) ∑
𝑘

𝑢𝑘,𝑖(r)𝑢∗
𝑘,𝑗(r′)𝛿 (𝜔 − 𝐸𝑘) . (2.20c)

Substituting this into the formula (2.10) yields

𝐼 𝑖
r,r′ = −2𝑒

ℏ
∫ d𝜔

2𝜋
Re [𝑡𝑖𝑖

r,r′2𝜋i𝑛F(𝜔) ∑
𝑘

𝑢𝑘,𝑖(r)𝑢∗
𝑘,𝑖(r′)𝛿 (𝜔 − 𝐸𝑘)] (2.21a)

= 2𝑒
ℏ

∫ d𝜔 Im [𝑡𝑖𝑖
r,r′𝑛F(𝜔) ∑

𝑘
𝑢𝑘,𝑖(r)𝑢∗

𝑘,𝑖(r′)𝛿 (𝜔 − 𝐸𝑘)] (2.21b)

= 2𝑒
ℏ

𝑡𝑖𝑖
r,r′ ∑

𝑘
𝑛F(𝐸𝑘)𝑢𝑘,𝑖(r)𝑢∗

𝑘,𝑖(r′) , (2.21c)
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2.5 Supercurrents

where we used Re(i𝑧) = −Im(𝑧). Here, it can be seen that the total current for one
spin orientation is calculated from a sum over all the contributions from the different
eigenmodes of the Hamiltonian. This also allows to compute the contribution to
the total current carried by specific eigenmodes. Furthermore, it should be noted
that the energy eigenvalues come in pairs ±𝐸𝑘, so that the summation over all
energy eigenvalues in Eq. (2.21) combined with the Fermi-Dirac distribution 𝑛F(𝐸𝑘)
is equivalent to a sum of all negative eigenvalues at a tempertature of 𝑇 = 0.

Now we employ that in our model the hopping parameter is only non-vanishing
between neighboring sites 𝑡𝑖𝑖

r,r+𝜹 = −𝑡 and arrive at the final result for the current
between these sites

𝐼 𝑖
r,r+𝜹 = 2𝑒

ℏ
(−𝑡) ∑

𝑘
𝑛F(𝐸𝑘) 𝑢𝑘,𝑖(r) 𝑢∗

𝑘,𝑖(r + 𝜹) . (2.22)

In comparison, the current between all other sites vanishes due to the non-existent
hopping parameter between those sites. The total supercurrent between neighboring
sites is then given by the sum of the electronic components with 𝑖 = 0 = ↑ and
𝑖 = 1 = ↓

𝐼r,r+𝜹 = 𝐼↑
r,r+𝜹 + 𝐼↓

r,r+𝜹 . (2.23)

For a graphic representation of the current’s flow through one site, the sum over all
currents to neighboring sites multiplied by the normalized vector 𝜹 connecting the
two sites is taken, yielding the vectorized current at one site r as

Ir = ∑
𝜹

𝐼r,r+𝜹 ⋅ 𝜹
|𝜹|

. (2.24)

Physically, it can be seen that the supercurrent calculated from Eq. (2.21) is related
to the correlations between different sites. As in the investigated model, only nearest-
neighboring sites interact through the hopping parameter, the calculated supercurrent
gives an account of the correlations between two neighboring sites, arising from all
eigenmodes of the Hamiltonian with a negative energy for a temperature of 𝑇 = 0.
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3 The Magnetic Triple-Q Structure

3.1 Spin Structure

The triple-Q state or 3Q structure has been predicted theoretically [25] and also
recently been discovered experimentally [26]. It is modelled on a triangular lattice,
given through the lattice vectors a1 = 𝑎0(1, 0)T and a2 = 𝑎0 (1

2 ,
√

3
2 )

T
with the lattice

constant 𝑎0. We begin by considering a model in which the magnetic adatoms are
placed directly above the atoms of the superconducting substrate, as demonstrated
in Fig. 3.1. In the following, this model will be referred to as model I.

J

J J

J

S
R0

S
R1

S
R2

S
R3

Fig. 3.1: Spatial plot of the 3Q ordered spin structure on the triangular lattice
[55].

Here, each spin’s orientation is chosen out of four possible orientations

SR𝑖
= 𝑆

⎧{{
⎨{{
⎩

(0, 0, 1)T, R0 = 0
(0, −

√
8/3, −1/3)T, R1 = a1

(−
√

6/3,
√

2/3, −1/3)T, R2 = a2

(
√

6/3,
√

2/3, −1/3)T, R3 = a1 + a2

, (3.1)
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3.1 Spin Structure

which are all assumed within the lattice’s unit cell consisting of four atoms. These
orientations are determined by the vectors pointing outwards from the center of a
tetrahedron towards its corners.

SR0

SR1

SR2 SR3

Fig. 3.2: The four spin orientations from the 2 × 2 unit cell of the magnetic 3Q
structure arranged in a tetrahedron [56].

3.1.1 Effective Rashba Spin-Orbit Coupling

An important fact to notice is that the Hamiltonian from Eq. (2.1c) does not contain
an interaction term referring to an intrinsic Rashba spin-orbit coupling. An effective
form of this interaction is induced by the chosen non-collinear spin structure, which
can be seen by performing a local gauge transformation on the spin’s orientation to
align them ferromagnetically.
As MSH systems that contain a ferromagnetic order and an intrinsic Rashba spin-
orbit coupling have already been proven to exhibit topological superconductivity
[14–16], this kind of transformation allows for a test whether a chosen spin structure
realizes this scenario. In order to conduct this transformation, the rotated fermionic
operators 𝑑(†)

r,↑/↓ are defined as

(𝑐r↑
𝑐r↓

) = ̂𝑈r (𝑑r↑
𝑑r↓

) (3.2)

with the transformation matrix ̂𝑈r. The transformation rotating all spins to be
aligned in 𝑧-direction [24] is given by

̂𝑈r = 𝑒i 𝜃r
2 𝝈⋅�̂�r (3.3)
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3 The Magnetic Triple-Q Structure

with the angle of rotation

cos(𝜃r) = 𝑆r
|𝑆r|

⋅ ̂𝑧 (3.4)

and the rotation axis

�̂�r = 𝑆r × ̂𝑧
|𝑆r × ̂𝑧|

. (3.5)

For the four different spins in the 3Q state from Eq. (3.1), the four different matrices
̂𝑈r𝑖

for the local gauge transformation are given through

̂𝑈r0
= 12×2 , (3.6a)

̂𝑈r1
= ⎛⎜

⎝

1√
3 −i√2

3

−i√2
3

1√
3

⎞⎟
⎠

, (3.6b)

̂𝑈r2
= (

1√
3

1√
2 + i 1√

6
− 1√

2 + i 1√
6

1√
3

) (3.6c)

and

̂𝑈r3
= (

1√
3 − 1√

2 + i 1√
6

1√
2 + i 1√

6
1√
3

) . (3.6d)

The Hamiltonian, written in the basis of the creation operators 𝑑†
r,↑/↓, then takes the

form

𝐻 = ∑
r,r′,𝛼,𝛽

(−𝑡r,r′ ̂𝑈†
r ̂𝑈r′)

𝛼𝛽
𝑑†

r𝛼𝑑r𝛽 + Δ ∑
r

(𝑑†
r↑𝑑†

r↓ + h.c.)

+ ∑
r,𝛼

(𝐽𝑆𝜎𝑧
𝛼𝛼 − 𝜇)𝑑†

r𝛼𝑑r𝛼 .
(3.7)

For the terms in the Hamiltonian expressing the chemical potential as well as the s-
wave superconductivity, the Hamiltonian is already proportional to the identity matrix
with respect to different spin orientations prior to the transformation. Therefore,
applying the unitary transformation to the fermionic operators leaves these terms
unchanged.

The hopping term in the transformed Hamiltonian is now a matrix

− ̂𝑡𝑖𝑗 = −𝑡r𝑖,r′
𝑗

⋅ ̂𝑈†
r𝑖 ⋅ ̂𝑈r′

𝑗
= (

− ̃𝑡r𝑖,r′
𝑗

−𝛼∗
r𝑖,r′

𝑗

𝛼r𝑖,r′
𝑗

− ̃𝑡∗
r𝑖,r′

𝑗

) , (3.8)
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3.1 Spin Structure

in which the diagonal terms represent the effective hopping, whereas the off-diagonal
terms show the intrinsic Rashba spin-orbit coupling induced by the spin structure.
On the triangular lattice with 3Q-ordered spins, six different unique bonds between
the different spins at nearest-neighboring sites exist, as depicted in Fig. 3.3. Here,
for each pair of spins SR𝑖

and SR𝑗
with 𝑖 ≠ 𝑗, only one direction of the bond r𝑖𝑗

connecting them is shown. For reasons of visibility, only the positions of the sites,
where the different spins are located, are depicted there.

SR0 SR1

SR2SR3
SR3

r01

r02r03 r12 r13

r23

Fig. 3.3: Schematic plot of the six different unique bonds r𝑖𝑗 between spins of
different orientation SR𝑖

and SR𝑗
with 𝑖 ≠ 𝑗 at nearest neighboring sites.

For these bonds, the induced couplings are calculated and the resulting matrices are
given as

̂𝑡01 = 𝑡 ⎛⎜
⎝

1√
3 −i√2

3

−i√2
3

1√
3

⎞⎟
⎠

, ̂𝑡02 = 𝑡 (
1√
3

1√
2 + i 1√

6
− 1√

2 + i 1√
6

1√
3

) ,

(3.9a)

̂𝑡03 = 𝑡 (
1√
3 − 1√

2 + i 1√
6

1√
2 + i 1√

6
1√
3

) , ̂𝑡12 = 𝑡 (
− i√

3
1√
6 + i√

2
− 1√

6 + i√
2

i√
3

) ,

(3.9b)

̂𝑡13 = 𝑡 (
i√
3 − 1√

6 + i√
2

1√
6 + i√

2 − i√
3

) , and ̂𝑡23 = 𝑡 ⎛⎜
⎝

− i√
3 −√2

3

√2
3

i√
3

⎞⎟
⎠

. (3.9c)

Here, the hopping matrices of bonds of opposite direction are the respective hermitian
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conjugates ̂𝑡𝑖𝑗 = ̂𝑡†
𝑗𝑖 = 𝑡 ⋅ ̂𝑈†

r𝑖 ⋅ ̂𝑈r𝑗
. By taking into account the absolute value for

all different bonds, it can be deduced that the magnitude of the effective Rashba
spin-orbit coupling is uniform and has a value of 𝛼 = |𝛼r𝑖,r𝑗

| = √2
3 𝑡, whereas the

phase of the induced coupling varies between the different unique bonds. The effective
hopping has a reduced magnitude of ̃𝑡 = √1

3 𝑡 compared to its original value.

3.2 Band Structure

In order to calculate the band structure, the Hamiltonian from Eq. (2.1c) has to be
transformed using crystal momenta k from the reduced Brillouin zone (RBZ). The
discrete Fourier transformation and its inverse achieving this aim is given through

𝑐r,R𝑖
= 1

√𝑁1𝑁2
∑

k∈RBZ
𝑐k,R𝑖

𝑒𝑖k⋅r (3.10)

𝑐k,R𝑖
= 1

√𝑁1𝑁2
∑
r∈𝐴

𝑐r,R𝑖
𝑒−𝑖k⋅r , (3.11)

where the sum is taken over all the crystal momenta from the reduced Brillouin
zone, which is spanned by the two reciprocal lattice vectors b1 = 𝜋

𝑎0
(1, − 1√

3)
T

and

b2 = 𝜋
𝑎0

(0, 2√
3)

T
.

Γ

M KK’

b1

b2

K

K

K’

K’

MM

Fig. 3.4: Schematic plot of the reduced Brillouin zone for a triangular lattice with
the reciprocal lattice vectors b1 and b2 and the high-symmetry points Γ, M, K and
K′ marked. The blue dashed line depicts the chosen path for the band structures
calculated in Fig. 3.6.
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The usage of the reduced Brillouin zone implies in this case that the transformed
Hamiltonian is a 16 × 16 matrix. This dimensionality results from the four atoms in
the unit cell combined with the dimension of Nambu space, which is employed in
order to include both spin orientations for both electronic and hole-like operators.
The transformed Hamiltonian in k-space reads

ℋ = ∑
𝑘∈ RBZ

𝑐†
k𝐻(k)𝑐k . (3.12)

Here, the matrix representation 𝐻(k) of the Hamiltonian acts on the combined vector
of creation and annihilation operators, which is given through

𝑐k =
⎛⎜⎜⎜⎜
⎝

𝑐k,r0

𝑐k,r1

𝑐k,r2

𝑐k,r3

⎞⎟⎟⎟⎟
⎠

(3.13)

where 𝑐k,r𝑖
is combined of electronic and hole-like components for both spin orienta-

tions

𝑐k,r𝑖
=

⎛⎜⎜⎜⎜⎜
⎝

𝑐k,r𝑖,↑
𝑐k,r𝑖,↓
𝑐†

k,r𝑖,↓
−𝑐†

k,r𝑖,↑

⎞⎟⎟⎟⎟⎟
⎠

. (3.14)

Thereby, a spinor of 16 creation and annihilation operators is defined. The matrix
representation 𝐻(k) of the Hamiltonian reads

𝐻(k) =

⎛⎜⎜⎜⎜
⎝

−𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S1 ⋅ 𝝈) −𝑡𝑐a1
𝜏𝑧 ⊗ 𝜎0

−𝑡𝑐a1
𝜏𝑧 ⊗ 𝜎0 −𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S2 ⋅ 𝝈)

−𝑡𝑐a2
𝜏𝑧 ⊗ 𝜎0 −𝑡𝑐a2−a1

𝜏𝑧 ⊗ 𝜎0
−𝑡𝑐a2−a1

𝜏𝑧 ⊗ 𝜎0 −𝑡𝑐a2
𝜏𝑧 ⊗ 𝜎0

⋯

⋯

−𝑡𝑐a2
𝜏𝑧 ⊗ 𝜎0 −𝑡𝑐a2−a1

𝜏𝑧 ⊗ 𝜎0
−𝑡𝑐a2−a1

𝜏𝑧 ⊗ 𝜎0 −𝑡𝑐a2
𝜏𝑧 ⊗ 𝜎0

−𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S3 ⋅ 𝝈) −𝑡𝑐a1
𝜏𝑧 ⊗ 𝜎0

−𝑡𝑐a1
𝜏𝑧 ⊗ 𝜎0 −𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S4 ⋅ 𝝈)

⎞⎟⎟⎟⎟
⎠

,

(3.15a)

where the abbreviations

𝑐a1
(k) = cos(k ⋅ a1) , (3.15b)

𝑐a2
(k) = cos(k ⋅ a2) , (3.15c)

𝑐a2−a1
(k) = cos(k ⋅ (a2 − a1)) (3.15d)
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3 The Magnetic Triple-Q Structure

are employed. In the matrix 𝐻(k), we left out the dependence of 𝑐a2
, 𝑐a1

and 𝑐a2−a1
on k for the sake of brevity. The matrices 𝜏𝑥, 𝜏𝑦 and 𝜏𝑧 have the same matrix
representation as the Pauli matrices from Eq. (2.2), but act in Nambu space and are
therefore applied to the combined vector of electronic and hole-like creation operators
of the same spin (𝑐†

r,𝜎, 𝑐r,𝜎)T.

3.2.1 Symmetry Transformation

For the diagonalization of the Hamiltonian for the 3Q structure, previously introduced
in Eq. (3.15d), the symmetry within the spin structure provides a way to block-
diagonalize the matrix representation before employing a numeric diagonalization
routine. This symmetry originates from the fact that the different spin orientations
can be transformed into one another in pairs. In Fig. 3.2, the spin orientations are
shown as the four orientations from the center of a tetrahedron to its corners. Here,
it can be seen that the spin orientations belong to the tetrahedron group. Thereby,
if the spin structure is rotated by 𝜋 around one of the axes determined by

n =
SR𝑖

+ SR𝑗

|SR𝑖
+ SR𝑗

|
with 𝑖 ≠ 𝑗 , (3.16)

the spins SR𝑖
and SR𝑗

are rotated into one another as well as the other pair of spins.
Combined with a translation on the triangular lattice, e.g. a translation by a1 when
SR0

and SR1
are rotated into one another, the entire spin structure is left invariant

on the triangular lattice.

For the 3Q structure, a translation by a1 is equivalent to an exchange of the sites,
where the spins Sr0

and Sr1
are located. As a matrix, the operation of translation

can thus be expressed as

̂𝑇 =
⎛⎜⎜⎜⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎟
⎠

⊗ 𝟙4×4 (3.17)

and the rotation of the spins through

�̂� = 𝑒i 𝜋
2 𝟙4×4⊗(n⋅𝝈) = i𝟙4×4 ⊗ (n ⋅ 𝝈) (3.18a)

= 𝟙4×4 ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

i√
3 −√2

3 0 0

√2
3 − i√

3 0 0

0 0 i√
3 −√2

3

0 0 √2
3 − i√

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.18b)
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3.2 Band Structure

These two matrices are split into the Kronecker product of two 4 × 4 matrices, of
which the first matrix acts on the four fermionic operators with the same index in
Nambu space at the four different spatial sites in the unit cell and the second matrix
acts on the four electronic and hole-like fermionic operators of both spin orientations
at one of these sites, as given in Eq. (3.14). The combined matrix ̂𝑆 = ̂𝑇 ⋅ �̂� then
leaves the Fourier transformed Hamiltonian invariant as

�̂�(k) = ̂𝑆†�̂�(k) ̂𝑆 . (3.19)

Thereby, a transformation ̂𝑈 ̂𝑆 which diagonalizes ̂𝑆 through the operation ̂𝑈†
̂𝑆
⋅ ̂𝑆 ⋅ ̂𝑈 ̂𝑆

will also block-diagonalize 𝐻(𝑘). For reasons of simplicity, the task of finding the
transformation ̂𝑈 ̂𝑆 can be split into diagonalizing ̂𝑇 as well as �̂� and then multiplying
the two resulting transformations ̂𝑈 ̂𝑇 and ̂𝑈�̂�. These two matrices are composed of
the respective sets of eigenvectors as

̂𝑈 ̂𝑇 = 1√
2

⎛⎜⎜⎜⎜
⎝

1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞⎟⎟⎟⎟
⎠

⊗ 𝟙4×4 (3.20)

and

̂𝑈�̂� = 𝟙4×4 ⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√1
6(3 +

√
3) − i

√3+
√

3
0 0

− i
√3+

√
3

√1
6(3 +

√
3) 0 0

0 0 √1
6(3 +

√
3) − i

√3+
√

3

0 0 − i
√3+

√
3

√1
6(3 +

√
3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.21)

The unitary transformation, given through

̂𝑈 ̂𝑆 = ̂𝑈 ̂𝑇 ⋅ ̂𝑈�̂� ⋅ ̂𝑃 (3.22)
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3 The Magnetic Triple-Q Structure

with

̂𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.23)

then not only diagonalizes ̂𝑆, but also sorts its eigenvalues ±i by the sign of their
imaginary parts, which is achieved through ̂𝑃. Using this transformation, the matrix
representation of the Hamiltonian can then be block-diagonalized into two 8×8-blocks,
resulting in the transformed matrix

̂𝑈†
̂𝑆
�̂�(k) ̂𝑈 ̂𝑆 = (�̂�′(k) 0

0 (i 𝟙2×2 ⊗ 𝜏𝑧 ⊗ 𝜎𝑦) ⋅ �̂�′(k)∗ ⋅ (i 𝟙2×2 ⊗ 𝜏𝑧 ⊗ 𝜎𝑦)
) , (3.24)

where the first 8 × 8 block is given through

�̂�′(k) = (
̂𝐴 �̂�

�̂� ̂𝐶
) , (3.25)
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3.3 Topological Phase Diagram

with

̂𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝐽√
3 − 2𝑡𝑐𝑎0,0 − 𝜇 Δ i√2

3𝐽 0

Δ 𝐽√
3 + 2𝑡𝑐𝑎0,0 + 𝜇 0 i√2

3𝐽

−i√2
3𝐽 0 − 𝐽√

3 + 2𝑡𝑐𝑎0,0 − 𝜇 Δ

0 −i√2
3𝐽 Δ − 𝐽√

3 − 2𝑡𝑐𝑎0,0 + 𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(3.26)

�̂� =
⎛⎜⎜⎜⎜⎜⎜
⎝

−4𝑡𝑐 1
2 𝑎0,

√
3

2 𝑎0
(𝑘𝑦) 0 0 0

0 4𝑡𝑐 1
2 𝑎0,

√
3

2 𝑎0
(𝑘𝑦) 0 0

0 0 4𝑡𝑠 1
2 𝑎0,

√
3

2 𝑎0
0

0 0 0 −4𝑡𝑠 1
2 𝑎0,

√
3

2 𝑎0

⎞⎟⎟⎟⎟⎟⎟
⎠

(3.27)

and

̂𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 𝐽√
3 − 2𝑡𝑐𝑎0,0 − 𝜇 Δ √2

3𝐽 0

Δ − 𝐽√
3 + 2𝑡𝑐𝑎0,0 + 𝜇 0 √2

3𝐽

√2
3𝐽 0 𝐽√

3 + 2𝑡𝑐𝑎0,0 − 𝜇 Δ

0 √2
3𝐽 Δ 𝐽√

3 − 2𝑡𝑐𝑎0,0 + 𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.28)
Here, the abbreviations

𝑐 1
2 𝑎0,

√
3

2 𝑎0
(𝑘𝑥, 𝑘𝑦) = cos (1

2
𝑘𝑥𝑎0) cos (

√
3

2
𝑘𝑦𝑎0) , (3.29a)

𝑐𝑎0,0(𝑘𝑥, 𝑘𝑦) = cos(𝑘𝑥𝑎0) , (3.29b)

and

𝑠 1
2 𝑎0,

√
3

2 𝑎0
(𝑘𝑥, 𝑘𝑦) = sin (1

2
𝑘𝑥𝑎0) sin (

√
3

2
𝑘𝑦𝑎0) (3.29c)

were introduced. Due to the fact that the two blocks of the Hamiltonian have the
same eigenvalues independent of the investigated crystal momentum, all eigenvalues
are doubly degenerate, which results in doubly degenerate bands.

3.3 Topological Phase Diagram

Using the pre-diagonalized matrix representation of the Hamiltonian in Eq. (3.28),
the Chern number can be calculated. In order to compute the Chern number
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3 The Magnetic Triple-Q Structure

numerically, the reduced Brillouin zone from the Fourier transformation has to be
discretized using a grid of crystal momenta. This grid �̂� of size 𝑛𝑘 × 𝑛𝑘 was chosen
as

k𝑖,𝑗 = 𝑖
𝑛𝑘

b1 + 𝑗
𝑛𝑘

b2 with 𝑖 ∈ {0, 1, ⋯ , 𝑛𝑘 − 1}, 𝑗 ∈ {0, 1, ⋯ , 𝑛𝑘 − 1} , (3.30)

with 𝑛𝑘 ∈ ℕ determining the fineness of the grid. Here, 𝑛𝑘 = 1000 was chosen. Next,
the Hamiltonian was diagonalized numerically for each of these points in the reduced
Brillouin zone yielding the eigenenergies 𝐸𝑛(k𝑖,𝑗) and eigenstates |𝑢𝑛(k𝑖,𝑗)⟩, from
which the smallest positive energy eigenvalue was determined and the projection
operator was calculated as

𝑃 (k𝑖,𝑗) = ∑
𝐸𝑛(k𝑖,𝑗)<0

∣𝑢𝑛(k𝑖,𝑗)⟩ ⟨𝑢𝑛(k𝑖,𝑗)∣ . (3.31)

Afterwards, the integrand from Eq. (2.4) is calculated for each of these discretized
values of the crystal momentum. Therein, the partial derivatives in direction of 𝑘1
and 𝑘2 are approximated using the central finite differences method [57–59]. Here,
the partial derivative by 𝑘1 is computed to eigh-order accuracy by

∂𝑘1
𝑃 (k𝑖,𝑗) = 1

280
𝑃 (k(𝑖−4)%𝑛𝑘,𝑗) − 4

105
𝑃 (k(𝑖−3)%𝑛𝑘,𝑗) + 1

5
𝑃 (k(𝑖−2)%𝑛𝑘,𝑗)

− 1
5

𝑃 (k(𝑖−1)%𝑛𝑘,𝑗) + 1
5

𝑃 (k(𝑖+1)%𝑛𝑘,𝑗) − 1
5

𝑃 (k(𝑖+2)%𝑛𝑘,𝑗)

+ 4
105

𝑃 (k(𝑖+3)%𝑛𝑘,𝑗) − 1
280

𝑃 (k(𝑖+4)%𝑛𝑘,𝑗) + 𝒪 ((2𝜋
𝑛𝑘

)
8

)

(3.32)

and the partial derivative by 𝑘2 analogously, where the periodicity of 𝑘1 is taken
into account by employing the modulus operation. It is important to note here that
because the Chern number is calculated for a triangular lattice, it is not efficient
to calculate the derivatives with respect to 𝑘𝑥 and 𝑘𝑦. Instead, it is calculated in
direction of 𝑘1 and 𝑘2, which point in the direction of the reciprocal lattice vectors
b1 and b2. Nevertheless, the result for the two procedures is the same. Afterwards,
the computed derivatives are placed in Eq. (2.4), where the integral is replaced by a
sum over all contributions from each k𝑖,𝑗 for the discretized Brillouin zone.

The result for the Chern number is shown in Fig. 3.5 (a), where it was calculated for
𝜇 ∈ [−5.0𝑡, 5.0𝑡], 𝐽𝑆 ∈ [0.0𝑡, 3.0𝑡] and Δ = 0.4𝑡. The value of the superconducting
order parameter was chosen much larger than the values occuring in realistic scenarios,
because the computation of the Chern number takes much longer for very small
values of Δ. Instead of discretizing the parameter space into equidistant points, the
Chern number was calculated for singular parameter sets (𝜇, 𝛥, 𝐽𝑆) by employing
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3.3 Topological Phase Diagram

a learner from the Python package Adaptive [60]. Therein, the Chern number is
sampled in the chosen parameter space defined by the intervals for 𝜇 and 𝐽𝑆. In each
sampling step, the Chern number is then calculated at a set of parameters, in whose
surrounding region the loss of the learner is still high. Thereby, the phase transitions
between regions of different Chern numbers are sampled better. In the phase diagram,
it can be seen that the doubly-degenerate bands result in the occurence of solely
even-valued Chern numbers.

(a) (b)C
E

min 
[t]

m [t]m [t]

J
S

 [
t]

J
S

 [
t]

M

K
G

Fig. 3.5: (a) Phase diagram for an MSH structure with a 3Q-ordered magnetic
layer, (b) lowest positive energy eigenvalue for all crystal momenta in the reduced
Brillouin zone of the Hamiltonian with the 3Q-ordered spin structure.

Fig. 3.5 (b) depicts the lowest energy eigenvalue in the entire Brillouin zone. Next,
by analyzing the band structure at the high symmetry points of the reduced Brillouin
zone displayed in Fig. 3.4, it can be seen that the gap closings visible in Fig. 3.5 (b)
occur at the high symmetry points Γ, M as well as (K, K′).

By calculating the dispersion at these points, the analytic expressions for the gap
closings can be calculated. At Γ as well as K and K′, this relation is quadratic,
resulting in the two parabolically shaped branches in Fig. 3.5 (b). The gap closing is
determined by

𝐽2 − Δ2 = (𝜇 − 𝜇0)2 , (3.33)
where 𝜇0 = 2𝑡 at Γ and 𝜇0 = −𝑡 at (K,K′).
These relations are found by an analytic diagonalization of the Hamiltonian at these
high symmetry points in Mathematica [61]. At the points K and K′, the gap closings
are exactly the same, for which the band structure is depicted in Fig. 3.6 (c) for
the set of parameters (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 0.4𝑡). For the three band structures
shown here, the Hamiltonian was diagonalized for each of 700 equidistant points
along a line in the Brillouin zone. This line starts at Γ, proceeds to the point M and
then K and returns to Γ, as marked by the dashed blue line in Fig. 3.4.

For the gap closing at K, a Dirac cone emerges in the band structure. Thereby,
performing a Taylor expansion at K at a specific set of parameters, for which the
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3 The Magnetic Triple-Q Structure

gap closes at K, yields a linear expression in k. Combining this linearity with the
fact that the gap closes both at K and K′ and the double degeneracy of the bands,
gives a multiplicity of 4 for this gap closing and thereby explains a change in the
Chern number by 𝛥𝐶 = 4.

E(
k)

k
Γ ΓKM

(a)

(c)

(b)

E(
k)

Γ ΓKM

Γ ΓKM

E(
k)

k

k

Fig. 3.6: Band structure (a) at (𝜇, Δ, 𝐽𝑆) = (2.0𝑡, 0.4𝑡, 0.4𝑡) exhibiting a quadratic
gap closing at Γ, (b) at (𝜇, Δ, 𝐽𝑆) = (−2.0𝑡, 0.4𝑡, 0.71𝑡) exhibiting a linear gap
closing at M and (c) at (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 0.4𝑡) exhibiting a linear gap
closing at K.

For the high symmetry point Γ, the scenario is more complicated. For this high
symmetry point, two degenerate bands have a gap closing, but a transition from
the trivial phase to a topological phase of 𝐶 = 4 occurs. When the dispersion is
analyzed for this gap closing, which is portrayed in Fig. 3.6 (a) at (𝜇, Δ, 𝐽𝑆) =
(−1.0𝑡, 0.4𝑡, 0.4𝑡), it shows a quadratic dependence on k. For small values of |k|, this
dispersion was fitted at the phase transition at the set of parameters (𝜇, Δ, 𝐽𝑆) =
(−1.0𝑡, 0.4𝑡, 0.4𝑡) along three lines in the Brillouin zone, namely from Γ to the end
points M, K and M+K

2 . For these lines, the fitting function 𝑎|𝑘|2 + 𝑒 yields almost
equal values for 𝑎 and 𝑒 ≈ 0 in all three cases. Therefore, the dispersion appears
isotropic in close proximity to Γ. Overall, the quadratic character of the gap closing
combined with the double degeneracy of the bands seems to generate the phase
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3.4 Edge Modes on Magnetic Islands

transition of 𝛥𝐶 = 4.

Finally, the gap closing at M is determined by the analytic expression

(3𝐽2 + 4𝑡2 − 3Δ2 − 3𝜇2)2 = 16𝑡2(3𝜇2 − 8𝑡2 − 6Δ2) , (3.34)

which is found from an analytic diagonalization of the Hamiltonian at this high
symmetry point in Mathematica [61]. This relation between 𝐽 and 𝜇 results in four
branches for a specific value of Δ, which causes two symmetric phases around 𝜇 = 0
to emerge in the phase diagram in Fig. 3.5. The gap closing at M once again shows
a linear Dirac cone in the band structure, which is presented in Fig. 3.6 (b) for
the set of parameters (𝜇, Δ, 𝐽𝑆) = (−2.0𝑡, 0.4𝑡, 0.71𝑡). Combined with the double
degeneracy of the bands as well as the multiplicity of 3 for the high symmetry point
M in the Brillouin zone, these gap closings induce a change in the Chern number by
𝛥𝐶 = ±6. Where phases originating from gap closings at different high symmetry
points overlap, the respective Chern numbers are added. Thereby, the section in the
phase diagram, where the left phase originating from M with a Chern number of
𝐶 = −6 overlaps with the phase of 𝐶 = 4 originating from K, has a Chern number
of 𝐶 = −2. Similarly, the section where the right phase originating from M is seen
has an overall Chern number of 𝐶 = 2, because this phase is fully immersed in the
phase originating from the gap closing at Γ.

3.4 Edge Modes on Magnetic Islands

For the topological phase, Majorana zero-energy modes are predicted to occur on
boundaries connecting to regions in the trivial phase. For MSH structures, such
a boundary is determined by the edge of the magnetic adatoms placed onto the
superconducting substrate. Thereby, the topological character of the system can be
analyzed in real space by computing the local density of states. In order to simulate
a lattice of 𝑁1 × 𝑁2 sites in real space, the numerical calculations were performed
using the Kwant python package [62]. By employing the methods from Kwant, both
one- and two-dimensional lattices can be created including on-site elements of the
Hamiltonian as well as hopping terms and their eigenenergies and eigenstates can be
calculated. Therein, 𝑁1 refers to the number of sites in direction of a1 and 𝑁2 to
the number of sites in direction of a2.

3.4.1 Circular Islands

Firstly, a circular island of magnetic adatoms was considered, as illustrated in Fig. 3.7
(a), where the four colors red, blue, green and yellow represent the four possible
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3 The Magnetic Triple-Q Structure

spin orientations as they are ordered in Eq. (3.1). The black color shows where no
magnetic adatoms are placed onto the superconducting substrate.
The local density of states at zero energy is calculated from Eq. (2.6), for which the
eigenenergies and eigenstates are needed. These can be calculated in real space by
diagonalizing the Hamiltonian in Eq. (2.1c). Here, the Hamiltonian was diagonalized
for a 70 × 70 lattice with periodic boundary conditions. The result of calculating
the local density of states (LDOS) at an energy of zero for this system is shown in
Fig. 3.7 (b) for the chosen parameter set of (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 1.5𝑡). These
parameters correspond to the topological phase with a Chern number of 𝐶 = 4.

x [a0]

y 
[a

0]

LDOS [10-3 t-1]

y 
[a

0]

x [a0]

(a) (b)

Fig. 3.7: (a) Spatial plot of the island of magnetic adatoms with the colors
representing the four spin orientations of the 3Q structure, where the blue and
orange dashed lines denote the 𝑦-coordinate where the horizontal cuts for Fig. 3.8 are
taken, (b) Zero-energy LDOS of the island of magnetic adatoms in the 𝐶 = 4-phase
with the magnitude described by a linear color scale.

The computed result in Fig. 3.7 (b) clearly shows that the LDOS is localized at the
edge of the island, shown in Fig. 3.7 (a). Thereby, the expected Majorana modes
are present and can be detected experimentally. Fig. 3.8 shows a plot of the LDOS
dependent on 𝑥 at 𝑦 ∈ {35, 36}

√
3

2 𝑎0. These values for 𝑦 correspond to the sites at
the middle of the island, which are also marked by two dashed lines in the same
colors in Fig. 3.7 (a).

By looking at this type of cuts through the island along one line through the island,
it can be seen that the LDOS declines rapidly from the edge of the island towards
its center. At both cvalues for 𝑦 the LDOS is not symmetric, because the maxima in
the LDOS from Fig. 3.7 (b) are especially prominent at every second site along the
edge. Thereby, a site with a less prominent maximum of the LDOS lies across the
cut along 𝑦 =

√
3

2 35𝑎0, which corresponds to the blue line in Fig. 3.8. However, the
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3.4 Edge Modes on Magnetic Islands
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Fig. 3.8: Line-cuts of the LDOS on the circular island at 𝑦 ∈ {35, 36}
√

3
2 𝑎0 in the

𝐶 = 4-phase.

orange line corresponding to the LDOS at 𝑦 =
√

3
2 36𝑎0 is approximately the mirrored

version of the blue line around the center of the island. The deviations in the course
of the two lines can be traced back to numerical inaccuracies, which would not be
present for larger systems. Thereby, it can be seen that these two line-cuts of the
LDOS through the island are symmetric to one another.

3.4.2 Introducing Disorder

Majorana zero-energy modes are especially interesting as a candidate for quantum
computation, as they are robust to disorder. In order to test whether the edge modes
on the island are stable towards disorder, one possibility is to simulate an irregularly
shaped island.

As the 𝐶3-symmetry of the spin structure is then no longer present on the lattice,
the system is more disordered. The chosen shape for the island is shown in
Fig. 3.9 (a), which was generated from a black-and-white picture [63]. This picture
was imported into the code, where the colors were used as a True/False mask. The
color white here stands for the space, where the magnetic adatoms are located, and the
color black denotes where no magnetic adatoms are placed above the superconducting
substrate. Thereby, any island generated during an experiment can be simulated
from a black-and-white picture of the island’s shape. The result for the computation
of the zero-energy LDOS on a lattice of 𝑁1 = 70 and 𝑁2 = 70 sites is shown in
Fig. 3.9 (b). Despite the irregular shape of the magnetic island, the local density of
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3 The Magnetic Triple-Q Structure

Fig. 3.9: (a) Spatial plot of the irregularly shaped island of magnetic adatoms
with the colors representing the four different spin orientations of the 3Q structure,
(b) zero-energy LDOS of the irregularly shaped island of magnetic adatoms in the
𝐶 = 4-phase.

states still exhibits high peaks on the edge of the island. Thereby, the calculated
edge modes are stable towards disorder, as they remain localized on the boundary of
the island and therefore appear to be topologically protected from disorder.

3.4.3 Supercurrents

Next, the supercurrents were calculated for this shape of the magnetic island, as
explained in section 2.5. As the eigenenergies and corresponding eigenvectors of the
Hamiltonian were already calculated previously, all prerequisites for the calculation
are given. The result for the supercurrent from all occupied energy modes is shown
in Fig. 3.10. As explained before, all contributions from the bonds to the nearest
neighboring sites were averaged with the connecting vectors as weights, rendering a
vectorized graphic representation of the supercurrent flowing through each site.

This plot shows that the supercurrent is localized on the very edge of the island and
proceeds counter-clockwise around the entire boundary for this phase. Therefore,
the current possesses a clear chirality. Calculating the current for other topological
phases leads to the conclusion that the direction of the current flips when the sign of
the Chern number is inverted 𝐶 → −𝐶.
As the current calculated here stems from a sum over the different contributions
from all occupied eigenstates, it can also be separated into partial sums over
certain energy ranges. In Fig. 3.11, the entire current and its separation into
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3.4 Edge Modes on Magnetic Islands

Fig. 3.10: (a) Calculated supercurrent flowing through each site, with the arrows
denoting the current’s orientation, for the 3Q structure in the 𝐶 = 4-phase, and (b)
zoomed-in area on the island marked by the red square in (a).

three contributing energy ranges is shown, in order to compare the topological
𝐶 = 4-phase at (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 1.0𝑡) with the trivial 𝐶 = 0-phase at
(𝜇, Δ, 𝐽𝑆) = (−4.0𝑡, 0.4𝑡, 1.0𝑡). Inside the magnetic island, the gap width is reduced
to an effective gap width 𝛥eff, which is demonstrated later in section 3.5.3. Therefore,
the entire energy range [𝐸min, 0] is split into energies below the superconducting
order parameter [𝐸min, −Δ] denoted by ’Bulk’, between the superconducting order
parameter and the effective reduced gap on the island (−Δ, −Δeff) denoted by
’Between’, and energies above the effective gap [−Δeff, 0] denoted by ’In-Eff-Gap’. As
only the occurring Majorana modes possess energies greater than the effective gap,
because they traverse the entire gap width, they are the only modes contributing to
the third energy interval.

The result in Fig. 3.11 shows that in the topological case, all three energy intervals
show ordered supercurrents localized on the edge of the magnetic island with definied
chiralities. While the contributions from the first energy interval, the bulk modes,
move clockwise around the island, the other two contributions move counter-clockwise
around the island with the Majorana modes from the third interval generating the
greatest magnitude of the supercurrent.

Compared to the supercurrent for the topological phase, the supercurrent in the
trivial phase is smaller by a factor of approximately 10. Nevertheless, there is still
a localized current visible on the edge of the current running clockwise around the
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3 The Magnetic Triple-Q Structure

island. As no Majorana modes traverse the superconducting gap, the third energy
interval does not contribute anything to the overall supercurrent. The two other
energy intervals show very disordered contributions of no defined chirality, which
also penetrate into the inside of the island.
These results suggest the conclusion that a strong, ordered supercurrent in contrast
to a weaker, disordered one can be employed as a means to distinguish topological
from trivial phases.

Fig. 3.11: Separated supercurrent contributions for the 3Q structure in the 𝐶 = 4-
phase and the trivial phase at (𝜇, Δ, 𝐽𝑆) = (−4.0𝑡, 0.4𝑡, 1.0𝑡).

3.5 Edge Modes on Ribbon Structures

Taking an approach to MSH systems by simulating islands of magnetic adatoms comes
with certain disadvantages. Simulating these islands requires the diagonalization of
quadratic matrices with dimension 4𝑁1𝑁2. In order to achieve a good accuracy, 𝑁1
and 𝑁2 have to be very large numbers, leading to long computation times. These
large matrices also take up a lot of storage space, which renders this method less
efficient.
Treating the Hamiltonian in the reduced Brillouin zone through a Fourier transfor-
mation allows for a more efficient calculation. However, Fourier transforming the
Hamiltonian requires a fully translationally invariant system and thus does not allow
edges to be included in the system. So, for the purpose of observing Majorana modes
on the edges of the magnetic layer combined with the effectiveness of the reduced
Brillouin zone, partially infinite systems suggest themselves.
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3.5 Edge Modes on Ribbon Structures

Therefore, systems that are infinite along one direction of the triangular lattice, e.g.
in direction of a1 are now analyzed. In the other direction of a2, the system remains
finite. In the finite direction, the magnetic adatoms are only placed on a part of the
simulated sites, creating two edges. Here, periodic boundary conditions are employed
as well.
The spatial structure of this kind of system is shown in Fig. 3.12 and will be referred
to as a ribbon of magnetic adatoms from hereon. By employing this kind of magnetic
structure for the computations, the size of the matrices that need to be diagonalized
is reduced to 8𝑁1. This dimension includes the number of sites in direction of a1,
the two sites of the unit cell in direction of a2 and the dimension of the employed
Nambu space.

x [a0]

y 
[a

0]

LDOS [10-3 t-1]

Fig. 3.12: Spatial plot of the ribbon structure with displayed zero-energy LDOS
for (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 1.0𝑡) in the topological phase of 𝐶 = 4.

Beforehand, the LDOS was calculated in real space for a system with 80 sites in
direction of a1 and 40 sites in direction of a2 analogously to the procedure for island
structures from before. Here, half of the system’s sites are covered with magnetic
adatoms, creating a ribbon of infinite direction in a2, which is shown in Fig. 3.12. The
result for the LDOS is depicted Fig. 3.12 as well, which shows edge modes emerging
on the boundary of the magnetic layer. It was calculated for the set of parameters
of (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 1.0𝑡), which corresponds to a Chern number of 𝐶 = 4.
Thereby, it can be deduced that the possibility to predict the experimental results
during STS measurements is maintained when magnetic ribbons are investigated
instead of magnetic islands.

Next, the supercurrent was calculated for this system and the same set of parameters.
The result is depicted in Fig. 3.13.
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Fig. 3.13: Calculated supercurrent on the ribbon structure for (𝜇, Δ, 𝐽𝑆) =
(−1.0𝑡, 0.4𝑡, 1.0𝑡) in the topological phase of 𝐶 = 4.

Here, the supercurrent points along the boundary of the ribbon, wherein its orientation
is opposite on the two different edges. Apart from a small contribution further
inside the ribbon, all of the supercurrents on one edge have the same orientation.
The magnitude of the computed supercurrents also declines rapidly away from the
boundary of the magnetic ribbon. Therefore, this result demonstrates a localization
on the boundary of the ribbon and a defined chirality along the edges.

3.5.1 Introducing Disorder

Just like for the island of magnetic adatoms, a ribbon with perfectly ordered edges is
unlikely to be created experimentally. Therefore, the robustness of the Majorana
zero-energy modes towards disorder needs to be tested. In order to create the
disordered edges displayed in Fig. 3.14, a random walk is conducted both on the left
as well as on the right edge. From the original starting points rL, rR = (𝑁1

4 , 3𝑁1
4 )a1

of the edge at 𝑦 = 0, each position of the edge along the ribbon is determined by
drawing a random number out of [−1, 0, 1]. Adding the randomly determined number
to the previous position of the edge allows the edge to be moved one site to the left,
to remain the same or to be moved one site to the right.

Next, the local density of states was calculated for this specific ribbon in real space
with the result shown in Fig. 3.15. This calculation was conducted for the same set
of parameters as for the data shown in Fig. 3.12. The Majorana modes on the edge
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Fig. 3.14: Spatial plot of the ribbon structure with irregular edges.

of the ribbon remain localized, but spread out more into the center of the ribbon.
Therefore, it can be concluded that they are stable towards disorder.

Fig. 3.15: Zero-energy LDOS for the ribbon structure in real space with disordered
edges.

3.5.2 Theoretical Method for Partially Infinite Systems

For the theoretical analysis of a ribbon structure, the creation and annihilation
operators as well as the Hamiltonian have to be Fourier transformed in one direction.
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3 The Magnetic Triple-Q Structure

The corresponding transformation is given through

𝑐𝑚a1,𝑛a2,R𝑖
= 1

√𝑁1
∑

𝑘∥𝑎0∈[0,2𝜋)
𝑐𝑘∥,𝑛a2,R𝑖

𝑒i𝑘∥𝑚a1 (3.35)

𝑐𝑘∥,𝑛a2,R𝑖
= 1

√𝑁1
∑
𝑟∥∈𝐴

𝑐𝑟∥,𝑛a2,R𝑖
𝑒−i𝑘∥𝑚a1 , (3.36)

where the ribbon was chosen to be aligned with a1. Here, each position r = 𝑚 a1+𝑛 a2
on the lattice was split into the numbers 𝑚, 𝑛 ∈ ℤ of lattice vectors contributing.
Thereby, the system is transformed to a chain of 2×2 unit cells with one 16×16-matrix
𝐻intra(𝑘∥) describing the interactions within a unit cell and another 16 × 16-matrix
𝐻inter(𝑘∥) describing the interactions between two unit cells.
For a ribbon infinite in direction of a1, these two matrices are given through

𝐻intra(𝑘∥) =

⎛⎜⎜⎜⎜⎜
⎝

−𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S0 ⋅ 𝝈) −2𝑡 cos (𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0

−2𝑡 cos (𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0 −𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S1 ⋅ 𝝈)
−𝑡𝜏𝑧 ⊗ 𝜎0 −𝑡 exp (i𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0

−𝑡 exp (i𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0 −𝑡𝜏𝑧 ⊗ 𝜎0

⋯

⋯

−𝑡𝜏𝑧 ⊗ 𝜎0 −𝑡 exp (−i𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0

−𝑡 exp (−i𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0 −𝑡𝜏𝑧 ⊗ 𝜎0

−𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S2 ⋅ 𝝈) −2𝑡 cos (𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0

−2𝑡 cos (𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0 −𝜇𝜏𝑧 ⊗ 𝜎0 + Δ𝜏𝑥 ⊗ 𝜎0 + 𝐽𝜏0 ⊗ (S3 ⋅ 𝝈)

⎞⎟⎟⎟⎟⎟
⎠

(3.37)

and

𝐻inter(𝑘∥) =
⎛⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0

−𝑡𝜏𝑧 ⊗ 𝜎0 −𝑡 exp (−i𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0 0 0
−𝑡 exp (−i𝑘∥ ⋅ 𝑎0) 𝜏𝑧 ⊗ 𝜎0 −𝑡𝜏𝑧 ⊗ 𝜎0 0 0

⎞⎟⎟⎟⎟⎟
⎠

.

(3.38)

The full Hamiltonian is then given by

ℋ = ∑
𝑘∥

𝑁2

∑
𝑛=1

[𝑐†
𝑘∥,𝑛a2

𝐻intra(𝑘∥)𝑐𝑘∥,𝑛a2
+ (𝑐†

𝑘∥,𝑛a2
𝐻inter(𝑘∥)𝑐𝑘∥,(𝑛+1)a2

+ h.c.)] (3.39)

with the spinors 𝑐𝑘∥,𝑛a2
= (𝑐𝑘∥,𝑛a2,R0

, 𝑐𝑘∥,𝑛a2,R1
, 𝑐𝑘∥,𝑛a2,R2

, 𝑐𝑘∥,𝑛a2,R3
)T. Therefore,

this Hamiltonian corresponds to a chain of atoms with the on-site interaction matrix
𝐻intra(𝑘∥) and the hopping matrix 𝐻inter(𝑘∥) for a specific value of 𝑘∥.
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3.5 Edge Modes on Ribbon Structures

3.5.3 Band Structure

With the transformed form of the Hamiltonian from Eq. (3.39), the band structure
can be calculated in dependence of 𝑘∥. In order to do so, a Kwant simulation of a
chain of atoms with the on-site and hopping matrix given through Eq. (3.39) was
programmed. Then, this matrix was diagonalized for a certain number of points for
𝑘∥ ∈ [− 𝜋

2𝑎0
, 𝜋

2𝑎0
]. To obtain the band structure depicted below in Fig. 3.16, a chain of

120 unit cells was simulated for the set of parameters (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 1.0𝑡),
with the domain of definition for 𝑘∥ being split into 𝑛𝑘 = 700 points.

Fig. 3.16: Dispersion in dependence of 𝑘∥ in the 𝐶 = 4-phase.

Here, the band structure is shown for energies 𝐸 ∈ [−Δ, Δ]. The bands are symmetric
around 𝑘∥ = 0 and also around 𝐸 = 0 due to particle-hole symmetry. The bulk
bands emerge at almost half the size of the superconducting order parameter, which
shows that it is reduced to a much smaller effective gap width 𝛥eff by the magnetic
structure. These bulk bands are characterized by a continuum of bands emerging
above the reduced gap |𝐸| ≥ Δeff. This reduced gap width is an effect of the added
magnetic layer and will be discussed further in the following.
Inside the effective gap, eight modes can be perceived that traject across the super-
conducting gap between the lower and the upper bulk. Four of these are right movers
with ∂𝐸

∂𝑘∥
> 0 localized on the upper edge of the ribbon and four modes are left movers

localized on the other edge, respectively. This number of emerging Majorana modes
corresponds to the Chern number 𝐶 = 4 of the analyzed topological phase [36]. As
these modes cross the superconducting gap, they can be distinguished from trivial
modes without this property. Still, this criterion is not sufficient to fully declare the
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crossing modes as topological modes.

3.5.4 Local Density of States

For the Fourier transformed ribbon, the LDOS can be calculated both in dependence of
the position in the finite direction of the ribbon as well as of the crystal momentum 𝑘∥
parallel to the stripe. The LDOS is calculated for an energy range of 𝐸 ∈ [−0.4𝑡, 0.4𝑡]
separated into 1601 equidistant points, by taking the eigenvalues and eigenvectors
from the diagonalized Hamiltonian for the discretized range of 𝑘∥ and inserting them
into Eq. (2.9) for each value of 𝑘∥. In Fig. 3.17, the dependence on 𝑘∥ was integrated
out as determined by

𝑁(r, 𝜔) = ∫
𝜋

2𝑎0

− 𝜋
2𝑎0

𝑁(𝑘∥, r, 𝜔) d𝑘∥ . (3.40)

For the equidistant points, into which the interval for 𝑘∥ is discretized, this integral
is approximated through the trapezoidal rule, rendering

𝑁(r, 𝜔) = 𝜋
𝑎0𝑛𝑘

𝑛𝑘−1

∑
𝑛=0

𝑁r(𝑘∥,𝑛, 𝜔) (3.41)

for 𝑘∥,𝑛 = 𝜋
2𝑎0𝑛𝑘

(𝑛 − 𝑛𝑘
2 ) for 𝑛 ∈ {ℤ | 0 ≤ 𝑛 ≤ 𝑛𝑘}.

Fig. 3.17: Energy-dependent LDOS along the ribbon.
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The result for this line-cut of the energy-resolved LDOS 𝑁(r, 𝐸) along a2, shown
in Fig. 3.17, reveals that the observed Majorana modes remain localized at the
ribbon’s edges for increasing energy. However, due to the modes’ localization lengths,
which increase with increasing energy [64], the modes also extend further away from
the edge with increasing energy. Fig. 3.17 also shows that, inside the ribbon, the
superconducting gap is suppressed by the presence of the magnetic 3Q structure,
resulting in the aforementioned effective gap.

The Majorana modes on the ribbon also have a well-defined chirality, as it can be
seen from an analysis of the momentum-resolved LDOS 𝑁(r1, 𝑘∥, 𝜔) in Fig. 3.18.
When r1 = rL,R is chosen as the lower or upper edge of the ribbon, respectively, we
can see that all Majorana modes on the lower edge are left movers with ∂𝐸

∂𝑘∥
< 0 and

all modes on the upper edge are right movers with ∂𝐸
∂𝑘∥

> 0. The indices were chosen
here to resemble ’Left’ and ’Right’, as the lower edge becomes the left edge on the
chain, to which the two-dimensional system is transformed to, and the upper edge
becomes the right one analogously.

Fig. 3.18: Spectral weight in the 𝐶 = 4-phase (a) at the lower edge of the stripe
r1 = rL, (b) at the upper edge r1 = rR.

3.6 Experimentally Motivated Model

From an experimental point of view, the triple-Q spin structure investigated so far is
not an accurate representation of the experimentally realized spin structure. For a
realization of the spin structure investigated here, the superconducting layer could be
built out of atoms like rhenium and the magnetic layer could be built out of atoms
like iron [23] or manganese [26]. Therein, the position of the magnetic adatoms will
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not be directly above the sites where the superconducting atoms are located, because
the magnetic adatoms are placed as an additional layer above the superconducting
substrate without a layer inbetween [65]. Instead, their position is shifted to the
center of three superconducting atoms, resulting in a close-packed structure. This
AB-stacked positioning is shown in Fig. 3.19, where the position of the spins with
respect to the triangular lattice below them is marked by red crosses.

x x x

xxxx

x x x

xxxx

x x xt
m

Fig. 3.19: Spatial spin structure for an AB-stacked magnetic layer, where the red
crosses show the spatial positioning of the magnetic adatoms above the triangular
lattice.

3.6.1 AB-Stacked Spin Structure without Electronic Degrees of
Freedom

If the model analagous to model I from section 2.1 is investigated for an AB-stacked
spin structure, every atom of the superconducting substrate interacts with three
spins through the magnetic exchange coupling. As it can be seen in Fig. 3.19, the
magnetic layer is shifted by a vector of (ab)0 = 𝑎0 (0, 1√

3)
T

. Thereby, each atom in
the superconducting substrate interacts with the magnetic adatoms placed at the
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positions defined by the three connecting vectors

(ab)0 = 𝑎0 (0, 1√
3

)
T

(3.42a)

(ab)1 = 𝑎0 (−1
2

, − 1
2
√

3
)

T

(3.42b)

(ab)2 = 𝑎0 (1
2

, − 1
2
√

3
)

T

. (3.42c)

The adapted version of the magnetic exchange coupling term in the Hamiltonian
then reads

ℋ′
𝑚 = 𝐽AB ∑

r∈𝐴,𝑖∈{0,1,2}
𝑐†

r(𝜏0 ⊗ (Sr+(ab)𝑖
⋅ 𝝈))𝑐r (3.43a)

= 𝐽AB ∑
r∈𝐴

𝑐†
r (𝜏0 ⊗ ( ∑

𝑖∈{0,1,2}
Sr+(ab)𝑖

⋅ 𝝈)) 𝑐r (3.43b)

= 𝐽AB ∑
r∈𝐴

𝑐†
r (𝜏0 ⊗ ( ̃Sr ⋅ 𝝈)) 𝑐r . (3.43c)

This version of the Hamiltonian can be rearranged to match the Hamiltonian for the
AA-stacked spin structure by summing over the three spins, with which the atom
in the superconducting substrate interacts. In doing so in Eq. (3.43c), the averaged
spin ̃Sr = ∑𝑖∈{0,1,2} Sr+(ab)𝑖

at site r is defined. These averaged spins are given by

̃SR𝑖
= 𝑆

⎧{{
⎨{{
⎩

(0,
√

8/3, 1/3)T, R0 = 0
(0, 0, −1)T, R1 = a1

(−
√

6/3, −
√

2/3, 1/3)T, R2 = a2

(
√

6/3, −
√

2/3, 1/3)T, R3 = a1 + a2

(3.44)

in the unit cell, which corresponds to the inverted spin orientations from the original
3Q structure from Eq. (3.44). Thereby, the magnetic exchange coupling term matches
the former version as well, with the same magnetic exchange coupling of 𝐽AB = 𝐽.
Due to this fact, this AB-stacked spin structure will render the same phase diagram
with inverted signs of the Chern number as the AA-stacked spin structure. The
inversion of the Chern numbers’ sign is the result from the effective inversion of the
spins.

3.6.2 Hamiltonian for Spins with Electronic Degrees of Freedom

In experiments, the magnetic layer will be built out of atoms such as manganese. Not
only will these atoms have a spin that interacts with the superconducting substrate,
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3 The Magnetic Triple-Q Structure

they will also have electronic degrees of freedom and thereby a band structure of
their own. Thus, these electronic degrees of freedom for the magnetic layer have to
be included in the computed model as well, in order to arrive at an experimentally
more realistic simulation. For the combined structure of both the superconducting
and magnetic layers, the Hamiltonian for this experimentally motivated model reads

ℋ = ℋ0 + ℋ″
m + ℋhyb (3.45a)

with

ℋ″
m = −𝑡m ∑

r,r′∈𝑀,𝜎
𝑑†

r,𝜎𝑑r′,𝜎 − 𝜇m ∑
r∈𝑀,𝜎

𝑑†
r,𝜎𝑑r,𝜎 + 𝐽 ∑

r∈𝑀,𝛼,𝛽
𝑑†

r,𝛼 (Sr ⋅ 𝝈)𝛼𝛽 𝑑r,𝛽 ,

(3.45b)

ℋhyb = −𝑡hyb ∑
r∈𝐴,r′∈𝑀,𝜎

(𝑐†
r,𝜎𝑑r′,𝜎 + h.c.) , (3.45c)

where ℋ0 from Eq. (2.1b) is employed. In this model, the magnetic layer has a
band structure characterized by its own hopping amplitude 𝑡m, chemical potential
𝜇m and the magnetic exchange coupling 𝐽, which are solely applied to the creation
and annihilation operators 𝑑(†)

r for the magnetic layer. Here, the fermionic operators
describing the magnetic layer also act on a triangular sublattice, which is denoted by
𝑀. The positioning of 𝑀 relative to the lattice of the superconducting substrate can
be seen in Fig. 3.19, where the positioning of the magnetic adatoms is illustrated
by the red marks. These two sublattices 𝐴 and 𝑀 interact through a hybridization
term ℋhyb, which consists of a hopping between nearest neighboring sites of the two
lattices with a hopping parameter 𝑡hyb. This model will be referred to as model II
from this point.

3.6.3 Band Structure

To calculate the topological invariant for model II, it first has to be Fourier trans-
formed to the reduced Brillouin zone from section 3.2. The RBZ remains the same,
since the size of the unit cell is left unchanged through the modifications. The
transformation and its inverse are given through

𝑐r,R𝑖
= 1

√𝑁1𝑁2
∑

k∈RBZ
𝑐k,R𝑖

𝑒ik⋅r , (3.46)

𝑐k,R𝑖
= 1

√𝑁1𝑁2
∑
r∈𝐴

𝑐r,R𝑖
𝑒−ik⋅r , (3.47)
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as for model I and

𝑑r′,R𝑖+(ab)0
= 1

√𝑁1𝑁2
∑

k∈RBZ
𝑐k,R𝑖+(ab)0

𝑒ik⋅r′ , (3.48)

𝑑k,R𝑖+(ab)0
= 1

√𝑁1𝑁2
∑

r′∈𝑀
𝑐r′,R𝑖+(ab)0

𝑒−ik⋅r′ . (3.49)

The Fourier transformed Hamiltonian then reads

ℋ = ∑
k∈RBZ

𝑓†
k�̂�AB(k)𝑓k (3.50)

with

�̂�AB(k) = (
̂𝐴AB

̂𝐶AB
̂𝐶†
AB �̂�AB

) (3.51)

where the matrices

̂𝐴AB =
⎛⎜⎜⎜⎜
⎝

Δ𝜏𝑥 − 𝜇𝜏𝑧 −2𝑡𝑐0𝜏𝑧 −2𝑡𝑐1𝜏𝑧 −2𝑡𝑐2𝜏𝑧
−2𝑡𝑐0𝜏𝑧 Δ𝜏𝑥 − 𝜇𝜏𝑧 −2𝑡𝑐2𝜏𝑧 −2𝑡𝑐1𝜏𝑧
−2𝑡𝑐1𝜏𝑧 −2𝑡𝑐2𝜏𝑧 Δ𝜏𝑥 − 𝜇𝜏𝑧 −2𝑡𝑐0𝜏𝑧
−2𝑡𝑐2𝜏𝑧 −2𝑡𝑐1𝜏𝑧 −2𝑡𝑐0𝜏𝑧 Δ𝜏𝑥 − 𝜇𝜏𝑧

⎞⎟⎟⎟⎟
⎠

⊗ 𝜎0 , (3.52)

�̂�AB =
⎛⎜⎜⎜⎜
⎝

−𝜇m𝜏𝑧 −2𝑡m𝑐0𝜏𝑧 −2𝑡m𝑐1𝜏𝑧 −2𝑡m𝑐2𝜏𝑧
−2𝑡m𝑐0𝜏𝑧 −𝜇m𝜏𝑧 −2𝑡m𝑐2𝜏𝑧 −2𝑡m𝑐1𝜏𝑧
−2𝑡m𝑐1𝜏𝑧 −2𝑡m𝑐2𝜏𝑧 −𝜇m𝜏𝑧 −2𝑡m𝑐0𝜏𝑧
−2𝑡m𝑐2𝜏𝑧 −2𝑡m𝑐1𝜏𝑧 −2𝑐0𝜏𝑧 −𝜇m𝜏𝑧

⎞⎟⎟⎟⎟
⎠

⊗ 𝜎0

+
⎛⎜⎜⎜⎜
⎝

𝐽𝜏0 ⊗ (S0 ⋅ 𝝈) 0 0 0
0 𝐽𝜏0 ⊗ (S1 ⋅ 𝝈) 0 0
0 0 𝐽𝜏0 ⊗ (S2 ⋅ 𝝈) 0
0 0 0 𝐽𝜏0 ⊗ (S3 ⋅ 𝝈)

⎞⎟⎟⎟⎟
⎠

,

(3.53)

and

̂𝐶AB =
⎛⎜⎜⎜⎜
⎝

−𝑡hyb𝑒0𝜏𝑧 0 −𝑡hyb𝑒1𝜏𝑧 −𝑡hyb𝑒2𝜏𝑧
0 𝑡hyb𝑒0𝜏𝑧 −𝑡hyb𝑒2𝜏𝑧 −𝑡hyb𝑒1𝜏𝑧

−𝑡hyb𝑒1𝜏𝑧 −𝑡hyb𝑒2𝜏𝑧 −𝑡hyb𝑒0𝜏𝑧 0
−𝑡hyb𝑒2𝜏𝑧 −𝑡hyb𝑒1𝜏𝑧 0 −𝑡hyb𝑒0𝜏𝑧

⎞⎟⎟⎟⎟
⎠

⊗ 𝜎0 (3.54)

as well as the combined spinors

𝑓k = (𝑐k,R0
, 𝑐k,R1

, 𝑐k,R2
, 𝑐k,R3

, 𝑑k,R0+(ab)0
, 𝑑k,R1+(ab)0

, 𝑑k,R2+(ab)0
, 𝑑k,R3+(ab)0

)T .
(3.55)
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3 The Magnetic Triple-Q Structure

were employed. Here, we defined the abbreviations

𝑐0 = cos(k ⋅ a1) , 𝑒0 = 𝑒−ik⋅(ab)0 , (3.56a)

𝑐1 = cos(k ⋅ a2) , 𝑒1 = 𝑒−ik⋅(ab)1 , (3.56b)

𝑐2 = cos(k ⋅ (a2 − a1)) , 𝑒2 = 𝑒−ik⋅(ab)2 . (3.56c)

The employed spinors are given by

𝑐k,R𝑖
= (𝑐k,R𝑖,↑, 𝑐k,R𝑖,↓, 𝑐†

k,R𝑖,↓, −𝑐†
k,R𝑖,↑)T (3.57)

as before and

𝑑k,R𝑖+(ab)0
= (𝑑k,R𝑖+(ab)0,↑, 𝑑k,R𝑖+(ab)0,↓, 𝑑†

k,R𝑖+(ab)0,↓
, −𝑑†

k,R𝑖+(ab)0,↑
)T , (3.58)

which both contain all particle- and hole-like creation and annihilation operators for
both spin orientations.
The AB-stacked system in model II incorporates the same symmetry as the AA-
stacked system from model I, described in section 3.2.1. By extending the already
found symmetry transformation so that it is applied to both layers in the structure
it can be used for �̂�AB(k) as well.
With another projection matrix

̂𝑃2 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⊗ 𝟙8×8 (3.59)

the full transformation with ̂𝑈 ̂𝑆 from Eq. (3.22) is modified to read

̂𝑈 ̂𝑆AB
= (

̂𝑈 ̂𝑆 0
0 ̂𝑈 ̂𝑆

) ⋅ ̂𝑃2 . (3.60)

The matrix ̂𝑃2 serves the purpose of rendering the transformed Hamiltonian in two
16 × 16 blocks. It is found through the condition that ̂𝑈 ̂𝑆AB

then should render the
extended version ̂𝑆AB of the symmetry matrix ̂𝑆 diagonal with its eigenvalues sorted
by magnitude, where we defined ̂𝑆AB as

̂𝑆AB = (
̂𝑆 0

0 ̂𝑆
) . (3.61)
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3.6 Experimentally Motivated Model

By applying the transformation ̂𝑈 ̂𝑆AB
to �̂�AB(k), it takes the form

̂�̃�AB(k) = ̂𝑈†
̂𝑆AB

�̂�AB(k) ̂𝑈 ̂𝑆AB
(3.62a)

= (�̂�′
AB(k) 0

0 (i 𝟙4×4 ⊗ 𝜏𝑧 ⊗ 𝜎𝑦)�̂�′
AB(−k)∗(i 𝟙4×4 ⊗ 𝜏𝑧 ⊗ 𝜎𝑦)

) . (3.62b)

In this equation, the block-matrix �̂�′
AB(k) is derived as

�̂�′
AB(k) = (

̂𝐴′
AB

̂𝐶′
AB

( ̂𝐶′
AB)

†
�̂�′

AB
) (3.63)

with

̂𝐴′
AB =

⎛⎜⎜⎜⎜
⎝

(−2𝑡𝑐0 − 𝜇)𝜎𝑧 + Δ𝜎𝑥 0
0 (2𝑡𝑐0 − 𝜇)𝜎𝑧 + Δ𝜎𝑥

−4𝑡𝑐1𝑐2𝜎𝑧 0
0 4𝑡𝑠1𝑠2𝜎𝑧

⋯

⋯

−4𝑡𝑐1𝑐2𝜎𝑧 0
0 4𝑡𝑠1𝑠2𝜎𝑧

(−2𝑡𝑐0 − 𝜇)𝜎𝑧 + Δ𝜎𝑥 0
0 (2𝑡𝑐0 − 𝜇)𝜎𝑧 + Δ𝜎𝑥

⎞⎟⎟⎟⎟
⎠

,

(3.64)

�̂�′
AB =

⎛⎜⎜⎜⎜⎜⎜
⎝

𝐽√
3𝜎0 − (2𝑡m𝑐0 + 𝜇m)𝜎𝑧 i√2

3𝐽𝜎0

−i√2
3𝐽𝜎0 − 𝐽√

3𝜎0 + (2𝑡m𝑐0 − 𝜇m)𝜎𝑧

−4𝑡m𝑐1𝑐2𝜎𝑧 0
0 4𝑡m𝑠1𝑠2𝜎𝑧

⋯

⋯

−4𝑡m𝑐1𝑐2𝜎𝑧 0
0 4𝑡m𝑠1𝑠2𝜎𝑧

− 𝐽√
3𝜎0 − (2𝑡m𝑐0 + 𝜇m)𝜎𝑧 √2

3𝐽𝜎0

√2
3𝐽𝜎0

𝐽√
3𝜎0 + (2𝑡m𝑐0 − 𝜇m)𝜎𝑧

⎞⎟⎟⎟⎟⎟⎟
⎠

,

(3.65)

and

̂𝐶′
AB =

⎛⎜⎜⎜⎜
⎝

−𝑡hyb𝑒1𝜎𝑧 0 −2𝑡hyb𝑐1𝑒2𝜎𝑧 0
0 −𝑡hyb𝑒1𝜎𝑧 0 −2i𝑡hyb𝑠1𝑒2𝜎𝑧

−2𝑡hyb𝑐1𝑒2𝜎𝑧 0 −𝑡hyb𝑒1𝜎𝑧 0
0 −2i𝑡hyb𝑠1𝑒2𝜎𝑧 0 −𝑡hyb𝑒1𝜎𝑧

⎞⎟⎟⎟⎟
⎠

(3.66)
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from calculations in Mathematica [61]. For reasons of brevity, we introduced the
abbreviations

𝑐0 = cos(𝑘𝑥𝑎0) , 𝑐1 = cos (𝑘𝑥𝑎0
2

) , 𝑐2 = cos (
√

3𝑘𝑦𝑎0

2
) , (3.67a)

𝑠1 = sin (1
2

𝑘𝑥𝑎0) , 𝑠2 = sin (
√

3𝑘𝑦𝑎0

2
) , (3.67b)

𝑒1 = 𝑒i 1√
3 𝑘𝑦𝑎0 and 𝑒2 = 𝑒i 5

√
3

6 𝑘𝑦𝑎0 . (3.67c)

3.6.4 Topological Phase Diagram

Now, with the block-diagonalized matrix representation of the Hamiltonian, the Chern
number is calculated for model II as well analagously to the procedure described in
section 3.3. To derive a topological phase diagram, we choose the same value for
both chemical potentials 𝜇 = 𝜇m for reasons of simplicity and evaluate the Chern
number in relation to the magnetic exchange coupling 𝐽.

C

µ [t]

JS
 [t

]

Fig. 3.20: Topological phase diagram for the AB-stacked spin structure in depen-
dence of 𝜇 and 𝐽, with the phase transition of 𝛥𝐶 = 12 marked by a black cross, for
which the dispersion of the lowest lying energy band is analyzed in Fig. 3.21. The
dashed blacked line marks the shared region of this phase diagram with Fig. 3.22
(a).
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For the result in Fig. 3.20, the superconducting order parameter was set to Δ = 0.3𝑡
and the different hopping parameters 𝑡 = 𝑡m = 𝑡hyb were set to equal values with all
energies measured in units of 𝑡. Compared to the former phase diagram, a larger
number of topological phases emerges with a greater range of values for the Chern
numbers. This makes the sampling of the Chern number across the entire parameter
space much more time-consuming than for model I. Therefore, the boundaries
surrounding each phase are blurry as a result of the remaining numerical inaccuracy.
For model II, the Chern number takes its values from {ℕ| − 24 ≤ 𝐶 ≤ 12}. Due
to the symmetry present in the magnetic layer and the resulting double degenerate
bands, the topological invariant can only take even values.
Furthermore, all phase transitions originated from gap closings at the high-symmetry
points Γ, K and M in model I. This is no longer the case when the magnetic adatoms
have electronic degrees of freedom of their own. For example, the phase with a Chern
number of 𝐶 = 12 originates from a gap closing in the Brillouin zone along the line
between Γ and K. For the purpose of illustrating this, the lowest-lying energy band
𝐸𝑘 is depicted in Fig. 3.21 for the set of parameters marked by the black cross in
Fig. 3.20 at the transition between the 𝐶 = 12- and 𝐶 = 0-phases.

−π

−π

π

π

K

Γ

kx 2a0

1[     ]

k y
2a

0

1 [    
 ]

Emin [t]

Fig. 3.21: Lowest-lying energy band 𝐸𝑘 at (𝜇, 𝛥, 𝐽𝑆) = (−0.681𝑡, 0.4𝑡, 1.0𝑡) with
the occurring gap closings away from high symmetry points marked by blue crosses
and the reduced Brillouin zone marked by the black hexagonal.

The set of parameters, for which this phase transition occurs, was found through a
minimization of this dispersion by varying 𝜇 for a set magnetic exchange coupling
𝐽 = 1.0𝑡. The ideal value for the chemical potential is found to be 𝜇 = −0.681𝑡.
The point on the line between Γ and K, where the gap closes, is marked by the
blue crosses in Fig. 3.21. In the reduced Brillouin zone, which is marked by the
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3 The Magnetic Triple-Q Structure

black hexagonal, lie six of these points. Combined with the double degeneracy of
the bands, this renders the change in the Chern number of 𝛥𝐶 = 12 at this specific
phase transition.

Another interesting property of model II is the possibility to tune the chemical
potential of the superconducting layer 𝜇 and the magnetic layer 𝜇m to different
values. Therefore, another phase diagram in dependence of 𝜇 and 𝜇m was calculated
for a set value of the magnetic exchange coupling of 𝐽 = 1.0𝑡 and two different values
for 𝑡hyb ∈ {0.5𝑡, 1.0𝑡}. The results for these two analyzed sets of parameters are
depicted in Fig. 3.22 (a) and (b).

C
µ [t] µ [t]

µ m
 [t

]

µ m
 [t

]

(a) thyb = 1.0t (b) thyb = 0.5t

Fig. 3.22: Phase diagram for the AB-stacked spin structure with electronic degrees
of freedom in dependence of 𝜇, 𝜇m for two different values for the hopping parameter
(a) 𝑡hyb = 1.0𝑡, (b) 𝑡hyb = 0.5𝑡 with the black dashed line marking the shared
parameter space with Fig. 3.20.

Here, it can be seen that differences in the two chemical potentials also have a great
influence on the structure of the (𝜇, 𝐽)-dependent phase diagram. The 𝐽 = 1.0𝑡
line in Fig. 3.20 corresponds to the dashed diagonal line in Fig. 3.22 (a). The
(𝜇, 𝜇m)-diagram also demonstrates that topological phases exist over a wide range of
parameters and are thereby a robust phenomenon associated with the 3Q-structure.
However, the large number of phases that occur in this phase diagram also has its
disadvantages. Thereby, the number of required sampling points is much higher,
which is the reason for the blurry phase boundaries and the erratic behaviour occuring
around (𝜇, 𝐽𝑆) = (−5.0𝑡, 0.5𝑡).

Another important thing to notice is that only trivial phases occur for large |𝜇m|.
This is due to the fact that for |𝜇𝑏| ≈ 3.0𝑡, the bands from the magnetic layer are
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fully occupied and render non-topological phases.

Finally, Fig. 3.22 (b) shows that the topological character of the system is also robust
for a weaker hybridization between the separate band structures of the two layers,
which corresponds to a greater vertical distance between the two layers. This change
in the set of parameters does not result in a change of the values of the Chern
number, but instead shifts the formed phases already present in Fig. 3.22 (a) to
overlap differently.

Overall, it can be concluded that the 3Q magnetic structure exhibits topological
superconductivity for both model I and model II, when it is placed on a superconduct-
ing substrate. Model II especially shows that experiments employing this magnetic
structure are prone to succeed, as it takes both the shift in the spatial positioning of
the superconducting and magnetic layers as well as the electronic properties of the
magnetic layer into account.
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4 Magnetic Skyrmions

Magnetic skyrmions are stable, topological helical magnetic spin structures. In
principle, a magnetic skyrmion is characterized by any spin structure, which can
be mapped once to the sphere and whose center magnetization points in the other
direction than its outward magnetization. Thereby, a number of possibilities arise for
magnetic skyrmions, an example of which is shown in Fig. 4.1. The field of magnetic
skyrmions has attracted a lot of research regarding their topological properties as
their spin structure can be characterized by a winding number, their controlled
creation and annihilation, as well as the applications of this spin structure [66].

Fig. 4.1: Different spatial spin structures of magnetic skyrmions. (a) Hedge-
hog, (b) Néel-type skyrmion, (c) Bloch-type skyrmion, (d) Antiskyrmion and (e)
Skyrmionium, [66].

Nowadays, single magnetic skyrmions can be written and deleted in a controlled fash-
ion [67], which makes them a very attractive candidate for experimental realizations.
Thereby, they are also a suitable candidate as a chosen spin structure in an MSH
system. For this scenario, we have recently analyzed the topological properties [24],
which showed that topological superconductivity not only emerges. Moreover, as the
skyrmion radius can be tuned through external magnetic fields, this type of MSH
structure enables the tuning through different topological phases at will. Here, the
results for ribbon structures covered with magnetic skyrmions are discussed, as the
spatial distribution of the computed supercurrents offers a unique way to distinguish
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between topological and trivial phases.

4.1 Spin Structure

On a triangular lattice with 𝑁1 ×𝑁2 sites, the center of each skyrmion R𝑖,𝑗 is defined
as

R𝑖,𝑗 = 𝑖 𝑑 a1 + 𝑗 𝑑 a2 + r0, with 0 ≤ 𝑖 < 𝑀1, 0 ≤ 𝑗 < 𝑀2, 𝑖, 𝑗 ∈ ℕ , (4.1)

where r0 defines an offset from the origin of the lattice, e.g. to create ribbon structures
where no skyrmions are placed at the very edge of the lattice. Here, the radius 𝑅
of a skyrmion is defined by the number of sites between a spin pointing straight
up and a spin pointing straight down. Here, the skyrmion centers are placed so
that two skyrmion centers are separated by the diameter 𝑑 = 2𝑅 of the skyrmions.
Therefore, the two skyrmions are at a minimal distance from one another. 𝑀1 and
𝑀2 correspond to the number of skyrmions in directions of a1 and a2, respectively.
For a completely covered ribbon, the previous parameters are chosen as r0 = 0,
𝑀1 = 𝑁1

𝑑 and 𝑀2 = 𝑁2
𝑑 . We then determine the nearest skyrmion center for a chosen

site r by finding min𝑖,𝑗 (∣r − R𝑖,𝑗∣). The spin orientation at this specific site [24] is
then obtained from

Sr = ⎛⎜
⎝

cos(𝜙) sin(𝜃)
sin(𝜙) sin(𝜃)

cos(𝜃)
⎞⎟
⎠

(4.2)

with

𝜙r = 𝑛 ⋅ arctan r′
𝑥

r′
𝑦

+ 𝛾 ⋅ 𝜋 , (4.3a)

𝜃r = 𝑘 ⋅ 𝜋 ⋅ ̃𝑟 , (4.3b)

̃𝑟 = min (|r′|
𝑅

, 1) (4.3c)

and

r′ = min𝑖,𝑗 (r − R𝑖,𝑗) . (4.3d)

Here, 𝑘 corresponds to the number of spatial rotations inside one skyrmion, 𝛾 is the
helicity and 𝑛 is the vorticity of the skyrmion. We investigate skyrmions with 𝑘 = 1,
𝛾 = 0 and 𝑛 = 1, which corresponds to skyrmions with one spatial rotation, which
proceeds outwards without an added perpendicular helicity. Thereby, the skyrmions
employed here correspond to panel (b) in Fig. 4.1, the Néel-type skyrmion. Fig. 4.2
illustrates a lattice covered with this type of skyrmion.
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4 Magnetic Skyrmions

Fig. 4.2: Schematic plot of the spatial structure of a skyrmion lattice [24].

4.2 Phase Diagram

A lattice fully covered with skyrmions exhibits a wide variety of topological phases not
only depending on the parameters in the Hamiltonian, but also on the chosen radius
of the skyrmions. The topological phase diagram for different radii was discussed in
[24], from where the phase diagram for 𝑅 = 5 and Δ = 0.4𝑡 is shown in Fig. 4.3. The
white areas that occur between topological phases here are a result of the numerical
calculation and therefore are not meaningful in the interpretation.

µ [t]

JS
 [t

]

C

Fig. 4.3: Phase diagram for a skyrmion lattice with 𝑅 = 5 and Δ = 0.4𝑡 [68].
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4.3 Edge Modes in Ribbon Structures

In the following, the topological phase of 𝐶 = 3 at (𝜇, Δ, 𝐽𝑆) = (−5.5𝑡, 0.4𝑡, 0.5𝑡)
is further investigated, as this set of parameters exhibits an especially strong edge
current in the calculated supercurrents.

4.3 Edge Modes in Ribbon Structures

For a ribbon structure, a lattice of 𝑁1 = 10 sites and 𝑁2 = 310 sites is simulated
for the computation of the band structure and the LDOS, where the direction of
a1 is chosen to be infinite and periodic boundary conditions are employed in the
direction of a2. Therefore, the hoppings in this direction of the lattice are Fourier
transformed analogously to the case of the 3Q structure. In this simulation, 27
skyrmions with radius 𝑅 = 5 were placed on the lattice. On both sides, 20 sites of
the lattice remained uncovered by the spin structure, in order to create a boundary
for the ribbon. The spatial structure of this ribbon is shown in Fig. 4.4 (a). In
contrast, the supercurrents were calculated for a smaller ribbon of 𝑁1 = 10 and
𝑁2 = 120 with 10 skyrmions placed on the ribbon for reasons of visibility. Therein,
10 sites were left uncovered by the magnetic structure on either side of the ribbon.

4.3.1 Band Structure

In order to calculate the band structure in dependence of the crystal momentum
parallel to the ribbon, the Hamiltonian for the ribbon is diagonalized for 𝑛𝑘 = 201
equally distanced values of 𝑘∥ ∈ [− 𝜋

𝑁1𝑎0
, 𝜋

𝑁1𝑎0
). The resulting band structure is

shown in Fig. 4.4 (b). It exhibits six modes traversing the superconducting gap,
which can thereby be recognized as Majorana modes. The chosen parameter set
of (𝜇, Δ, 𝐽𝑆) = (−5.0𝑡, 0.4𝑡, 0.5𝑡) corresponds to a Chern number of 𝐶 = 3, this
number of Majorana modes matches the expected number, which is given by the
number of edges times the difference in the Chern number across one edge due to
the bulk-boundary correspondence.

4.3.2 Local Density of States

From the eigenenergies and eigenstates of the diagonalized Hamiltonian, the local
density of states at zero energy can once again be calculated on the ribbon. The
result, shown in Fig. 4.4 (c) and (d), demonstrates that the LDOS is localized once
again on the boundary of the ribbon. However, unlike for the 3Q structure, this
result shows local minima at each skyrmion center with the maxima wrapping around
the centers for the two rows of skyrmions placed closest to the edge of the magnetic
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Fig. 4.4: (a) Spatial structure of the investigated ribbon, (b) dispersion in depen-
dence of the crystal momentum 𝑘∥, (c) LDOS at zero energy with the inset shown
in (d) marked by the red rectangle, where the spin structure of the skyrmions is
also shown.
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4.3 Edge Modes in Ribbon Structures

ribbon. This illustrates the existence of zero-energy Majorana modes on the edges of
the skyrmion ribbon. This is illustrated in the inset from Fig. 4.4 (d) at the lower
edge of the ribbon, where the spatial structure of the magnetic skyrmion lattice is
shown at the same time.

4.3.3 Supercurrents

Finally, the total supercurrent was calculated for this magnetic structure, as explained
in section 2.5. In Fig. 4.5, the parameter set (𝜇, Δ, 𝐽𝑆) = (−5.5𝑡, 0.4𝑡, 0.5𝑡) was
considered. For these parameters, the system is in a topological phase of Chern
number 𝐶 = 3. As for the 3Q structure, a strong current localized on the edge of
the magnetic ribbon can be observed, as can be seen in the enlarged plot in Fig. 4.5
(b).

x [a0]

y 
[a

0]

[        ]et
   ħI  10-4

x [a0]

y 
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(b)(a)

Fig. 4.5: Supercurrent for the topological phase of 𝐶 = 3 at (𝜇, Δ, 𝐽𝑆) =
(−5.5𝑡, 0.4𝑡, 0.5𝑡) (a) across the entire simulated ribbon with the spin structure
shown in the upper left corner and (b) for the region marked by the blue rectangle
in (a).

Here, the region marked by the blue rectangle in Fig. 4.5 (a) is shown. However, the
current also forms vortices around each center of a skyrmion, whereas no current
emerges in the regions between two magnetic skyrmions where the spins all point
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4 Magnetic Skyrmions

uniformly downwards. This formation of vortices around each skyrmion core is
illustrated in Fig. 4.5 (a) by showing the spin structure simultaneously to the
simulated currents, so that the location of the vortices relative to the spin structure
is clear.

In comparison to the case of a topological phase, the supercurrent was also simulated
for the trivial phase at (𝜇, Δ, 𝐽𝑆) = (−5.5𝑡, 0.4𝑡, 0.2𝑡). This scenario is depicted in
Fig. 4.6 (a) across the entire simulated ribbon.
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Fig. 4.6: Supercurrent for the trivial phase of 𝐶 = 0 at (𝜇, Δ, 𝐽𝑆) =
(−5.5𝑡, 0.4𝑡, 0.2𝑡) (a) across the entire simulated ribbon with the spin structure
shown in the upper left corner and (b) for the region marked by the blue rectangle
in (a).

The result exhibits a supercurrent which is smaller by a factor of approximately 40,
showing that in the trivial phase the supercurrent is much smaller. The vortices
forming here do not extend further than the magnetic skyrmion, around which
they form. This is illustrated by showing the spin structure and the calculated
supercurrents simultaneously in Fig. 4.6 (a). Furthermore, no edge current can be
observed, as illustrated by the enlarged plot in Fig. 4.6 (b). This region is marked in
Fig. 4.6 (a) by the blue rectangle. Therefore, if the supercurrent would be averaged
through e.g. a Gaussian filter that averages the contributions from close-lying sites,
this would result in only the edge currents remaining and the vortices within the
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4.3 Edge Modes in Ribbon Structures

ribbon evening out for the topological phase. For the trivial phase on the other hand,
the vortices would cancel out completely, so no currents would be observed then.

This assessment is important for an experimental approach to the measurement of
supercurrents. For this kind of measurement, the magnetic field induced by the
supercurrent would be measured using superconducting quantum interference devices
(SQUIDs) and as the relative distance between neighboring sites is very small, the
SQUID could only detect the averaged field induced by a number of sites. Thereby,
the edge currents from the topological phase could be detected, but most likely no
current would be detected for the trivial phase.
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5 Domain Walls

Recently, dispersing Majorana modes have been observed at a domain wall in the
topological superconductor FeSe0.45Te0.55 [22]. To address the question, which types
of domain walls result in the emergence of Majorana modes, three types of domain
walls will be investigated which are introduced in a 3Q-ordered magnetic layer on
a superconducting substrate. These domain walls are created by sudden spatial
shifts in the spin structure, inversions of the spin structure and 𝜋-phase shifts in the
superconducting order parameter.

For the 3Q-ordered spin structure, a magnetic ribbon is investigated, which is infinite
in direction of a1 and has periodic boundaries applied in direction of a2. Due to
the infinite number of sites in direction of a1, this direction is once again Fourier
transformed, as previously discussed in section 3.5.2. We then create two domains by
covering the lower half in direction of a2 of the ribbon with the first type of domain,
and the upper half of the ribbon with the second type of domain. Thereby, one
domain wall occurs at 𝑦 = 3

4𝑁2𝑎0 and a second domain wall at 𝑦 = 0 due to the
periodic boundary conditions. As this spin structure is placed on a triangular lattice,
two unique spatial shifts can be considered. The first shift consists of shifting the
spin structure by the lattice vector a1, which is thus parallel to the infinite direction
of the ribbon. The second shift consists of shifting the spin structure by a2.

For comparison, a lattice fully-covered with the 3Q structure with infinite sites
in direction of a1 and 𝑁2 = 120 is simulated for (𝜇, Δ, 𝐽𝑆) = (−1.0𝑡, 0.4𝑡, 1.0𝑡)
corresponding to a Chern number of 𝐶 = 4. For the purpose of calculating the band
structure in dependence of 𝑘∥, this lattice is also Fourier transformed in direction of a1,
as described in section 3.5.2. For the resulting band structure shown in Fig. 5.1, the
domain of the crystal momentum parallel to the infinite direction 𝑘∥ ∈ [− 𝜋

2𝑎0
, 𝜋

2𝑎0
)

is split into 𝑛𝑘 = 700 equidistant points.

Due to the fact that the lattice is fully covered with spins and that there are no
domain walls introduced, no boundaries are present. Therefore, the bulk-boundary
correspondence does not apply, yielding only bulk bands in the band structure. This
set of parameters will be applied for all of the following types of domain walls.
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5.1 Domain Walls Created from Shifts of the Spin Structure

Fig. 5.1: Dispersion in dependence of the crystal momentum 𝑘∥ parallel to the
ribbon for a lattice fully-covered with 3Q-ordered spins.

5.1 Domain Walls Created from Shifts of the Spin Structure

The first possibility for a domain wall investigated here is created by a shift in the
spin structure at 𝑦 = 3

4𝑁2𝑎0 along a1. This action corresponds to switching S0 and
S1 as well as S2 and S3 in the unit cell of the second domain. For this ribbon, the
band structure is then calculated in dependence of the crystal momentum parallel to
the ribbon. The result is shown in Fig. 5.2 (a), exhibiting a similar band structure
as Fig. 5.1. Apart from four bands that are slightly lowered into the gap, no modes
can be observed that are not associated with the bulk states and no crossings are
generated. It can therefore be concluded that placing a domain wall, where the spin
structure is shifted by a1, does not generate any Majorana modes in the case of the
3Q structure. This result can be expected since a shift in the spin structure does not
produce a change in the Chern number.

The second domain wall of this type is created by applying a spatial shift by a2 of
the spin structure at 𝑦 = 3

4𝑁2𝑎0. Accordingly, the spins S0 and S2 as well as S1 and
S3 are switched in the unit cell of the second domain in the upper half of the ribbon.
Thereby, the Chern number has the same value in the first and the second domain.

Fig. 5.2 (b) exhibits the calculated band structure for this scenario. The dispersion
shows four bands that are moved significantly into the superconducting gap. Despite
the fact that these are close to reaching the energy level of zero, these modes still
do not traverse the gap and thereby distinguish themselves from Majorana modes.
Therefore, this shift in the spin structure does not result in the occurence of edge
modes either.
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5 Domain Walls

Fig. 5.2: Dispersion in dependence of the crystal momentum 𝑘∥ parallel to the
ribbon for a domain wall with a shift in the spin structure (a) in the direction of a1
and (b) in the direction of a2.

5.2 Domain with an Inverted Spin Structure

The second type of domain wall, which is to be investigated here, is introduced by
inverting the spin structure from the first domain to the second. By calculating
the Chern number for the inverted spin structure using (2.4), it is found that this
inversion of the spins Sr → −Sr also results in the opposite sign for the Chern
number 𝐶 → −𝐶. Therefore, 2|𝐶| modes are expected at each of the domain walls
between the two domains due to the bulk-boundary correspondence. Fig. 5.3 (a)
demonstrates the spin structure close to the domain wall in the middle of the ribbon,
where the red shading marks the lower domain with the original spin structure, and
the blue shading marks the upper domain with the inverted spin structure.

For a ribbon with 𝑁1 = 2 and 𝑁2 = 280 sites and 𝑛𝑘 = 700 points for the equidistant
sampling of the crystal momentum 𝑘∥ ∈ [− 𝜋

2𝑎0
, 𝜋

2𝑎0
), the Hamiltonian was diagonal-

ized for each sampling point of 𝑘∥. The resulting band structure is depicted in Fig. 5.3
(b). The bands are symmetric around 𝑘∥ = 0 and show eight modes traversing the
superconducting gap on either side of 𝑘∥ = 0. These are marked in red on the right
side of the band structure, with the right-moving modes with ∂𝐸

∂𝑘∥
marked by solid

lines and the left-movers marked by dashed lines. Therefore, an overall number of
sixteen Majorana modes is observed. This matches the expected eight modes at
each of the two domain walls, as there is a change of |𝛥𝐶| = 8 across each domain
wall due to the Chern number of 𝐶 = 4 of the analyzed phase for the original 3Q
magnetic spin structure and 𝐶 = −4 for the inverted spin structure.
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Fig. 5.3: (a) Spin structure, (b) dispersion in dependence of 𝑘∥, the crystal momen-
tum parallel to the ribbon, (c) zero-energy LDOS on the ribbon close to the domain
wall, (d) energy-dependent LDOS at the domain wall (red) and at 𝑦 = 𝑁2

√
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2 for a
fully-covered lattice (black) and (e) supercurrent at the domain wall.

Next, the zero-energy LDOS was calculated from the diagonalized Hamiltonian. In
Fig. 5.3 (c), the result for the region of the ribbon around −10𝑎0 ≤ 𝑦 −

√
3

4 𝑁2 ≤ 10𝑎0
is depicted, in order to analyze the region in close proximity to the domain wall
in the middle of the ribbon. This panel shows a strong localization at the domain
wall, as is to be expected for the emerging Majorana modes. Panel (d) shows the
energy-resolved LDOS at the domain wall compared to the result for the same site in
the middle of the system without domain walls from Fig. 5.1. The result at a site for
the system without domain walls, which corresponds to the black line, matches the
expectation for a bulk state, as it exhibits the superconducting gap in the interval
[−0.3, 0.3] lined with two coherence peaks. The black line leaks into the gap width
due to numerical inaccuracies. These stem from the finite size of the analyzed ribbon
and the fact that a finite value had to be chosen for 𝛿 in Eq. (2.8a), in order to
numerically approximate the 𝛿-distribution. In comparison, the result at the domain
wall, which is shown as the red line, shows an almost constant energy-resolved
LDOS.

Finally, panel (e) in Fig. 5.3 shows the supercurrent on both sides of the domain
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wall for the region −5𝑎0 ≤ 𝑦 −
√

3
4 𝑁2𝑎0 ≤ 5𝑎0. Here, it can be observed that the

supercurrent is symmetric around the domain wall and also highly localized, as it
only contributes strongly for four unique rows. On the two opposite sides of the
domain wall, the current has the opposite chirality which is related to the sign of the
Chern number. Thereby, the currents on both sides of the domain wall flow in the
same direction, thus rendering a non-vanishing current when these contributions are
summed over.

5.3 Domain with an Inverted Superconducting Order
Parameter

The final domain wall that is investigated here is constructed by changing the phase
of the superconducting order parameter by 𝜋 between the two domains. Thereby,
two domains with the same spin structure and respectively inverted superconducting
order parameters meet at the two domain walls at the beginning and the middle of
the ribbon. The spatial appearance of the domain wall in the middle of the ribbon
is illustrated in panel (a) of Fig. 5.3. It is important to note that by calculating
the Chern number for both Δ and −Δ, it can be seen that the Chern number
is independent of the sign of the superconducting order parameter. This stems
from the fact that the Hamiltonian investigated here is 𝑈(1) invariant, which is a
continuous symmetry. Thereby, the Chern number does not depend on the phase of
the superconducting order parameter.

Firstly, the band structure was calculated for a lattice of 𝑁1 = 2 and 𝑁2 = 280
sites in dependence of the crystal momentum 𝑘∥ ∈ [− 𝜋

2𝑎0
, 𝜋

2𝑎0
), whose domain of

definition is discretized into 𝑛𝑘 = 700 equidistant points. The resulting dispersions
are shown in Fig. 5.4 (b). Here, four modes enter the superconducting gap, which
are doubly-degenerate, and thereby constitute possible candidates for Majorana
modes. In order to check whether these modes traverse the superconducting gap,
the dispersion of one of the four was traced. The second one has the same dispersion
and the other two have the same dispersion with a negative energy instead of a
positive one, so that the tracing of one of the modes suffices. As the corresponding
normalized eigenvectors |𝐸𝑛(𝑘∥)⟩ to one momentum-resolved eigenenergy 𝐸𝑛(𝑘∥) are
orthonormal

⟨𝐸𝑚(𝑘∥)|𝐸𝑛(𝑘∥)⟩ = 𝛿𝑛𝑚 , (5.1)

the scalar product of two eigenvectors to the same eigenenergy with slightly different
crystal momenta should still be approximately equal to unity

⟨𝐸𝑛(𝑘∥)|𝐸𝑛(𝑘∥ + 𝛿𝑘∥)⟩ = 1 + 𝒪(𝛿𝑘∥) . (5.2)
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Fig. 5.4: (a) Spin structure, (b) dispersion in dependence of 𝑘∥, the crystal momen-
tum parallel to the ribbon, (c) zero-energy LDOS on the ribbon close to the domain
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fully-covered lattice (black) and (e) supercurrent at the domain wall.

This allows us to trace the in-gap modes despite the various mode crossings occuring.
In doing so, it can be seen that the analyzed mode, which is marked by the blue line
in Fig. 5.4 (b), originates from the lower bulk and disperses across the entire Brillouin
zone for 𝑘∥. Then, it crosses over the Brillouin zone another time and finally reaches
the lower bulk again, which is marked by a dashed blue line for reasons of visibility.
From this tracing of the eigenmode, it can be concluded that the four modes entering
the superconducting gap for this type of domain wall are not Majorana modes, as
they do not connect the upper and lower bands, and are thus trivial modes.

Experimentally, Majorana modes are often analyzed by measuring the local density
of states at zero energy using scanning tunneling spectroscopy. A simulation of
this zero-energy LDOS is depicted in Fig. 5.4 (c) and shows the region −10𝑎0 ≤
𝑦 −

√
3

4 𝑁2 ≤ 10𝑎0 of the ribbon. Despite the conclusion that the observed modes
inside the gap are trivial, there is still a localized peak in the LDOS at the location
of the domain wall. Therefore, this type of domain wall can not be experimentally
distinguished from for example Fig. 5.3 (c), where topological modes are present.
The energy-resolved LDOS at the domain wall from Fig. 5.4 (d) also shows that
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the spectral weight of the trivial modes is very high inside the superconducting gap,
which is marked by the blue line in this panel. Compared to the black line, which
presents the energy-resolved LDOS in the middle of the fully-covered lattice for the
system without domain walls, the spectral weight at the domain wall is much smaller
outside the superconducting gap.

Finally, Fig. 5.4 (e) demonstrates the supercurrent close to the domain wall for
−5𝑎0 ≤ 𝑦 −

√
3

4 𝑁2𝑎0 ≤ 5𝑎0. Compared to Fig. 5.3 (e), the current is not only spread
out further, it also reverses its direction at the domain wall, which is marked by
𝑦 = 0 in this panel. As the chirality of the current is linked to the sign of the
Chern number, this explains that the current reverses its direction at the domain
wall, because it has the same chirality in both of the domains. Therefore, the two
currents from the separate domains cancel at the domain wall, when they are summed
over. This is important from an experimental point of view, as the supercurrent
would be measured via a SQUID through the induced magnetic field, which sums
the contributions, as the sites are in close proximity. Thus, no current would be
measured for this domain wall, where the order parameter was abruptly inverted.
In contrast, for two domains with respectively inverted spin structures, the SQUID
would detect a finite magnetic field induced by the supercurrent. Thereby, the
supercurrent can be employed as a means to distinguish between the trivial and
topological modes induced by these two types of domain walls.
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An essential step in the path towards topological quantum computing is the realization
of Clifford gates [69]. As both the quantum engineering of complex systems as well
as the experimental methods to analyze these have made significant advances, real
time processes at the nanoscale can be investigated nowadays, which is crucial for
the creation of Clifford gates. One proposal [30] to realize them is based on the
Majorana zero modes located in vortex cores of topological superconductors [27–29].
The MZMs in vortex cores have also been found experimentally in the static case
[20, 21].
By moving these vortices in space, the braiding operations needed for Clifford gates
can be realized. The theoretical investigation of such braiding operations require
the use of the full Keldysh non-equilibrium Green’s function formalism [70] in real
time. As a first step in realizing this project, we study the effect of time dependent
perturbations in metallic and superconducting systems. Therein, the moving vortex
is modelled as an applied perturbation to a lattice site. Based on the results here,
the objective is to further develop the employed methods, so that they can be used as
guidance in current experimental efforts [71], where vortex core MZMs in topological
superconductors are braided.

6.1 Metallic System

For a metallic system, the objective is to calculate the time dependent current
between a metallic lattice site and a metallic STS tip, after a perturbation is applied
to the lattice site. Here, a bias voltage 𝑉Bias is applied between the two interacting
parts and a tunneling amplitude 𝑡tun allows hopping between them. A sketch of this
system is shown in Fig. 6.1.
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Fig. 6.1: Schematic depiction of the investigated system: A STS tip measures
the current from a singular lattice site, to which a time dependent perturbation is
applied. The site is part of a quadratic lattice. Between the lattice site and the
STS tip, a bias voltage 𝑉Bias is applied and a tunneling amplitude 𝑡tun is present.

6.1.1 Theoretical Method

The Hamiltonian for the quadratic lattice depicted in Fig. 6.1, reads

ℋ = ∑
k,𝜎

𝜖k𝑐†
k,𝜎𝑐k,𝜎 (6.1a)

with the dispersion

𝜖k = −2𝑡m[cos(𝑘𝑥) + cos(𝑘𝑦)] − 𝜇 . (6.1b)

Here, 𝑘𝑥 and 𝑘𝑦 are the crystal momenta in directions of 𝑥 and 𝑦 in the Brillouin
zone, 𝑡m refers to the hopping parameter in the metallic system and 𝜇 is the chemical
potential.

From this diagonalized Hamiltonian, the momentum-resolved, energy dependent
retarded Green’s function of the isolated system can be obtained analytically as

𝑔𝑅
ss(𝑘, 𝜔) = 1

𝜔 − 𝜖k + i𝛿
. (6.2)

where the double index 𝑠𝑠 denotes that this Green’s function refers solely to the
lattice. Here, the term isolated refers to the fact that this Green’s function is the
result for the case where the lattice does not interact with the STS tip in any way. In
the following, lower case letters will be employed for the Green’s functions referring
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6.1 Metallic System

to this uncoupled state. In contrast, all Green’s functions, referring to the coupled
system of the perturbed site and the measuring tip, will be denoted by upper case
letters.
In the following, only one metallic site is considered. Therefore, a Fourier transfor-
mation is applied to 𝑔𝑅

ss(𝑘, 𝜔) as

𝑔𝑅
ss(r = 0, 𝜔) = ∫ d2𝑘

(2𝜋)2 𝑔𝑅
ss(𝑘, 𝜔) . (6.3)

For the tip in the uncoupled state, we assume the same uncoupled Green’s function,
such that 𝑔𝑅

ss(𝜔) = 𝑔𝑅
tt(𝜔). The respective advanced Green’s functions are obtained

by replacing +i𝛿 → −i𝛿.

Then, the two isolated states of the lattice site and the STS tip need to be coupled,
in order to arrive at the Green’s functions, that describe the complete system
investigated here. The full matrix of coupled Green’s functions [16] is derived from

̂𝐺𝑅
0 (𝜔) = ( 𝐺𝑅

0,tt(𝜔) 𝐺𝑅
0,ts(𝜔)

𝐺𝑅
0,st(𝜔) 𝐺𝑅

0,ss(𝜔) ) = [( ̂𝑔𝑅)−1 − ̂𝑡]
−1

, (6.4)

where ̂𝑡 characterizes the hopping between the tip and the metallic site through the
matrix

̂𝑡 = −𝑡tun ( 0 1
1 0 ) . (6.5)

In Eq. (6.4), a combined matrix for the uncoupled Green’s functions

̂𝑔𝑅 (𝜔) = ( 𝑔𝑅
tt (𝜔) 0

0 𝑔𝑅
ss (𝜔) ) (6.6)

was also defined, which is diagonal as it describes the uncoupled case.

For the calculation of the current, the lesser Green’s function is required. In the
uncoupled state, it is given by

̂𝑔< = ( −2i 𝑛t
F (𝜔) Im 𝑔𝑅

tt (𝜔) 0
0 −2i 𝑛s

F (𝜔) Im 𝑔𝑅
ss (𝜔) ) . (6.7)

Here, it can be seen that the uncoupled lesser Green’s function corresponds to the
imaginary part of the retarded Green’s function, with a Fermi-Dirac distribution
applied to it. This Fermi-Dirac distribution has different Fermi energy levels set for
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6 Non-Equilibrium Magnetic Perturbations

the tip and the metallic site respectively, which is denoted by the index t or s in
Eq. (6.7). These two versions of the Fermi-Dirac distribution are given by

𝑛t
F (𝜔) = 1

exp [−𝛽 (𝜔 − 𝑒𝑉Bias)] + 1
(6.8)

𝑛s
F (𝜔) = 1

exp [−𝛽𝜔] + 1
, (6.9)

where it can be seen that the Fermi energy is higher by 𝑒𝑉Bias, the energy difference
introduced by the bias voltage, for the Fermi-Dirac distribution referring to the tip.

Finally, the coupled, lesser Green’s function is computed from the uncoupled one
through the formula [16]

̂𝐺<
0 (𝜔) = [ ̂1 − ̂𝑔𝑅 ̂𝑡]

−1
̂𝑔< [ ̂1 − ̂𝑡 ̂𝑔𝐴]

−1
. (6.10)

For the calculation, the time dependent unperturbed Green’s function is required,
which is derived from the Green’s function in the frequency domain by a Fourier
transformation

̂𝐺<
0 (𝑡, 𝑡′) = ̂𝐺<

0 (𝑡 − 𝑡′) = ∫ d𝜔
2𝜋

̂𝐺<
0 (𝜔)𝑒i𝜔(𝑡−𝑡′) . (6.11)

Then, in order to calculate the time dependence of the induced current between
the lattice site and the STS tip, the time dependent lesser Green’s function of the
coupled lattice site and the STS tip has to be calculated. As a magnetic perturbation
is applied to the coupled system, the perturbed lesser Green’s function ̂𝐺<(𝑡, 𝑡′) at
times 𝑡 and 𝑡′ is determined from the Dyson equation [72, 73]

̂𝐺<(𝑡, 𝑡′) = ̂𝐺<
0 (𝑡, 𝑡′) + ∫ 𝑑𝑡1

̂𝐺𝑅
0 (𝑡, 𝑡1) ̂𝑉 (𝑡1) ̂𝐺<(𝑡1, 𝑡′)

+ ∫ 𝑑𝑡1
̂𝐺<
0 (𝑡, 𝑡1) ̂𝑉 (𝑡1) ̂𝐺𝐴(𝑡1, 𝑡′) .

(6.12)

Here, ̂𝐺𝑅,<,𝐴
0 (𝑡, 𝑡1) refer to the retarded, lesser and advanced Green’s function of

the coupled system of the lattice site and the STS tip, to which the perturbation
̂𝑉 (𝑡1, 𝑡1) is not applied. Note that all Green’s functions that were included so far are

matrices. As we look at the coupled system of the metallic site and the STS tip, this
matrix consists of four separate Green’s functions, as given by

̂𝐺<
0 (𝑡, 𝑡′) = ( 𝐺<

0,tt(𝑡, 𝑡′) 𝐺<
0,ts(𝑡, 𝑡′)

𝐺<
0,st(𝑡, 𝑡′) 𝐺<

0,ss(𝑡, 𝑡′) ) (6.13)
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and

̂𝐺<(𝑡, 𝑡′) = ( 𝐺<
tt(𝑡, 𝑡′) 𝐺<

ts(𝑡, 𝑡′)
𝐺<

st(𝑡, 𝑡′) 𝐺<
ss(𝑡, 𝑡′) ) , (6.14)

where we listed all components of ̂𝐺<
0 (𝑡, 𝑡′) and ̂𝐺<(𝑡, 𝑡′). ̂𝐺<

𝑅,𝐴(𝑡, 𝑡′) have analogous
structures. The indices 𝑡 and 𝑠 indicate the parts of the Green’s function referring
to the STS tip and the system site, respectively. In the case investigated here, the
perturbation ̂𝑉 (𝑡1) in the Dyson equation, which occurs at the time 𝑡1, is only applied
to the metallic site and thereby takes the form

̂𝑉 (𝑡1) = ( 0 0
0 𝑉 (𝑡1) ) , (6.15)

where 𝑉 (𝑡1) is a function describing the form of the perturbation. The induced
tunneling current [74] between the metallic site and the STS tip is then given by

𝐼(𝑡) = 𝑒
ℏ

(−𝑡tun) [𝐺<
ts(𝑡, 𝑡) − 𝐺<

st(𝑡, 𝑡)] . (6.16)

Inserting (6.12) into this equation, yields

𝐼(𝑡) = 𝑒
ℏ

(−𝑡tun) {𝐺<
0,ts(𝑡, 𝑡) − 𝐺<

0,st(𝑡, 𝑡)

+ ∫ d𝑡1 [𝐺𝑅
0,ts(𝑡, 𝑡1)𝑉 (𝑡1)𝐺<

0,ss(𝑡1, 𝑡) + 𝐺<
0,ts(𝑡, 𝑡1)𝑉 (𝑡1)𝐺𝐴

0,ss(𝑡1, 𝑡)]

− ∫ d𝑡1 [𝐺𝑅
0,ss(𝑡, 𝑡1)𝑉 (𝑡1)𝐺<

0,st(𝑡1, 𝑡) + 𝐺<
0,ss(𝑡, 𝑡1)𝑉 (𝑡1)𝐺𝐴

0,st(𝑡1, 𝑡)] } ,

(6.17)

where we only took contributions of the first order in the perturbation into account,
which is justified for small values of 𝐽. In this case ̂𝐺𝑅,<,𝐴(𝑡1, 𝑡′) is simply replaced
by ̂𝐺𝑅,<,𝐴

0 (𝑡1, 𝑡′) in Eq. (6.12). Finally, we determine the exact formula to calculate
the current for the special case of a 𝛿-pulse perturbation at the point of time 𝑡0,
which is given through

𝑉 (𝑡1) = 𝑉0𝛿(𝑡1 − 𝑡0) . (6.18)
Including this form for 𝑉 (𝑡1) into Eq. (6.17) yields the final formula

𝐼(𝑡) = 𝐼0 + 𝛿𝐼(𝑡) (6.19)
with

𝐼0 = 𝑒
ℏ

(−𝑡tun) [𝐺<
0,ts(𝑡, 𝑡) − 𝐺<

0,st(𝑡, 𝑡)] , (6.20a)

and
𝛿𝐼(𝑡0 + 𝛥𝑡) = 𝑒

ℏ
(−𝑡tun) 𝑉0 [𝐺𝑟

0,ts(𝛥𝑡)𝐺<
0,ss(−𝛥𝑡) + 𝐺<

0,ts(𝛥𝑡)𝐺𝑎
0,ss(−𝛥𝑡)

−𝐺𝑟
0,ss(𝛥𝑡)𝐺<

0,st(−𝛥𝑡) − 𝐺<
0,ss(𝛥𝑡)𝐺𝑎

0,st(−𝛥𝑡)]
. (6.20b)

Here, we introduced 𝛥𝑡 = 𝑡 − 𝑡0 as the time interval between the perturbation at 𝑡0
and the time of observation 𝑡.
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6 Non-Equilibrium Magnetic Perturbations

6.1.2 Result for the Induced Current

With the methods introduced in the preceding section, the induced current between
the metallic site and the STS tip can now be calculated in first order approximation.
As the result is strongly dependent on the chosen value of the bias voltage 𝑉Bias,
the current was calculated for 361 equidistant points across the entire band width
𝑒𝑉Bias ∈ [−4𝑡 − 𝜇, 4𝑡 − 𝜇] for 𝑉0 = 1.2𝑡m. The resulting current is shown for the three
values 𝑉Bias = [−0.5𝑡m, 1.4𝑡m, 3.5𝑡m] in Fig. 6.2.

[   
   ]e ħt
tu

n
I

t [tm
-1]

Fig. 6.2: Result for the time dependent current 𝐼(𝑡) for 𝑉Bias =
[−0.5𝑡m, 1.4𝑡m, 3.5𝑡m] for corrections in first order. The dashed lines show the
constant current determined for the system in equilibrium.

It can be seen here that the current oscillates from the time of perturbation at 𝑡 = 0
and slowly approaches the constant value of the unperturbed system in equilibrium
again. The amplitude of the oscillation is strongest for 𝑉Bias = 3.5𝑡m out of the
three values shown here and decreases with 𝑉Bias. Another interesting quantity to
consider is d𝐼

d𝑉Bias
(𝑉Bias, 𝑡), as it is proportional to the density of states in the case of

an unperturbed system d𝐼0
d𝑉Bias

∼ 𝑁(𝑉Bias). The result for this quantity is depicted
in Fig. 6.3 (a), with Fig. 6.3 (b) showing only the part of the derivative originating
from the time dependent part of the current.

Here, it can be deduced that the derivative d(𝛥𝐼)
d𝑉Bias

switches its sign at the van-Hove
singularity 𝑒𝑉Bias = −𝜇. This singularity can be deduced from the dispersion 𝜖k from
Eq. (6.1b), as 𝜖k=0 = −𝜇 and thereby the uncoupled Green’s function from Eq. (6.2)
has a singuarity for 𝜔 = −𝜇.

As there is no band structure above 𝑒𝑉Bias = 4𝑡m − 𝜇 and below 𝑒𝑉Bias = −4𝑡m − 𝜇,
both derivatives vanish in these regions. From the full derivative, it can be seen that
the derivative is mostly positive, resembling the shape of the unperturbed retarded
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6.2 Superconducting System

Fig. 6.3: Result for (a) d𝐼
d𝑉Bias

and (b) d(𝛥𝐼)
d𝑉Bias

for corrections in first order.

Green’s function. The perturbation results in a partially negative full derivative
d𝐼

d𝑉Bias
due to the large derivative resulting from 𝛿𝐼(𝑡). This result stands in contrast

to the unperturbed system, where the derivative is positive d𝐼0
d𝑉Bias

> 0.

6.2 Superconducting System

In order to adapt our simulation further towards a vortex in a superconductor, the
approach for a metallic site needs to be extended to the case of a superconducting
site. For superconducting systems, we start from the Hamiltonian

ℋ = ∑
k,𝜎

𝜖k𝑐†
k,𝜎𝑐k,𝜎 + ∑

k
Δ0 (𝑐†

k,↑𝑐†
−k,↓ + 𝑐−k,↓𝑐k,↑) (6.21a)

= ∑
k

𝜖k𝑐†
k,↑𝑐k,↑ − 𝜖−k𝑐−k,↓𝑐†

−k,↓ + Δ0𝑐†
k,↑𝑐†

−k,↓ + Δ0𝑐−k,↓𝑐k,↑ (6.21b)

= ∑
k

(𝑐†
k,↑ 𝑐−k,↓) ( 𝜖k Δ0

Δ0 −𝜖−k
) (

𝑐k,↑
𝑐†

−k,↓
) (6.21c)

= ∑
k

(𝑐†
k,↑ 𝑐−k,↓) �̂�k (

𝑐k,↑
𝑐†

−k,↓
) . (6.21d)

Here, Δ0 corresponds to the superconducting order parameter and 𝜖k refers to the
dispersion in the metallic phase. The superconducting Green’s function, expressed
through the fermionic Matsubara frequencies 𝜔𝑛 = 𝜋

𝛽 (2𝑛 + 1) and Nambu notation,
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6 Non-Equilibrium Magnetic Perturbations

is then given through

̂𝐺−1(k, i𝜔𝑛) = i 𝜔𝑛𝟙 − �̂�k (6.22a)

= (i𝜔𝑛 − 𝜖k −Δ0
−Δ0 i𝜔𝑛 + 𝜖k

) , (6.22b)

where 𝜖k = 𝜖−k was used. Thus,

̂𝐺(k, i𝜔𝑛) = 1
(i𝜔𝑛 − 𝜖k)(i𝜔𝑛 + 𝜖k) − Δ2

0
(i𝜔𝑛 + 𝜖k Δ0

Δ0 i𝜔𝑛 − 𝜖k
) (6.23a)

= 1
(i𝜔𝑛)2 − 𝐸2

k
(i𝜔𝑛 + 𝜖k Δ0

Δ0 i𝜔𝑛 − 𝜖k
) (6.23b)

is determined, with the dispersion in the superconducting state 𝐸k = √𝜖2
k + Δ2

0.
The one-particle uncoupled, retarded or advanced Green’s function is a 2 × 2 matrix,
which follows from the analytic continuation i𝜔𝑛 → 𝜔 ± i𝛿, which yields

̂𝑔𝑅,𝐴
ss,0 (k, 𝜔) = 1

(𝜔 ± i𝛿)2 − 𝐸2
k

( 𝜔 ± i𝛿 + 𝜀k Δ0
Δ0 𝜔 ± i𝛿 − 𝜀k

) (6.24a)

= ( 𝑔𝑅,𝐴
ss,0,11(k, 𝜔) 𝑓𝑅,𝐴

ss,0 (k, 𝜔)
𝑓𝑅,𝐴

ss,0 (k, 𝜔) 𝑔𝑅,𝐴
ss,0,22(k, 𝜔)

) . (6.24b)

In the final step of Eq. (6.24), we introduced denominations for both the off-diagonal,
anomalous Green’s functions 𝑓𝑅,𝐴

ss,0 (k, 𝜔) and the diagonal, normal Green’s functions
𝑔𝑅,𝐴

ss,0,11/22(k, 𝜔) for electronic and hole-like components. Once again, we only need the
local Green’s function for one site at r = 0, such that the momentum dependency can
be integrated out as part of a Fourier transformation at this specific site. Thereby,
the energy-dependent retarded and advanced Green’s functions are computed from

̂𝑔𝑅,𝐴
0 (r = 0, 𝜔) = ∫ d2𝑘

(2𝜋)2 𝑔𝑅,𝐴
0 (k, 𝜔) . (6.25)

For the Green’s function of the tip, a metallic phase is still assumed. This Green’s
function also becomes a matrix, but with vanishing off-diagonal elements. The
procedure for obtaining the coupled version of the retarded and advanced Green’s
functions remains the same, so that Equation (6.4) still applies. In this formula, it
only needs to be taken into account that both uncoupled Green’s functions are now
matrices in the superconducting case.
Finally, the lesser Green’s function is still derived from Equation (6.10). Nevertheless,
electronic and hole-like components couple differently to the applied bias voltage.
Therefore, the computation of the uncoupled, lesser Green’s function for the tip has
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an opposite relative sign for 𝑒𝑉Bias in the multiplied Fermi-Dirac distribution, as
given by

̂𝑔<
tt,0 = ( −2𝑖𝑛F (𝜔 − 𝑒𝑉Bias) Im 𝑔𝑟

tt,11 (𝜔) 0
0 −2𝑖𝑛F (𝜔 + 𝑒𝑉Bias) Im 𝑔𝑟

tt,22 (𝜔) ) .

(6.26)

6.2.1 Time Dependence of the Induced Current for Constant
Perturbations

With the adapted version of the retarded, lesser and advanced Green’s function for
the superconducting site, the current can now be calculated. Firstly, this is conducted
for a constant perturbation. For the superconducting site and the metallic tip, the
perturbation ̂𝑉 (𝑡) is a 4 × 4 matrix, which reads

̂𝑉 (𝑡) = ̂𝑉 (0) =
⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 𝐽 0
0 0 0 𝐽

⎞⎟⎟⎟⎟
⎠

(6.27)

for a constant perturbation for 𝑡 ∈ (−∞, ∞). For this case, the perturbation theory
can also be conducted in frequency space, as the Dyson equation from Eq. (6.12)
then reads

̂𝐺<(𝑡, 𝑡′) = ̂𝐺<
0 (𝑡, 𝑡′) + ∫ d𝑡1

̂𝐺𝑅
0 (𝑡, 𝑡1) ̂𝑉 (0) ̂𝐺<(𝑡1, 𝑡′)

+ ∫ d𝑡1
̂𝐺<
0 (𝑡, 𝑡1) ̂𝑉 (0) ̂𝐺𝐴(𝑡1, 𝑡′) .

(6.28)

As the perturbation is constant in time and the unperturbed Green’s function only
depends on time differences, the perturbed Green’s function ̂𝐺𝑅

0 (𝑡, 𝑡′) = ̂𝐺𝑅
0 (𝑡 − 𝑡′)

will also depend solely on time differences. Therefore, the frequency-dependent
Green’s function can be substituted into Eq. (6.28), which results in

∫ d𝜔
2𝜋

̂𝐺<(𝜔)𝑒i𝜔(𝑡−𝑡′) = ∫ d𝜔
2𝜋

̂𝐺<
0 (𝜔)𝑒i𝜔(𝑡−𝑡′)

+ ∫ 𝑑𝑡1 ∫ d𝜔
2𝜋

∫ d𝜔′

2𝜋
̂𝐺𝑅
0 (𝜔) ̂𝑉 (0) ̂𝐺<(𝜔′)𝑒i𝜔(𝑡−𝑡1)𝑒i𝜔′(𝑡1−𝑡′)

+ ∫ 𝑑𝑡1 ∫ d𝜔
2𝜋

∫ d𝜔′

2𝜋
̂𝐺<
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴(𝜔′)𝑒i𝜔(𝑡−𝑡1)𝑒i𝜔′(𝑡1−𝑡′) .

(6.29)
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Then, with ∫ d𝑡1𝑒i(𝜔′−𝜔)𝑡1 = 2𝜋𝛿(𝜔′ − 𝜔) follows

∫ d𝜔
2𝜋

̂𝐺<(𝜔)𝑒i𝜔(𝑡−𝑡′) = ∫ d𝜔
2𝜋

̂𝐺<
0 (𝜔)𝑒i𝜔(𝑡−𝑡′)

+ ∫ d𝜔
2𝜋

̂𝐺𝑅
0 (𝜔) ̂𝑉 (0) ̂𝐺<(𝜔)𝑒i𝜔(𝑡−𝑡′)

+ ∫ d𝜔
2𝜋

̂𝐺<
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴(𝜔)𝑒i𝜔(𝑡−𝑡′) .

(6.30)

Here, the Dyson equation in frequency space is derived as

̂𝐺<(𝜔) = ̂𝐺<
0 (𝜔) + ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺<(𝜔) + ̂𝐺<
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴(𝜔) . (6.31)

This result looks rather similar to the Dyson equations for the retarded and advanced
Green’s functions [72]

̂𝐺𝑅(𝜔) = ̂𝐺𝑅
0 (𝜔) + ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺𝑅(𝜔) , (6.32a)
̂𝐺𝐴(𝜔) = ̂𝐺𝐴

0 (𝜔) + ̂𝐺𝐴
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴(𝜔) . (6.32b)

First and Second Order Approximation

From equation (6.31), the current’s first and second order contributions can both be
deduced by inserting the Dyson equation Eq. (6.31) and Eq. (6.32b) into Eq. (6.31),
resulting in

̂𝐺<(𝜔) = ̂𝐺<
0 (𝜔) + ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺<
0 (𝜔) + ̂𝐺<

0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴
0 (𝜔)

+ ̂𝐺𝑅
0 (𝜔) ̂𝑉 (0) ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺<(𝜔) + ̂𝐺𝑅
0 (𝜔) ̂𝑉 (0) ̂𝐺<

0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴(𝜔)

+ ̂𝐺<
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴

0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴(𝜔) .

(6.33)

Here, the perturbed Green’s functions are replaced by the unperturbed ones as
̂𝐺<(𝜔) → ̂𝐺<

0 (𝜔) and ̂𝐺𝐴(𝜔) → ̂𝐺𝐴
0 (𝜔), in order to approximate ̂𝐺<(𝜔) to the second

order in the perturbation

̂𝐺<(𝜔)(2) = ̂𝐺<
0 (𝜔) + ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺<
0 (𝜔) + ̂𝐺<

0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴
0 (𝜔)

+ ̂𝐺𝑅
0 (𝜔) ̂𝑉 (0) ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺<
0 (𝜔) + ̂𝐺𝑅

0 (𝜔) ̂𝑉 (0) ̂𝐺<
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴

0 (𝜔)

+ ̂𝐺<
0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴

0 (𝜔) ̂𝑉 (0) ̂𝐺𝐴
0 (𝜔) .

(6.34)
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Then, the submatrices ̂𝐺<
𝑠𝑡(𝜔)(2) and ̂𝐺<

𝑡𝑠(𝜔)(2) are calculated by inserting all the
matrices

̂𝐺𝑅,<,𝐴
0 (𝜔) = (

̂𝐺𝑅,<,𝐴
0,𝑡𝑡 (𝜔) ̂𝐺𝑅,<,𝐴

0,𝑡𝑠 (𝜔)
̂𝐺𝑅,<,𝐴
0,𝑠𝑡 (𝜔) ̂𝐺𝑅,<,𝐴

0,𝑠𝑠 (𝜔)
)

=
⎛⎜⎜⎜⎜⎜
⎝

𝐺𝑅,<,𝐴
0,𝑡𝑡,11(𝜔) 𝐹 𝑅,<,𝐴

0,𝑡𝑡 (𝜔) 𝐺𝑅,<,𝐴
0,𝑡𝑠,11(𝜔) 𝐹 𝑅,<,𝐴

0,𝑡𝑠 (𝜔)
𝐹 𝑅,<,𝐴

0,𝑡𝑡 (𝜔) 𝐺𝑅,<,𝐴
0,𝑡𝑡,22(𝜔) 𝐹 𝑅,<,𝐴

0,𝑡𝑠 (𝜔) 𝐺𝑅,<,𝐴
0,𝑡𝑠,22(𝜔)

𝐺𝑅,<,𝐴
0,𝑠𝑡,11(𝜔) 𝐹 𝑅,<,𝐴

0,𝑠𝑡 (𝜔) 𝐺𝑅,<,𝐴
0,𝑠𝑠,11(𝜔) 𝐹 𝑅,<,𝐴

0,𝑠𝑠 (𝜔)
𝐹 𝑅,<,𝐴

0,𝑠𝑡 (𝜔) 𝐺𝑅,<,𝐴
0,𝑠𝑡,22(𝜔) 𝐹 𝑅,<,𝐴

0,𝑠𝑠 (𝜔) 𝐺𝑅,<,𝐴
0,𝑠𝑠,22(𝜔)

⎞⎟⎟⎟⎟⎟
⎠

(6.35)

and the form of the perturbation ̂𝑉 (0) from Eq. (6.27). The current can thereby be
derived as

̂𝐼(𝜔) = ̂𝐼0(𝜔) + 𝛿(1) ̂𝐼(𝜔) + 𝛿(2) ̂𝐼(𝜔) (6.36)

with

̂𝐼0 = 𝑒
ℏ

(−𝑡tun) [ ̂𝐺<
0,ts(𝜔) − ̂𝐺<

0,st(𝜔)] , (6.37)

𝛿(1) ̂𝐼(𝜔) = 𝑒
ℏ

(−𝑡tun) 𝐽 [ ̂𝐺𝑅
0,ts(𝜔) ̂𝐺<

0,ss(𝜔) + ̂𝐺<
0,ts(𝜔) ̂𝐺𝐴

0,ss(𝜔)

− ̂𝐺𝑅
0,ss(𝜔) ̂𝐺<

0,st(𝜔) − ̂𝐺<
0,ss(𝜔) ̂𝐺𝐴

0,st(𝜔)]
(6.38)

and

𝛿(2) ̂𝐼(𝜔) = 𝑒
ℏ

(−𝑡tun) 𝐽2 [ ̂𝐺𝑅
0,ts(𝜔) ̂𝐺𝑅

0,ss(𝜔) ̂𝐺<
0,ss(𝜔) + ̂𝐺𝑅

0,ts(𝜔) ̂𝐺<
0,ss(𝜔) ̂𝐺𝐴

0,ss(𝜔)

+ ̂𝐺<
0,ts(𝜔) ̂𝐺𝐴

0,ss(𝜔) ̂𝐺𝐴
0,ss(𝜔) − ̂𝐺𝑅

0,ss(𝜔) ̂𝐺𝑅
0,ss(𝜔) ̂𝐺<

0,st(𝜔)

− ̂𝐺𝑅
0,ss(𝜔) ̂𝐺<

0,ss(𝜔) ̂𝐺𝐴
0,st(𝜔) − ̂𝐺<

0,ss(𝜔) ̂𝐺𝐴
0,ss(𝜔) ̂𝐺𝐴

0,st(𝜔)] ,

(6.39)

which is a 2 × 2 matrix. Out of this matrix, we focus on the diagonal components
and especially the 11-component 𝐼11. The full current is then obtained by a Fourier
transformation

̂𝐼(𝑡) = ̂𝐼(0) = ∫ d𝜔
2𝜋

̂𝐼(𝜔) , (6.40)

in order to calculate the constant current in real-time. We once again take the
derivative d𝐼

d𝑉Bias
by 𝑉Bias to check whether the result is proportional to the density

of states. For the graph shown in Fig. 6.4, the 11-component of the current was
calculated for 101 equidistant points in the interval [−0.5𝑡m, 0.5𝑡m] for 𝐽 = 1.2𝑡m,
Δ0 = 0.3𝑡m, 𝑡tun = 0.01𝑡m and 𝜇 = −3.618𝑡m.

There, the unperturbed version of the current’s derivative (blue line) is compared with
the result including first order contributions (orange line) and the result including
second order contributions (green line) of the perturbation. It can be seen that
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Fig. 6.4: Corrections to d ̂𝐼11
d𝑉Bias

in first and second order of the perturbation.

the unperturbed version resembles the well-known version of the density of states
for a superconductor. The coherence peaks lie at ±Δ0, which is marked by the
grey-shaded area.

The expected result for a superconducting system, where a magnetic perturbation is
present permanently, is the occurrence of a Shiba state in the gap [31, 75, 76], which
is visible in the density of states. This Shiba state takes the form of a peak with its
position dependent on the strength of the perturbation 𝐽. However, the first and
second order approximation of d𝐼

d𝑉Bias
do not exhibit such a state. Additionally, at

the values of 𝑉Bias where the coherence peaks are visible for the unperturbed system,
the first and second order approximations show high peaks and unphysical negative
values. If even higher orders are taken into account, the unphysical peaks become
even more prominent. Therefore, it is clear that an order-by-order approach will not
result in visible Shiba states.

T̂-matrix Solution

Instead of calculating d ̂𝐼11
d𝑉Bias

order by order, an approach using a ̂𝑇-matrix can be
taken, where an infinite number of orders is taken into account. By employing
the two Dyson equations for the retarded and advanced Green’s functions from
Eq. (6.32) with Eq. (6.31), when the three matrices of Green’s functions ̂𝐺𝑅,<,𝐴(𝜔)
are combined into one matrix [73], for both the perturbed and unperturbed case,
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6.2 Superconducting System

determined by

̂𝐺(𝜔) = (
̂𝐺𝑅(𝜔) ̂𝐺<(𝜔)
0 ̂𝐺𝐴(𝜔)

) (6.41)

and

̂𝐺0(𝜔) = (
̂𝐺𝑅
0 (𝜔) ̂𝐺<

0 (𝜔)
0 ̂𝐺𝐴

0 (𝜔)
) . (6.42)

With these two generalized matrices of Green’s functions, the three Dyson equations
become

̂𝐺(𝜔) = ̂𝐺0(𝜔) + ̂𝐺0(𝜔) ̂𝑈 ̂𝐺(𝜔) , (6.43)

where we introduced the perturbation matrix

̂𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 𝐽 0 0 0 0 0
0 0 0 𝐽 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝐽 0
0 0 0 0 0 0 0 𝐽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (6.44)

In a ̂𝑇-matrix approach, the Dyson equation can be solved by replacing ̂𝑈 ̂𝐺(𝜔) with
̂𝑇 (𝜔) ̂𝐺0(𝜔), such that the solved Dyson equation becomes

̂𝐺(𝜔) = ̂𝐺0(𝜔) + ̂𝐺0(𝜔) ̂𝑇 (𝜔) ̂𝐺0(𝜔) . (6.45)

From there, ̂𝑇 (𝜔) can be determined from

̂𝑇 (𝜔) ̂𝐺0(𝜔) = ̂𝑈 ̂𝐺(𝜔) , (6.46a)

which yields with Eq. (6.43)

̂𝑇 (𝜔) ̂𝐺0(𝜔) = ̂𝑈( ̂𝐺0(𝜔) + ̂𝐺0(𝜔) ̂𝑈 ̂𝐺(𝜔)) (6.46b)

= ̂𝑈 ̂𝐺0(𝜔) + ̂𝑈 ̂𝐺0(𝜔) ̂𝑇 (𝜔) ̂𝐺0(𝜔) . (6.46c)

From here the following equation for the matrix ̂𝑇

̂𝑇 (𝜔) = ̂𝑈 + ̂𝑈 ̂𝐺0(𝜔) ̂𝑇 (𝜔) , (6.47)
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6 Non-Equilibrium Magnetic Perturbations

is obtained, which can be rearranged to

(1 − ̂𝑈 ̂𝐺0(𝜔)) ̂𝑇 (𝜔) = ̂𝑈 , (6.48)

when ̂𝑇 (𝜔) is factored out. A final operation of inversion then renders

̂𝑇 (𝜔) = (1 − ̂𝑈 ̂𝐺0(𝜔))−1 ̂𝑈 . (6.49)

This result can then be employed to calculate the lesser, advanced and retarded
Green’s function. We then use the lesser Green’s function to caluclate the current
using Eq. (6.16) for the same 101 equidistant bias voltages from the interval 𝑉Bias ∈
[−0.5𝑡, 0.5𝑡] as before and take the derivative d𝐼

d𝑉Bias
. The result is shown in Fig. 6.5

for 𝐽 = 1.2𝑡m, Δ0 = 0.3𝑡m, 𝑡tun = 0.01𝑡m and 𝜇 = −3.618𝑡m, where the electronic
and hole-like components, the derivatives of the 11- and 22-elements of the current,
are compared to the unperturbed derivative.
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Fig. 6.5: Result for d ̂𝐼11
d𝑉Bias

and d ̂𝐼22
d𝑉Bias

compared to the unperturbed result for the
̂𝑇-matrix approach, which exhibit two Shiba states in the superconducting gap.

In this plot, it can be seen that for both the derivative of the electronic and the
hole-like component of the current, a Shiba state emerges. Both of these lie in the
gap emerging for the unperturbed derivative, which is marked by the grey-shaded
area. The peak from the electronic component lies on the left side of zero energy,
while the Shiba state from the hole-like component lies at the symmetric position
on the opposite side of zero energy. These two particle-like and hole-like branches
of the Shiba state possess opposite spin polarizations, which can be seen from the
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6.2 Superconducting System

corresponding creation operator in Eq. (6.21). The Shiba state from the hole-like
component has a much higher magnitude than the one from the particle-like branch.
Furthermore, due to the emergence of the peaks, the rest of the density of states
is flattened out for the two perturbed results, which is especially prominent at the
energies where the coherence peaks are visible for the unperturbed result.

For constant perturbations, the density of states can also be derived directly through
the energy-dependent, retarded Green’s function from

𝑁(𝜔) = − 1
𝜋

Im ̂𝐺𝑅
𝑠𝑠,11(𝜔) , (6.50)

where the perturbed, retarded Green’s function is calculated from Eq. (6.45). This
eliminates the necessity of calculating the current for a variety of bias voltages
and then taking the derivative, which reduces the computation time significantly.
Thereby, 𝑁(𝜔) can be calculated for an interval of different perturbation strengths
𝐽 and the effect on the position of the Shiba state can be analyzed. The result for
𝑁(𝜔) from this procedure is illustrated in Fig. 6.6 in dependence of 𝜔 and 𝐽. 𝑁(𝜔)
was calculated here for 𝐽 ∈ [0𝑡m, 5𝑡m]. For the numerical calculation, this interval is
discretized into 501 equidistant points.

Fig. 6.6: 𝑁(𝐽, 𝜔) showing the energy and intensity of the Shiba state in the
superconducting gap and its dependence on 𝐽.
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6 Non-Equilibrium Magnetic Perturbations

The result shows that the Shiba state of the electronic state emerges for small 𝐽 on the
left side of the gap visible in the density of states. As 𝐽 increases, its position varies
slowly from the left side of the gap over to the right side, which is approximately
reached at 𝐽 ≈ 5𝑡m. The density of states of the Shiba state reaches its maximum
at zero energy, at approximately 𝐽 ≈ 2.5𝑡m. Here, a phase transition occurs from
a singlet 𝑆 = 0 state to a doublet 𝑆 = 1 / 2 state, as the particle-like and hole-like
branches cross zero energy [75].

6.2.2 Time Dependence of the Induced Current for Instantaneous
Perturbations

Since a ̂𝑇-matrix approach worked best for the case of constant magnetic perturba-
tions, this procedure is now transferred to 𝛿-pulse perturbations. For this kind of
perturbation

̂𝑉 (𝑡) = ̂𝑉 𝛿(𝑡 − 𝑡0) =
⎛⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 𝐽 0
0 0 0 𝐽

⎞⎟⎟⎟⎟
⎠

𝛿(𝑡 − 𝑡0) , (6.51)

the Dyson equations in real-time read

̂𝐺𝑅(𝑡, 𝑡′) = ̂𝐺𝑅
0 (𝑡, 𝑡′) + ̂𝐺𝑅

0 (𝑡, 𝑡0) ̂𝑉 ̂𝐺𝑅(𝑡0, 𝑡′) , (6.52a)
̂𝐺<(𝑡, 𝑡′) = ̂𝐺<

0 (𝑡, 𝑡′) + ̂𝐺𝑅
0 (𝑡, 𝑡0) ̂𝑉 ̂𝐺<(𝑡0, 𝑡′) + ̂𝐺𝐴

0 (𝑡, 𝑡0) ̂𝑉 (0) ̂𝐺𝐴(𝑡0, 𝑡′) , (6.52b)
̂𝐺𝐴(𝑡, 𝑡′) = ̂𝐺𝐴

0 (𝑡, 𝑡′) + ̂𝐺𝐴
0 (𝑡, 𝑡0) ̂𝑉 ̂𝐺𝐴(𝑡0, 𝑡′) . (6.52c)

Using the same combined matrices as introduced in Eq. (6.42) for the real times 𝑡
and 𝑡′ as

̂𝐺(𝑡, 𝑡′) = (
̂𝐺𝑅(𝑡, 𝑡′) ̂𝐺<(𝑡, 𝑡′)

0 ̂𝐺𝐴(𝑡, 𝑡′)
) (6.53)

and

̂𝐺0(𝑡, 𝑡′) = (
̂𝐺𝑅
0 (𝑡, 𝑡′) ̂𝐺<

0 (𝑡, 𝑡′)
0 ̂𝐺𝐴

0 (𝑡, 𝑡′)
) , (6.54)

the Dyson equation becomes

̂𝐺(𝑡, 𝑡′) = ̂𝐺0(𝑡, 𝑡′) + ̂𝐺0(𝑡, 𝑡0) ̂𝑈 ̂𝐺(𝑡0, 𝑡′) . (6.55)
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6.2 Superconducting System

With the same perturbation matrix as for the constant case, listed in Eq. (6.44). A
̂𝑇 (𝑡0)-matrix for the solution of this problem can then be found for ̂𝐺(𝑡0, 𝑡′) and is

determined from

̂𝐺(𝑡0, 𝑡′) = ̂𝐺0(𝑡0, 𝑡′) + ̂𝐺0(𝑡0, 𝑡0) ̂𝑇 (𝑡0) ̂𝐺0(𝑡0, 𝑡′) , (6.56)

where it can be deduced that ̂𝑇 (𝑡0) ̂𝐺0(𝑡0, 𝑡′) = ̂𝑈 ̂𝐺(𝑡0, 𝑡′). Accordingly, it follows
that

̂𝑇 (𝑡0) ̂𝐺0(𝑡0, 𝑡′) = ̂𝑈 ( ̂𝐺0(𝑡0, 𝑡′) + ̂𝐺0(𝑡0, 𝑡0) ̂𝑈 ̂𝐺(𝑡0, 𝑡′)) , (6.57)

where ̂𝑇 can be resubstituted to yield

̂𝑇 (𝑡0) ̂𝐺0(𝑡0, 𝑡′) = ̂𝑈 ̂𝐺0(𝑡0, 𝑡′) + ̂𝑈 ̂𝐺0(𝑡0, 𝑡0) ̂𝑇 (𝑡0) ̂𝐺0(𝑡0, 𝑡′) . (6.58)

Thus

̂𝑇 (𝑡0) = ̂𝑈 + ̂𝑈 ̂𝐺0(𝑡0, 𝑡0) ̂𝑇 (𝑡0) , (6.59)

which yields the solution

̂𝑇 (𝑡0) = (1 − ̂𝑈 ̂𝐺0(𝑡0, 𝑡0))−1 ̂𝑈 . (6.60)

Then, the perturbed Green’s function can be calculated by combining equations
(6.55) and (6.56) to

̂𝐺(𝑡, 𝑡′) = ̂𝐺0(𝑡, 𝑡′) + ̂𝐺0(𝑡, 𝑡0) ̂𝑈 ̂𝐺0(𝑡0, 𝑡′) + ̂𝐺0(𝑡, 𝑡0) ̂𝑈 ̂𝐺0(𝑡0, 𝑡0) ̂𝑇 (𝑡0) ̂𝐺0(𝑡0, 𝑡′) .
(6.61)

The current is then calculated from Eq. (6.16), yielding a 2 × 2-matrix. In Fig. 6.7
(a), the result for the current is shown at 𝑉Bias = 0𝑡m. The plot exhibits a vanishing
constant contribution, from which it deviates when the perturbation is applied. This
oscillation vanishes over time with the current relaxing to zero again. Finally, the
derivative d𝐼

d𝑉Bias
was taken with the result shown in Fig. 6.7 (b) for 𝐽 = 1.2𝑡m,

Δ0 = 0.3𝑡m, 𝑡tun = 0.01𝑡m and 𝜇 = −3.618𝑡m.

Here, the coherence peaks from the unperturbed result are still visible. However,
contrary to the result in equilibrium, this derivative shows negative values and thus
cannot be interpreted as a density of states any longer.

6.2.3 Time Dependence of the Superconducting Order Parameter for
Instantaneous Perturbations

For the case of a superconducting site, the magnetic perturbation will also have an
effect on the superconducting order parameter. In the following, this influence will be
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Fig. 6.7: (a) Time dependent current ̂𝐼11(𝑡) at 𝑒𝑉Bias = 0𝑡m with the dashed line
marking the constant value of the current in equilibrium, (b) result for d ̂𝐼11

d𝑉Bias
for

𝛿-pulse perturbations.

analyzed using the Keldysh formalism [70, 73]. The dynamics of the superconducting
order parameter out of equilibrium have been investigated previously. Most notably,
an exact solution for all initial conditions and a complete set of integrals of motion
for the mean-field BCS dynamics was found by Yuzbashyan et al. [77]. Here, the
time dependence of the superconducting order parameter is investigated, in order
to determine whether this time dependence needs to be included in the introduced
approach and the conducted calculations.

Theoretical Method

The superconducting order parameter can be determined from the gap equation
[78–80]

Δ(𝑡) = −𝑉 ⟨𝑐†
r=0,↑𝑐†

r=0,↓⟩ = i 𝑉 𝑓<(r = 0, 𝑡) , (6.62)

for which the uncoupled lesser anomalous Green’s function 𝑓<(r = 0, 𝑡) is required.
Here, 𝑉 is the pairing interaction. This lesser Green’s function can be computed
via

̂𝑔<(𝑡, 𝑡) = ̂𝑔<
0 (𝑡, 𝑡) + ∫ d𝑡1 ̂𝑔𝑅

0 (𝑡, 𝑡1) ̂𝐽(𝑡1) ̂𝑔<(𝑡1, 𝑡) + ∫ d𝑡1 ̂𝑔<
0 (𝑡, 𝑡1) ̂𝐽(𝑡1) ̂𝑔𝐴(𝑡1, 𝑡) ,

(6.63)
where ̂𝐽 (𝑡1) is the time dependent perturbation and the spatial coordinate was
omitted, as only a single site is considered. A magnetic perturbation is assumed that
only occurs at a time 𝑡 = 𝑡0, given by

̂𝐽 (𝑡1) = 𝐽 (1 0
0 1) 𝛿(𝑡1 − 𝑡0) . (6.64)
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For a small perturbation, the lesser Green’s function is expanded to the second order
in the perturbation as

̂𝑔<(𝑡, 𝑡) = ̂𝑔<
0 (𝑡, 𝑡) + ∫ d𝑡1 ̂𝑔𝑅

0 (𝑡, 𝑡1)𝐽𝜎0𝛿(𝑡1 − 𝑡0) ̂𝑔<
0 (𝑡1, 𝑡)

+ ∫ d𝑡1 ̂𝑔<
0 (𝑡1, 𝑡)𝐽𝜎0𝛿(𝑡 − 𝑡0) ̂𝑔𝐴

0 (𝑡1, 𝑡)

+ ∫ d𝑡1 ∫ d𝑡2 ̂𝑔𝑅
0 (𝑡, 𝑡1)𝐽𝜎0𝛿(𝑡1 − 𝑡0) ̂𝑔𝑅

0 (𝑡1, 𝑡2)𝐽𝜎0𝛿(𝑡2 − 𝑡0) ̂𝑔<
0 (𝑡2, 𝑡)

+ ∫ d𝑡1 ∫ d𝑡2 ̂𝑔𝑅
0 (𝑡, 𝑡1)𝐽𝜎0𝛿(𝑡1 − 𝑡0) ̂𝑔<

0 (𝑡1, 𝑡2)𝐽𝜎0𝛿(𝑡2 − 𝑡0) ̂𝑔𝐴
0 (𝑡2, 𝑡)

+ ∫ d𝑡1 ∫ d𝑡2 ̂𝑔<
0 (𝑡, 𝑡1)𝐽𝜎0𝛿(𝑡1 − 𝑡0) ̂𝑔𝐴

0 (𝑡1, 𝑡2)𝐽𝜎0𝛿(𝑡2 − 𝑡0) ̂𝑔𝐴
0 (𝑡2, 𝑡)

(6.65a)
= ̂𝑔<

0 (𝑡, 𝑡) + 𝐽 [ ̂𝑔𝑅
0 (𝑡, 𝑡0) ̂𝑔<

0 (𝑡0, 𝑡) + ̂𝑔<
0 (𝑡, 𝑡0) ̂𝑔𝐴

0 (𝑡0, 𝑡))
+ 𝐽2 ( ̂𝑔𝑅

0 (𝑡, 𝑡0) ̂𝑔𝑅
0 (𝑡0, 𝑡0) ̂𝑔<

0 (𝑡0, 𝑡) + ̂𝑔𝑅
0 (𝑡, 𝑡0) ̂𝑔<

0 (𝑡0, 𝑡0) ̂𝑔𝐴
0 (𝑡0, 𝑡)

+ ̂𝑔<
0 (𝑡, 𝑡0) ̂𝑔𝐴

0 (𝑡0, 𝑡0) ̂𝑔𝐴
0 (𝑡0, 𝑡)] .

(6.65b)

The final result is then

̂𝑔<(𝑡, 𝑡) = ̂𝑔<
0 (0) + 𝐽 [ ̂𝑔𝑅

0 (𝛥𝑡) ̂𝑔<
0 (−𝛥𝑡) + ̂𝑔<

0 (𝛥𝑡) ̂𝑔𝐴
0 (−𝛥𝑡)]

+ 𝐽2 [ ̂𝑔𝑅
0 (𝛥𝑡) ̂𝑔𝑅

0 (0) ̂𝑔<
0 (−𝛥𝑡) + ̂𝑔𝑅

0 (𝛥𝑡) ̂𝑔<
0 (0) ̂𝑔𝐴

0 (−𝛥𝑡)
+ ̂𝑔<

0 (𝛥𝑡) ̂𝑔𝐴
0 (0) ̂𝑔𝐴

0 (−𝛥𝑡)] ,
(6.66)

where we defined 𝛥𝑡 = 𝑡 − 𝑡0. The pairing interaction can be calculated from the gap
equation for the unperturbed, lesser anomalous Green’s function. In the unperturbed
sytem, the superconducting order parameter is given through

Δ0 = i 𝑉 𝑓<
0 (𝑟 = 0, 𝑡 = 0) , (6.67a)

which leads to

Δ0 = −𝑉 ∫
0

−∞

d𝜔
𝜋

Im𝑓<
0 (𝑟 = 0, 𝜔) (6.67b)

= −𝑉 ∫
0

−∞

d𝜔
𝜋

∫ d2𝑘
(2𝜋)2 Im [ Δ0

(𝜔 + i𝛿)2 − 𝐸2
k

] , (6.67c)

with 𝑓<
0 (𝜔) = 𝑛F(𝜔) Im𝑓𝑅

0 (𝑟 = 0, 𝜔) and 𝑇 = 0. Rearranging this equation then
yields the final result for the pairing interaction

𝑉 = − 1

∫0
−∞

d𝜔
𝜋 ∫ d2𝑘

(2𝜋)2 Im [ 1
(𝜔+i𝛿)2−𝐸2

k
]

. (6.68)
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First Order Contribution

The first order correction to the lesser, anomalous Green’s function at a point of
time 𝑡 with a perturbation 𝐽𝛿(𝑡1 − 𝑡0)𝟙2×2 occurring at 𝑡0 is given by

𝛥𝑓<(𝑡, 𝑡)(1) = 𝐽 [𝑔𝑅
0,11(𝛥𝑡)𝑓<

0 (−𝛥𝑡) + 𝑓𝑅
0 (𝛥𝑡)𝑔<

0,22(−𝛥𝑡) + 𝑔<
0,11(𝛥𝑡)𝑓𝐴

0 (−𝛥𝑡)
+𝑓<

0 (𝛥𝑡)𝑔𝐴
0,22(−𝛥𝑡)]

(6.69)

with 𝛥𝑡 = 𝑡 − 𝑡0.

From the definition of the uncoupled Green’s function matrix in Eq. (6.24), the
symmetry relations

𝑔𝑅
0,11(𝑘, 𝜔) = 𝑔𝐴

0,11(k, 𝜔)∗ = −𝑔𝐴
0,22(k, −𝜔) , (6.70)

𝑔𝑅
0,22(𝑘, 𝜔) = 𝑔𝐴

0,22(k, 𝜔)∗ = −𝑔𝐴
0,11(k, −𝜔) , (6.71)

𝑓𝑅
0 (𝑘, 𝜔) = 𝑓𝐴

0 (k, 𝜔)∗ = 𝑓𝐴
0 (k, −𝜔) (6.72)

can be determined. In the time domain, these are analogous to the following symmetry
relations

𝑔𝐴
0,11(k, 𝛥𝑡) = 1

2𝜋
∫

∞

−∞

d𝜔
𝜋

𝜔 − i𝛿 ± 𝜖k
(𝜔 − i𝛿)2 − 𝐸2

k
𝑒−i𝜔𝛥𝑡 (6.73a)

= 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

( 𝜔 + i𝛿 ± 𝜖k
(𝜔 + i𝛿)2 − 𝐸2

k
)

∗

𝑒−i𝜔𝛥𝑡 (6.73b)

= ( 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝜔 + i𝛿 ± 𝜖k
(𝜔 + i𝛿)2 − 𝐸2

k
𝑒−i𝜔(−𝛥𝑡))

∗

(6.73c)

= 𝑔𝑅
0,11(k, −𝛥𝑡)∗ (6.73d)

and equally
𝑔𝐴

0,22(k, 𝛥𝑡) = 𝑔𝑅
0,22(k, −𝛥𝑡)∗ , (6.74)

as well as

𝑔𝑅
0,11(k, 𝛥𝑡) = 1

2𝜋
∫

∞

−∞

d𝜔
𝜋

𝑔𝑅
0,11(k, 𝜔)𝑒−i𝜔𝛥𝑡 (6.75a)

= − 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝑔𝐴
0,22(k, −𝜔)𝑒−i𝜔𝛥𝑡 (6.75b)

𝜔→−𝜔= − 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝑔𝐴
0,22(k, 𝜔)𝑒i𝜔𝛥𝑡 (6.75c)

= −𝑔𝐴
0,22(k, −𝛥𝑡) (6.75d)
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and

𝑓𝑅
0 (k, 𝛥𝑡) = 1

2𝜋
∫

∞

−∞

d𝜔
𝜋

𝑓𝑅
0 (k, 𝜔)𝑒−i𝜔𝛥𝑡 (6.76a)

= 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝑓𝐴
0 (k, 𝜔)∗𝑒−i𝜔𝛥𝑡 (6.76b)

= ( 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝑓𝐴
0 (k, 𝜔)𝑒−i𝜔(−𝛥𝑡))

∗

(6.76c)

= 𝑓𝐴
0 (k, −𝛥𝑡)∗ . (6.76d)

The anomalous, retarded and advanced Green’s functions are also completely real,
which can be seen from the property

𝑓𝐴
0 (k, −𝛥𝑡) = 1

2𝜋
∫

∞

−∞

d𝜔
𝜋

𝑓𝐴
0 (k, 𝜔)𝑒i𝜔𝛥𝑡 (6.77a)

= 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝑓𝐴
0 (k, −𝜔)𝑒−i𝜔𝛥𝑡 (6.77b)

= 1
2𝜋

∫
∞

−∞

d𝜔
𝜋

𝑓𝑅
0 (k, 𝜔)𝑒−i𝜔𝛥𝑡 (6.77c)

= 𝑓𝑅
0 (k, 𝛥𝑡) . (6.77d)

Thereby 𝑓𝑅,𝐴
0 (k, 𝛥𝑡) = 𝑓𝑅,𝐴

0 (k, 𝛥𝑡)∗, so that its respective imaginary part has to be
equal to zero.

Thus, Eq. (6.69) can be expressed solely in terms of the retarded Green’s functions
through

𝛥𝑓<(𝑡, 𝑡)(1) = 𝐽 [𝑔𝑅
0,11(𝛥𝑡)(𝑓<

0 (−𝛥𝑡) − 𝑓<
0 (𝛥𝑡)) + 𝑓𝑅

0 (𝛥𝑡)𝑔<
0,22(−𝛥𝑡)

+𝑔<
0,11(𝛥𝑡)𝑓𝑅

0 (𝛥𝑡)∗]
(6.78a)

= 𝐽 [𝑔𝑅
0,11(𝛥𝑡)(𝑓<

0 (−𝛥𝑡) − 𝑓<
0 (𝛥𝑡)) + 𝑓𝑅

0 (𝛥𝑡)(𝑔<
0,22(−𝛥𝑡)

+𝑔<
0,11(𝛥𝑡))] .

(6.78b)

Because the imaginary part of 𝑓𝑅
0 (𝜔) is an odd function and the real part is an even

function, the Fourier transformation is entirely real, so that the two terms with
𝑓𝑅

0 (𝛥𝑡)(∗) can be summarized in the last step. In order to show that the first order
vanishes, it is useful to employ the greater Green’s functions ̂𝑔>(𝜔). In the frequency
domain, these can be derived from the retarded and advanced Green’s functions
through

𝑔>(𝜔) = (1 − 𝑛𝐹(𝜔))( ̂𝑔𝑅
0 (𝑘, 𝜔) − ̂𝑔𝐴

0 (𝑘, 𝜔)) (6.79a)
= 2i (1 − 𝑛𝐹(𝜔))Im [ ̂𝑔𝑅(𝜔)] (6.79b)
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and another useful property is

̂𝑔>(𝜔) − ̂𝑔<(𝜔) = ̂𝑔𝑅(𝜔) − ̂𝑔𝐴(𝜔) . (6.80)

With the greater Green’s function, the symmetry properties

𝑓<
0 (−𝛥𝑡) = 𝑓>

0 (𝛥𝑡) (6.81)

and

𝑔<
0,22(−𝛥𝑡) = −𝑔>

0,11(𝛥𝑡) (6.82)

between its entries and those of the lesser Green’s function can be employed. Thereby
the expression for the first order correction can be further simplified, while using
Eq.(6.80) in the final step, and vanishes as

𝛥𝑓<(𝑡, 𝑡)(1) = 𝐽 [𝑔𝑅
0,11(𝛥𝑡)(𝑓>

0 (𝛥𝑡) − 𝑓<
0 (𝛥𝑡)) + 𝑓𝑅

0 (𝛥𝑡)(−𝑔>
0,11(𝛥𝑡) + 𝑔<

0,11(𝛥𝑡))]
(6.83a)

= 𝐽 [𝑔𝑅
0,11(𝛥𝑡)(𝑓𝑅

0 (𝛥𝑡) − 𝑓𝐴
0 (𝛥𝑡)) − 𝑓𝑅

0 (𝛥𝑡)(𝑔𝑅
0,11(𝛥𝑡) − 𝑔𝐴

0,11(𝛥𝑡))]
(6.83b)

= 0 , (6.83c)

because the advanced Green’s function is equal to zero at positive time intervals
𝛥𝑡 > 0.

Second Order Contribution

The correction to the lesser Green’s functions in second order is given through

𝛥 ̂𝑔<(𝑡, 𝑡)(2) = 𝐽2 ( ̂𝑔𝑅(𝛥𝑡) ̂𝑔𝑅(0) ̂𝑔<(−𝛥𝑡) + ̂𝑔𝑅(𝛥𝑡) ̂𝑔<(0) ̂𝑔𝐴(−𝛥𝑡)
+ ̂𝑔<(𝛥𝑡) ̂𝑔𝐴(0) ̂𝑔𝐴(−𝛥𝑡)) .

(6.84)

From there, the correction for the anomalous, lesser Green’s function at position
(1, 2) in the matrix above can be derived to be

𝛥𝑓<
12(𝑡, 𝑡)(2) = 𝑔𝑅

0,11(𝛥𝑡)𝑔𝑅
0,11(0)𝑓<

0 (−𝛥𝑡) + 𝑓𝑅
0 (𝛥𝑡)𝑓𝑅

0 (0)𝑓<
0 (−𝛥𝑡)

+ 𝑔𝑅
0,11(𝛥𝑡)𝑓𝑅

0 (0)𝑔<
0,22(−𝛥𝑡) + 𝑓𝑅

0 (𝛥𝑡)𝑔𝑅
0,22(0)𝑔<

0,22(−𝛥𝑡)
+ 𝑔𝑅

0,11(𝛥𝑡)𝑔<
0,11(0)𝑓𝐴

0 (−𝛥𝑡) + 𝑓𝑅
0 (𝛥𝑡)𝑓<

0 (0)𝑓𝐴
0 (−𝛥𝑡)

+ 𝑔𝑅
0,11(𝛥𝑡)𝑓<

0 (0)𝑔𝐴
0,22(−𝛥𝑡) + 𝑓𝑅

0 (𝛥𝑡)𝑔<
0,22(0)𝑔𝐴

0,22(−𝛥𝑡)
+ 𝑔<

0,11(𝛥𝑡)𝑔𝐴
0,11(0)𝑓𝐴

0 (−𝛥𝑡) + 𝑓<
0 (𝛥𝑡)𝑓𝐴

0 (0)𝑓𝐴
0 (−𝛥𝑡)

+ 𝑔<
0,11(𝛥𝑡)𝑓𝐴

0 (0)𝑔𝐴
0,22(−𝛥𝑡) + 𝑓<

0 (𝛥𝑡)𝑔𝐴
0,22(0)𝑔𝐴

0,22(−𝛥𝑡) .

(6.85)
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This can be structured better by ordering it in the following way

𝛥𝑓<
12(𝑡, 𝑡)(2) = 𝑔𝑅

0,11(𝛥𝑡)𝑔𝑅
0,11(0)𝑓<

0 (−𝛥𝑡) + 𝑔𝑅
0,11(𝛥𝑡)𝑓<

0 (0)𝑔𝐴
0,22(−𝛥𝑡)

+ 𝑓<
0 (𝛥𝑡)𝑔𝐴

0,22(0)𝑔𝐴
0,22(−𝛥𝑡)

+ 𝑓𝑅
0 (𝛥𝑡)𝑓𝑅

0 (0)𝑓<
0 (−𝛥𝑡) + 𝑓𝑅

0 (𝛥𝑡)𝑓<
0 (0)𝑓𝐴

0 (−𝛥𝑡)
+ 𝑓<

0 (𝛥𝑡)𝑓𝐴
0 (0)𝑓𝐴

0 (−𝛥𝑡)
+ 𝑔𝑅

0,11(𝛥𝑡)𝑓𝑅
0 (0)𝑔<

0,22(−𝛥𝑡) + 𝑓𝑅
0 (𝛥𝑡)𝑔𝑅

0,22(0)𝑔<
0,22(−𝛥𝑡)

+ 𝑓𝑅
0 (𝛥𝑡)𝑔<

0,22(0)𝑔𝐴
0,22(−𝛥𝑡)

+ 𝑔𝑅
0,11(𝛥𝑡)𝑔<

0,11(0)𝑓𝐴
0 (−𝛥𝑡) + 𝑔<

0,11(𝛥𝑡)𝑔𝐴
0,11(0)𝑓𝐴

0 (−𝛥𝑡)
+ 𝑔<

0,11(𝛥𝑡)𝑓𝐴
0 (0)𝑔𝐴

0,22(−𝛥𝑡) .

(6.86)

Complex conjugating this yields

(𝛥𝑓<
12(𝑡, 𝑡)(2))∗ = − 𝑔𝐴

0,11(−𝛥𝑡)𝑔𝐴
0,11(0)𝑓<

0 (−𝛥𝑡) − 𝑔𝐴
0,11(−𝛥𝑡)𝑓<

0 (0)𝑔𝑅
0,22(𝛥𝑡)

− 𝑓<
0 (−𝛥𝑡)𝑔𝑅

0,22(0)𝑔𝑅
0,22(𝛥𝑡)

− 𝑓𝐴
0 (−𝛥𝑡)𝑓𝐴

0 (0)𝑓<
0 (𝛥𝑡) − 𝑓𝐴

0 (−𝛥𝑡)𝑓<
0 (0)𝑓𝑅

0 (𝛥𝑡)
− 𝑓<

0 (𝛥𝑡)𝑓𝑅
0 (0)𝑓𝑅

0 (𝛥𝑡)
− 𝑔𝐴

0,11(−𝛥𝑡)𝑓𝐴
0 (0)𝑔<

0,22(𝛥𝑡) − 𝑓𝐴
0 (−𝛥𝑡)𝑔𝐴

0,22(0)𝑔<
0,22(𝛥𝑡)

− 𝑔𝐴
0,11(−𝛥𝑡)𝑔<

0,11(0)𝑓𝑅
0 (𝛥𝑡) + 𝑔<

0,11(−𝛥𝑡)𝑔𝑅
0,11(0)𝑓𝑅

0 (𝛥𝑡)
− 𝑔<

0,11(−𝛥𝑡)𝑓𝑅
0 (0)𝑔𝑅

0,22(𝛥𝑡)
(6.87)

by using

𝑔𝑅
0,11/22(𝛥𝑡)∗ = 𝑔𝐴

0,11/22(−𝛥𝑡) (6.88a)

𝑓𝑅
0 (𝛥𝑡)∗ = 𝑓𝐴

0 (−𝛥𝑡) (6.88b)
𝑔<

0,11/22(𝛥𝑡)∗ = −𝑔<
0,11/22(−𝛥𝑡) (6.88c)

𝑓<
0 (𝛥𝑡)∗ = −𝑓<

0 (−𝛥𝑡) . (6.88d)

Here, it can be deduced than that the second order contribution is not entirely imag-
inary, thereby allowing the superconducting order parameter to become complex.

Result

With the theoretical method introduced previously, the superconducting order pa-
rameter was calculated for 𝜇 = −3.618𝑡m, Δ0 = 0.3𝑡m and 𝐽 = 0.1𝑡m, with the result
shown in Fig. 6.8. The value of the pairing interaction obtained for this case is

87



6 Non-Equilibrium Magnetic Perturbations

𝑉 = 3.856𝑡m.
Here, it can be seen that the superconducting order parameter deviates from its
original value of Δ0 at 𝑡 = 0, when the perturbation is applied. At the same time,
the order parameter becomes complex. Over time, the real part oscillates back to
Δ0, and the imaginary part vanishes again.
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]
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Fig. 6.8: Calculated time dependence of the superconducting gap for (𝜇, Δ0, 𝐽) =
(−3.618𝑡m, 0.3𝑡m, 0.1𝑡m).

Here, the relaxation time of the system towards the instantaneous perturbation can
be interpreted. Because instantaneous perturbations are applied, it is natural for
the superconducting order parameter to return to its original value. The oscillations
decay very quickly, so that after approximately 𝑡 ≈ 10 1

𝑡m
, the oscillations in the

real part are hardly perceivable. Thereby, the relaxation time is of the order of
magnitude 𝑇relax ∼ ℏ

𝛥0
, where ℏ is included, so that the correct units are clear. In

the calculations, it is set to unity. Thereby, the system’s superconducting order
parameter approaches its equilibrium value quickly enough that this influence does
not have to be included in the calculations of the current.
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In conclusion, it was demonstrated successfully that the 3Q magnetic ordering, which
was discovered recently, possesses topological properties when it is employed for the
creation of an MSH structure. Due to the non-collinearity of the spin structure, an
effective Rashba spin-orbit coupling is induced, which allows for the MSH structure
to enter topological phases. The rich phase diagram obtained by the calculation of
the Chern number of this magnetic ordering shows that this phenomenon is robust
for a variety of parameters. Here, all the phase transitions originated from the high
symmetry points of the Brillouin zone.
Furthermore, the emergence of edge modes was shown both for finite islands of
magnetic adatoms as well as for semi-infinite ribbons. Here, we showed that both the
LDOS at an energy of zero and the supercurrents are strongly localized on the edge
of the investigated magnetic structure and that the supercurrents have a defined
chirality depending on the sign of the Chern number. The supercurrents also serve
to distinguish between topological and trivial phases through their magnitude, since
the supercurrents are smaller by a factor of approximately 10 in the trivial case.
Finally, the experimentally motivated model illustrated that the topological properties
also occur in a more realistic scenario and are a robust phenomenon for a large set of
parameters. Here, phase transitions also originated from other points in the Brillouin
zone instead of its high symmetry points.
For further investigations of the 3Q structure, an interesting step would be to
experimentally construct an MSH structure with a 3Q-ordered magnetic layer and
test the theoretical predictions made in this work. Here, it should be noted again
that the chosen set of parameters included an unrealistically large superconducting
order parameter, in order to reduce the program’s run time.

Next, the topological properties for a ribbon filled with skyrmions were analyzed.
Similar to the 3Q structure, a lattice filled with skyrmions has a rich phase diagram.
The calculated band structure, in dependence of the crystal momentum parallel to
the ribbon’s infinite direction, matches the number of Majorana modes traversing
the gap expected from the Chern number of the investigated phase. The LDOS at
zero energy is strongly localized at the edge of the ribbon, but shows local minima
around the skyrmion centers.
For this MSH structure, the supercurrents are present throughout the ribbon and
form vortices around each skyrmion center. In the topological case, these vortices are
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even stronger at the edge of the ribbon, where the LDOS is also strongest, and exhibit
a perceivable edge current. In comparison to this result for the topological phase,
the investigated trivial set of parameters leads to a supercurrent whose magnitude
is two orders of magnitude smaller. Moreover, no edge current is present on the
ribbon and the vortices have the same strength over the entire ribbon. Hence, these
supercurrents cancel when the contributions on both sides of the domain wall are
summed over.
Thus, the investigation of the supercurrents offers an interesting option to show the
existence of topological edge modes, as the magnetic field they induce can also be
measured experimentally. Furthermore, the skyrmionic spin structure is much more
complicated than the 3Q structure, which offers further possibilities for the creation
of domain walls.

Additionally, we investigated which types of domain walls introduced into a 3Q-
ordered magnetic layer result in the occurrence of Majorana edge modes at the
domain walls. A domain wall stemming from spatial shifts along the two lattice
vectors of the investigated triangular lattice leads to the conclusion that this type of
domain wall does not produce any edge modes. However, the band structures suggest
that stronger spatial shifts, which could be realized for more complicated magnetic
structures such as skyrmionic lattices, could result in emerging edge modes.
Nevertheless, domain walls at which the spin structure is inverted produce a change
of sign for the Chern number 𝐶 and thereby result in the occurrence of 2|𝐶| edge
modes. These were observed in the theoretical simulations of the band structure for
a ribbon of magnetic adatoms. The LDOS as well as the supercurrents confirm the
emergence of edge modes in this scenario, which offers two promising options for an
experimental assessment.
However, the supercurrents are the more suitable candidate from an experimental
point of view. The results for a 𝜋-phase domain wall, where the superconducting order
parameter is inverted, exhibit trivial in-gap modes that show a strong localization
at the domain wall as well. Their trivial character can be distinguished from the
topological one of the former case through the calculated supercurrents. These cancel
out for the 𝜋-phase domain wall, while the sum remains finite for the spin inversion
domain wall.

Finally, we investigated the effects of magnetic perturbations on a metallic as well as
a superconducting site connected to an STM tip by employing the Keldysh formalism.
For the case of a metallic site, the results for the simulated current between the site
and the tip shows a strongly oscillating current for a 𝛿-pulse perturbation, which
slowly relaxes back to its equilibrium value. The derivative of the current by the
bias voltage is proportional to the density of states in equilibrium. The perturbed
version shows a decreased value for bias voltages below the van-Hove singularity and
increased values above. This derivative also returns back to its equilibrium value
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over time.
For superconducting sites, we first tested whether a Shiba state can be detected in
the current’s derivative for a constant perturbation. While an approach, where order
by order is included into the calculation, leads to unphysical values and divergences
in the derivative of the current, a ̂𝑇-matrix approach proves successful in calculating
the emerging Shiba state in the superconducting gap. Employing this method,
the exact location of the Shiba state was calculated for a large range of magnetic
perturbation strengths, which showed how the Shiba state moves from one side of
the superconducting gap to the other with increasing perturbation strength.
An equivalent method using a ̂𝑇-matrix was then developed for 𝛿-pulse perturbations.
However, the calculated derivative of the current does not exhibit any Shiba states
for this scenario, but instead shows negative values on the right side of the supercon-
ducting gap. In how far this result still relates to the density of states as it does in
the equilibrium, remains unclear so far. In order to understand this phenomenon,
further investigations in this direction are required.
Finally, the response of the superconducting order parameter to a 𝛿-pulse pertur-
bation was analyzed. Just like the current between the tip and the site, the order
parameter shows a strong oscillation after the perturbation. Furthermore, the order
parameter, which was entirely real before the perturbation, becomes complex during
the process. The imaginary part relaxes back to zero and the real part back to the
equilibrium value, as can be expected since the perturbation is only applied for a
very short time.
Overall, further investigations in this direction could enable a simulation of moving
quantum vortices, so that it is useful to further develop the methods introduced
here.
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