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Abstract

Among the abundance of scenarios to drive systems out of equilibrium the Floquet regime
of quasi-stationary Floquet states resulting from periodic driving is very appealing. It
suggests that physical systems can be tailored by controlling external driving fields. But as
many-body Floquet theory becomes more popular, it is important to find ways to connect
theory with experiment. Theoretical calculations can have a periodic driving field that is
always on, but experiment cannot. Hence, we need to know how long a driving field is
needed before the system starts to look like the periodically driven Floquet system. We
answer this question here for noninteracting band electrons in the infinite-dimensional limit
by studying the properties of the system under pulsed driving fields and illustrating how
they approach the Floquet limit. Thereby we determine the minimal pulse lengths needed
to recover the qualitative and semiquantitative Floquet theory results.

In the second part of this thesis, we change from periodically driven noninteracting systems
to interacting systems and derive the general spectral representation of retarded Green
functions in the Floquet regime, thereby generalizing the well-known Lehmann representation
from equilibrium many-body physics. The derived spectral Floquet representation allows us
to prove the nonnegativity of spectral densities and to determine exact spectral sum rules,
which can be employed to benchmark the accuracy of approximations to the exact Floquet
many-body Green functions.

Kurzfassung

Unter der Vielzahl von Möglichkeiten Systeme aus dem Gleichgewicht zu treiben, ist das
Floquet-Regime von quasi-stationären Floquet-Zuständen besonders attraktiv, da es erlaubt
physikalische Systeme durch steuernde, externe Felder maßzuschneidern. Doch mit der
steigenden Popularität der Vielteilchen-Floquet-Theorie wird es zunehmend wichtig, Mög-
lichkeiten zu finden, die experimentellen Ergebnisse mit der Theorie in Einklang zu bringen.
Theoretische Rechnungen können von treibenden Feldern ausgehen, die über eine unendliche
Zeitspanne eingeschaltet sind, doch im Experiment sind diese Felder nicht realisierbar. Des-
halb ist es notwendig heraus zu finden wie lange ein System getrieben werden muss, bevor
es sich dem periodisch getriebenen Floquet System angleicht. Wir beantworten diese Frage
für nicht-wechselwirkende Bandelektronen im unendlichdimensionalen Raum, indem wir
die Eigenschaften von Systemen, welche an gepulste, treibende Felder koppeln, analysieren
und zeigen, wie sie sich dem Floquet-Limes annähren. Auf diese Weise ermitteln wie die
minimalen Pulslängen, die notwendig sind, um die qualitativen und semi-quantitativen
Ergebnisse der Floquet Theorie zu reproduzieren.

Im zweiten Teil dieser Masterarbeit wechseln wir von nicht-wechselwirkenden zu wechselwir-
kenden Systemen und leiten die allgemeine Spektralfunktion von retardierten Greenfunktio-
nen im Floquet-Regime her. So verallgemeinern wir die bekannte Lehmann-Darstellung aus
der Gleichgewichts-Vielteilchenphysik auf periodisch getriebene Systeme. Die hergeleitete
Spektralfunktion in Floquet Darstellung erlaubt es uns außerdem, die Nichtnegativität von
Spektraldichten zu beweisen und exakte Summenregeln zu bestimmen,welche erlauben, die
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Genauigkeit von Approximationen für Floquet-Vielteilchen-Greenfunktionen zu beurteilen
und so auch zu verbessern.
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1 Introduction

Nonequilibrium many-body physics is a vibrant field, both from the experimental and from
the theoretical side. Largely, this has been triggered by the ease with which one can tune
and manipulate the time dependence of systems of ultracold atoms in optical lattices [1, 2].
But there also have been significant advances in solid state systems, which employ ultrafast
pump-probe techniques to study electrons on femto-second timescales [3–5].

Periodically driven many-body systems are simpler than general nonequilibrium systems,
because the Hamiltonian repetitively cycles through the same functional form again and
again. Conceptually, Floquet theory for periodic linear differential equations (and also
periodic Hamiltonians) [6–8] is a powerful tool to treat these periodically modulated quantum
systems. Recently, it has become a topic of wide interest in the condensed-matter community,
especially with the relationship between periodic driving and topological properties [9, 10].
A fundamental development is the notion of Floquet design, i.e., the possibility to engineer
quantum systems with certain desired properties, e.g., with topological phases [9], by properly
selecting the external drive, see, e.g., Refs. [11–14]. Floquet systems require the driving
field to be present for all times. This presents a challenge experimentally, since the field
must be turned on and then off in realistic experiments. In addition, it is expected that
interacting Floquet systems which have been turned on for a long time will generally have
runaway heating, and end up in the infinite-temperature limit. This motivates the question,
how long does a pulsed field need to be in order to describe the Floquet regime well? We
answer this question for noninteracting band electrons in chapter 3.

Experimentally, this is an important issue. Seminal work by the Gedik group showed how
one can transiently change the topology of a topological insulator when driven by circularly
polarized light [15]. Theory indicated how one can determine the bandgaps that opened
[16]. But the theoretical premise of this work was that when we examine properties at the
center of the pump pulse, they will look like the infinitely driven Floquet system. While this
cannot be precisely true, it is approximately true. In this thesis, we examine this question
in detail and determine criteria for which one can approximate the Floquet regime well, and
we also show how one can average transient results to recover Floquet behavior in cases
where the Floquet limit does not immediately emerge. We anticipate that much of these
criteria for pulsed systems will continue to hold when interactions are added, but provide no
proof of that conjecture.

Some previous theory has examined these pulsed systems in the transient regime. One
example is a theoretical calculation in the change of the topology of graphene due to a
circularly polarized electric field pulse [11] and another examined the transition metal
dichalcogenides [17, 18]. But none of that work addressed the specific question of how long
must a pulse be on before the system appears to be described by the Floquet limit. We do
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1 Introduction

so in chapter 3. Depending on the parameters, it turns out that the drive time need not be
so long. Experimentally, this has been demonstrated with topological insulators [19].

In spite of the large interest in periodically driven many-body systems, rigorous statements
about the properties of measurable and computable quantities in the Floquet regime are
scarce. As a relevant example, we draw the reader’s attention to the fact that the fermionic
spectral density is nonnegative in equilibrium, allowing its interpretation as a probabilitistic
density of states. But in Floquet systems, there is no a priori guarantee that a spectral density
will be nonnegative. As a result, others have employed weighted sums over various elements
of the response functions in the Floquet representation [13, 20–22], which have turned out to
be nonnegative. But to our knowledge, no proof of nonnegativity has been offered. This is a
nontrivial issue, as the standard approach to constructing spectral funtions, which involves
using Wigner coordinates of average and relative time, and Fourier transforming the relative
time to a frequency, produces spectral functions 𝜌(𝜔, 𝑡ave) that usually display negative
values, as demonstrated in chapter 3. However, they become nonnegative after further
averaging over 𝑡ave [23, 24]. For noninteracting single-band models, analytical proofs do exist
that show how averaging over one period 𝑇 guarantees nonnegative spectral densities [25],
which is also shown in chapter 3. Nevertheless, negative densities are sometimes seen for
interacting systems [25], so far without explanation. This illustrates the need for tangible
analytic results which hold also in presence of interactions.

We solve this problem in chapter 4 by deriving a spectral representation for retarded Green
functions in the quasi-stationary Floquet regime. This spectral representation generalizes
the well-established Lehmann representation of equilibrium quantum mechanics. Like the
latter, our generalization allows one to derive rigorous general conclusions, e.g., on the
nonnegativity of spectral functions and on their sum rules. For this reason, the derived
results will guide many future studies in the field.

The remainder of the thesis is organized as follows: We start by introducing the basical
properties of both Green functions and Floquet theory in chapter 2. In chapter 3 we focus on
examining band electrons driven by an external electric field. The problem is solved exactly
via the Peierls’ substitution [26]. We focus on the limit of infinite dimensions, because it
allows us to obtain a number of exact analytic relations. It also allows for this work to
benchmark interacting calculations performed with nonequilibrium dynamical mean-field
theory [27, 28] in the future. The model and the methodology used to solve for the retarded
Green functions for different pulsed drives is introduced in section 3.1, before we present
our numerical results for different pulsed drives in the rest of chapter 3. While chapter 3
focuses on noninteracting band electrons, we study more general, interacting systems in
chapter 4. There, we generalize the proof of the nonnegativity of averaged spectral densities
that we give in section 3.2 for interacting systems, which allows to study the properties
of sum rules and of the self energy. For the latter, we compute the Dyson equation of
periodically driven systems in section 4.2. Our conclusions are given in chapter 5, which
also provides an outlook. An appendix about the formal properties of the convolution of
two periodic functions and about the sum rules for higher moments of the spectral densities
in the Hubbard model follows at the end.
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2 Methods

Green functions are a crucial ingredient when studying systems in nonequilibrium, as they
allow the calculation of spectral densities and contain information regarding the correlation
of strongly correlated systems [29, 30]. Floquet theory follows the same concept as the more
commonly known Bloch theory, but instead of making use of a potential that is periodic
in space, it treats systems that are periodic in time. This means the Hamiltonian is time
translational invariant in the Period 𝑇. Floquet theory is used to study strongly driven
periodic quantum systems, and one of its advantages is that it respects this periodicity at all
levels of the perturbation. Additionally no secular terms, meaning terms that are linear or
not periodic in the time variable occur. [8]. Both methods will be employed throughout this
thesis, therefore we will introduce them in this chapter. In order to simplify the equations,
we will set the reduced Plank constant ℏ to ℏ = 1 both in this chapter and when we are
discussing interacting systems in chapter 4. We make an exception in chapter 3, where we
will explicitly consider ℏ in order to determine whether the magnitude of the parameters
needed to reproduce the analytical results is realizable in an experiment.

2.1 Green functions

We consider a closed quantum mechanical system described by the time-dependent Hamil-
tonian ℋ (𝑡). Hence, any linear response function, e.g., a fermionic or bosonic progagator,
depends on two times 𝑡1 and 𝑡2 in a non-trivial way. Kubo’s formalism [31] tells us that a
retarded response function is given by

𝐺(𝑡1, 𝑡2) ∶= −𝑖 ⟨[𝑐(𝑡1), 𝑐†(𝑡2)]
±

⟩ 𝛩(𝑡1 − 𝑡2), (2.1)

where 𝑐 can be any, possibly composite, fermionic or bosonic operator, e.g., a fermionic
annihilation operator in position space or in momentum space or a Hubbard operator. If
it is overall fermionic (that means odd in the number of fermionic creation or annihilation
operators), the + sign applies in the anticommutator [⋅]+; if it is overall bosonic, the −
sign applies in the commutator [⋅]−. In equilibrium, this retarded Green function is the
only response function that needs to be considered, as all other Green functions can be
constructed from the retarded one [32]. Never the less, it is useful to also consider the
greater and the lesser Green function [33], given by

𝐺>(𝑡1, 𝑡2) ∶= − 𝑖 ⟨𝑐(𝑡1)𝑐†(𝑡2)⟩ (2.2a)
𝐺<(𝑡1, 𝑡2) ∶= ± 𝑖 ⟨𝑐†(𝑡2)𝑐(𝑡1)⟩ (2.2b)
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2 Methods

(the upper sign refers to fermions). We are interested in the retarded Green function [29],
which can be derived from the greater and the lesser Green function by

𝐺(𝑡1, 𝑡2) = (𝐺>(𝑡1, 𝑡2) − 𝐺<(𝑡1, 𝑡2))𝛩(𝑡1 − 𝑡2) . (2.3)

The density of states (DOS) is found from the temporal Fourier transform of the local
retarded Green function. In equilibrium, where the Green function is only dependent on the
relative time 𝑡1 − 𝑡2, it is unambiguous what is meant by the frequency-dependent response
𝐺 (𝜔) which is obtained by computing the Fourier transform of 𝐺R

loc (𝑡1 − 𝑡2). If, however, a
driving that varies in time is applied to the system, the situation is different, as we have
a two-time response 𝐺R

loc (𝑡1, 𝑡2). In generic pump-probe experiments, frequency resolved
quantities are measured as a function of the delay time.

Careful analysis of a given experiment will yield the proper way to integrate over time and
construct the frequency-dependent response, as was done for photoemission in Ref. [34–36].
Nevertheless, when we examine Green functions, it is useful to represent them in terms of
frequency irrespective of any particular measurement. This procedure is not unique, and we
describe two particular ways to do it next.

4 3 2 4

4

3

2

4
t2

t1

tave

trel

t0 = 2

Figure 2.1: Schematic display of the two times for the Green function and the integration
directions for the horizontal time and average time DOS. For retarded quantities, the
Fourier transform runs only over the darker parts of the rectangles. Retarded quantities
are nonzero only below and to the right of the diagonal labeled 𝑡ave, defined by 𝑡rel = 0.

The first definition introduces the Wigner coordinates [37], where the Fourier transform is
performed in the relative time 𝑡rel = 𝑡1 − 𝑡2 while the average time 𝑡ave = (𝑡2 + 𝑡1) /2 is kept
constant. The Green function is expressed as

𝐺R
loc (𝑡1, 𝑡2) = 𝐺R

loc (𝑡ave + 𝑡rel
2

, 𝑡ave − 𝑡rel
2

) . (2.4)
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2.1 Green functions

Figure 2.1 schematically displays the concept of these coordinates by introducing the diagonal
axis for 𝑡ave and 𝑡rel. This means that all grid points on a line perpendicular to the diagonal
axis for 𝑡ave are associated with the same average time, just as all grid points perpendicular
to the axis 𝑡rel/2 have the same relative time. For example, the grid point (𝑡1, 𝑡2) = (2, 1),
which is marked in red, has the average time 𝑡ave = 1.5, and so do all the grid points in the
blue rectangle. That is, it is exactly those times that the Fourier transformation is computed
over when the average time is chosen to be 𝑡ave = 1.5, which is why we will refer to this as
the diagonal Fourier transform ℱD. It is employed to calculate the frequency dependent
diagonal Green function via

𝐺R (𝜔, 𝑡ave) = ∫
∞

0
𝑒𝑖𝜔𝑡rel𝐺R (𝑡ave, 𝑡tel) d𝑡rel , (2.5)

so the diagonal DOS yields

𝜌D (𝜔, 𝑡ave) = − 1
𝜋

Im [𝐺R (𝜔, 𝑡ave)] . (2.6)

The above procedure is popular because 𝑡ave can loosely be interpreted as the ”time corre-
sponding to the DOS” In this case it is reasonable to identify the time associated with the
Fourier transform to be in the middle of the interval [𝑡2, 𝑡1].

There are potential problems with this choice. If the pulse starts at 𝑡0, then for 𝑡ave < 𝑡0
there are traces of the effect of the pulse in the DOS even though 𝑡ave is before the pulse
was turned on. This is due to large enough positive 𝑡rel contributions in the Green function
given in Eq. (2.4) from times after the onset of the pulse (𝑡1 > 𝑡0). The converse is also true.
If 𝑡ave > 𝑡0, then for large enough 𝑡rel, we have 𝑡2 < 𝑡0, so contributions to a field dressed
DOS include terms before the field was turned on.

In Fig. 2.1, the dashed red line represents a pulse starting at 𝑡0 = −2. Even if the average
time is chosen to be 𝑡ave = 1.5, the Fourier transformation with respect to 𝑡rel > 0, displayed
as the area shaded in blue, will eventually cross the dashed line and include values 𝑡2 < 𝑡0.

We can also define a horizontal Green function as

𝐺R
loc (𝑡1, 𝑡2) = 𝐺R

loc (𝑡rel + 𝑡2, 𝑡2) , (2.7)

and again perform the Fourier transform in the relative time 𝑡rel. In Figure 2.1, this is
displayed as the green box, for all of the grid points in it satisfy 𝑡2 = 1. This horizontal
Fourier transform ℱH yields the horizontal freuqency dependent Green function

𝐺R (𝜔, 𝑡2) = ∫
∞

0
𝑒𝑖𝜔𝑡rel𝐺R

loc (𝑡rel + 𝑡2, 𝑡2) d𝑡rel (2.8)

and the horizontal density of states, given by

𝜌H (𝜔, 𝑡2) = − 1
𝜋

Im [𝐺R (𝜔, 𝑡2)] . (2.9)

The advantage of this definition is, that for 𝑡2 > 𝑡0, all times used for the Fourier transform
occur after the onset of the pulse. That is, for 𝑡rel > 0 the shaded green area in Fig. 2.1 will
never cross the dashed red line. The disadvantage is that the average time is not fixed. Of
course, in static equilibrium both response functions are equal and indistinguishable.
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2 Methods

2.2 Floquet theory

Gaston Floquet was a French mathematician studying (amongst other things) the theory of
differential equations. When quantum mechanics became popular in the first half of the
20𝑡ℎ century, Floquets results from Sur les équations différentielles linéaires à coefficients
périodiques [6] in 1883 were applied to quantum mechanical systems with a periodic, time-
dependent Hamiltonian

ℋ(𝑡) = ℋ(𝑡 + 𝑇 ) ∀ 𝑡 , (2.10)

where 𝑇 is the period in time, resulting in what today is known in physics as Floquet theory.
The standard approach of this theory can be found in many textbooks and publications, such
as Ref. [8] or Ref. [38]. It considers the Schrödinger equation for such periodic Hamiltonians

𝑖∂𝑡 |𝜓(𝑡)⟩ = ℋ(𝑡) |𝜓(𝑡)⟩ , (2.11)

which is generally solved by the linear superposition of special solutions of the form [7, 8]

|𝜓𝑚(𝑡)⟩ = exp(−𝑖𝜖𝑚𝑡) |𝑚, 𝑡⟩ ∀ 𝑚 ∈ ℕ0 (2.12)

where the quasi-eigenstates |𝑚, 𝑡⟩ are periodic in time with period 𝑇:

|𝑚, 𝑡 + 𝑇 ⟩ = |𝑚, 𝑡⟩ . (2.13)

This ansatz strongly reminds of the Bloch theorem transferred to time. At any given instant
𝑡, the states |𝑚, 𝑡⟩ form a complete, orthonormal basis. They are the eigenstates of the
modified Hamiltonian

ℋ̃ (𝑡) = ℋ (𝑡) − 𝑖∂𝑡 , (2.14)

and the quasi eqnergy 𝜖𝑚 is the corresponding Eigenvalue, satisfing

ℋ̃ |𝑚, 𝑡⟩ = 𝜖𝑚 |𝑚, 𝑡⟩ . (2.15)

Therefore the modified quasi-eigenstates |𝑚𝑙, 𝑡⟩ = exp (𝑖2𝜋𝑙
𝑇 𝑡) |𝑚, 𝑡⟩ obey

ℋ̃ |𝑚𝑙, 𝑡⟩ = exp [𝑖2𝜋
𝑇

𝑙] ℋ (𝑡) |𝑚, 𝑡⟩ − 𝑖 exp [𝑖2𝜋𝑙
𝑇

𝑡] ∂𝑡 |𝑚, 𝑡⟩ − 𝑖 (∂𝑡 exp [𝑖2𝜋𝑙
𝑇

𝑡]) |𝑚, 𝑡⟩

(2.16a)

= exp [𝑖2𝜋𝑙
𝑇

𝑡] (ℋ (𝑡) − 𝑖∂𝑡) |𝑚, 𝑡⟩ − 𝑖 (𝑖2𝜋𝑙
𝑇

exp [𝑖2𝜋𝑙
𝑇

𝑡]) |𝑚, 𝑡⟩ (2.16b)

= (ℋ̃ (𝑡) + 2𝜋𝑙
𝑇

) exp [𝑖2𝜋𝑙
𝑇

𝑡] |𝑚, 𝑡⟩ (2.16c)

= (𝜖𝑚 + 2𝜋𝑙
𝑇

) |𝑚𝑙, 𝑡⟩ , (2.16d)

meaning the modified quasi-eigenstates yield the same solution with a shifted quasi-
energy. The quasi-energy 𝜖𝑚 is uniquely defined only if it is restricted to the interval
𝜖𝑚 ∈ (−𝜋/𝑇 , 𝜋/𝑇 ]. This is the temporal equivalent of a Brillouin zone.

Even though the approach presented above is commonly used in quantum mechanics, we
find it more insightful to derive the above results differently, starting by considering the
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2.2 Floquet theory

unitary time evolution operator 𝑈(𝑡1, 𝑡2) and in particular 𝑈(𝑇 , 0). Any unitary operator
such as 𝑈(𝑇 , 0) has an orthonormal eigen basis {|𝜓𝑚⟩}, which we do not yet identify with
the Floquet state solutions in (2.12), fulfilling

𝑈(𝑇 , 0) |𝜓𝑚⟩ = 𝜆𝑚 |𝜓𝑚⟩ . (2.17)

Since 𝑈(𝑇 , 0) is unitary the absolute value of 𝜆𝑚 is unity so that it can be written as

𝜆𝑚 = exp(−𝑖𝜖𝑚𝑇 ) (2.18)

where again the quasi-energy 𝜖𝑚 has to be restricted to the interval 𝜖𝑚 ∈ (−𝜋/𝑇 , 𝜋/𝑇 ]
in order to be uniquely defined. Next, we take the states |𝜓𝑚⟩ as initial states, i.e.,
|𝜓𝑚(𝑡 = 0)⟩ = |𝜓𝑚⟩ for a time-evolution according to the Schrödinger equation (2.11). We
emphasize that the orthonormality and the completeness persist in the course of the time
evolution because it is unitary

⟨𝜓𝑚(𝑡)| 𝜓𝑛(𝑡)⟩ = 𝛿𝑚𝑛 (2.19a)
∑
𝑚

|𝜓𝑚(𝑡)⟩ ⟨𝜓𝑚(𝑡)⟩ = 1. (2.19b)

But these relations only hold if the time arguments in bra and ket are the same. Since the
states |𝜓𝑚(𝑡)⟩ are solutions of the Schrödinger equation

𝑈(𝑡1, 𝑡2) |𝜓𝑚(𝑡2)⟩ = |𝜓𝑚(𝑡1)⟩ (2.20)

holds by definition for all times 𝑡1 and 𝑡2. Thus, the unitary time evolution is given by as

𝑈(𝑡1, 𝑡2) = ∑
𝑚

|𝜓𝑚(𝑡1)⟩ ⟨𝜓𝑚(𝑡2)| . (2.21)

One can verify that this solves the Schrödinger equation

𝑖∂𝑡1
𝑈(𝑡1, 𝑡2) = 𝑖∂𝑡1

𝑈(𝑡1, 𝑡2) ∑
𝑚

|𝜓𝑚(𝑡2)⟩ ⟨𝜓𝑚(𝑡2)| (2.22a)

= ∑
𝑚

𝑖∂𝑡1
|𝜓𝑚(𝑡1)⟩ ⟨𝜓𝑚(𝑡2)| (2.22b)

= ∑
𝑚

ℋ(𝑡1) |𝜓𝑚(𝑡1)⟩ ⟨𝜓𝑚(𝑡2)| (2.22c)

= ℋ(𝑡1)𝑈(𝑡1, 𝑡2) . (2.22d)

where we used that the states ⟨𝜓𝑚(𝑡1)| fulfill the Schrödinger equation (2.11). The initial
condition

𝑈(𝑡2, 𝑡2) = 1 (2.23)

is fulfilled due to the completeness (2.19b) of the states {|𝜓𝑚(𝑡)⟩}. From Eq. (2.21) it is
easy to derive that the product of two time evolution operators is given by

𝑈(𝑡1, 𝑡2)𝑈(𝑡2, 𝑡3) = ∑
𝑚,𝑛

|𝜓𝑚(𝑡1)⟩ ⟨𝜓𝑚(𝑡2)| 𝜓𝑛(𝑡2)⟩ ⟨𝜓𝑛(𝑡3)⟩ (2.24a)

= ∑
𝑚

|𝜓𝑚(𝑡1)⟩ ⟨𝜓𝑚(𝑡3)| (2.24b)

= 𝑈(𝑡1, 𝑡3) , (2.24c)
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and that the conjugate transpose is given by

𝑈†(𝑡1, 𝑡2) = 𝑈(𝑡2, 𝑡1) . (2.25)

By construction (2.17), the property

|𝜓𝑚(𝑇 )⟩ = 𝑈(𝑇 , 0) |𝜓𝑚⟩ = exp(−𝑖𝜖𝑚𝑇 ) |𝜓𝑚⟩ (2.26)

holds. More generally, quasi-periodicity holds

|𝜓𝑚(𝑡 + 𝑇 )⟩ = 𝑈(𝑡 + 𝑇 , 0) |𝜓𝑚⟩ (2.27a)
= 𝑈(𝑡 + 𝑇 , 𝑇 )𝑈(𝑇 , 0) |𝜓𝑚⟩ (2.27b)
= 𝑈(𝑡 + 𝑇 , 𝑇 ) |𝜓𝑚 (𝑇)⟩ (2.27c)
= 𝑈(𝑡, 0) exp(−𝑖𝜖𝑚𝑇 ) |𝜓𝑚⟩ (2.27d)

resulting from the periodicity of the unitary time evolution which in turn is implied by the
periodicity of the Hamiltonian and of (2.17). Combining the unitary operator and the ket
in (2.27d) yields

|𝜓𝑚(𝑡 + 𝑇 )⟩ = exp(−𝑖𝜖𝑚𝑇 ) |𝜓𝑚(𝑡)⟩ (2.28)

which confirms that |𝜓𝑚(𝑡)⟩ is periodic up to the factor exp(−𝑖𝜖𝑚𝑇 ). This is what is
conventionally regarded as the Floquet theorem.

Finally, we define the states used in (2.12)

|𝑚, 𝑡⟩ ∶= exp(𝑖𝜖𝑚𝑡) |𝜓𝑚(𝑡)⟩ . (2.29)

Clearly, these states are periodic inheriting this property from the quasi-periodicity (2.28)
of |𝜓𝑚(𝑡)⟩. Equally, they form an orthonormal basis

⟨𝑚, 𝑡| 𝑛, 𝑡⟩ = 𝛿𝑚𝑛 (2.30a)
∑
𝑚

|𝑚, 𝑡⟩ ⟨𝑚, 𝑡⟩ = 1. (2.30b)

which results again from the orthonormality (2.19) of the states |𝜓𝑚(𝑡)⟩.

The representation of the time evolution operator (2.21) can be expressed in terms of the
states |𝑚, 𝑡⟩ as well

𝑈(𝑡1, 𝑡2) = ∑
𝑚

exp(−𝑖𝜖𝑚(𝑡1 − 𝑡2)) |𝑚, 𝑡1⟩ ⟨𝑚, 𝑡2| . (2.31)
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3 Noninteracting lattice fermions driven by light pulses

As desribed in section 2.2, Floquet theory is applicable for quantum systems with a Hamil-
tonian that is invariant under time translations 𝑡 → 𝑡 + 𝑡period, i.e. a Hamiltonian being a
periodic function in time with the period 𝑡period [7]. This only holds for systems that are
exposed to a driving field that is strictly periodic in time, meaning it is turned on at 𝑡 = −∞
and stays on. It is obvious that such a driving can never be realized in an experiment.
Therefore in this chapter we will be comparing the properties of the DOS of lattice fermions
coupled to an infinite sinusoidal driving to the DOS of three field pumps that are not strictly
periodic, but are experimentally feasible. The field pumps we will be considering, namely
a semi-infinite driving starting ar 𝑡0 = 0, a sinusoidal steplike pulse and a sinusoidal drive
with a Gaussian envelope, are displayed in Fig. 3.1.
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Sinusoidal steplike pulse
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Figure 3.1: Schematic display of the driving fields (blue) that are discussed in this chapter
and the envelope functions (orange) that are used to model the sinusoidal drive. The
amplitude 𝐸 is given as a function of the time 𝑡, which is displayed in units of picoseconds,
since pump-probe experiments usually apply driving frequencies in the order of terahertz.
In this figure the driving frequency it is arbitrarily set to 𝛺 = 3THz, and we chose the
lattice spacing to be 𝑎 = 100pm. The maximal amplitude is set to 𝐸max = 1MV/m, which
can be realized in pump-probe experiments (for details, see section 3.2 and Refs. [39, 40]).
Those parameters as well as the width of the steplike pulse and the Gaussian envelope will
be varied throughout this thesis.
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3 Noninteracting lattice fermions driven by light pulses

3.1 Model

We illustrate next how to describe lattice fermions under the influence of an external field.
We start with the tight-binding Hamiltonian [41] in the absence of a field given by

ℋ0 = −
𝑁

∑
𝑖𝑗=1

𝑡𝑖𝑗𝑐
†
𝑖 𝑐𝑗 − 𝜇

𝑁
∑
𝑖=1

𝑐†
𝑖 𝑐𝑖 , (3.1)

where 𝑡𝑖𝑗 is the hermitian hopping matrix, 𝜇 is the chemical potential, and 𝑁 is the number
of lattice sites. The fermionic annihilation operator 𝑐𝑗 destroys an electron at lattice site 𝑗
while the fermionic creation operator 𝑐†

𝑖 creates an electron at lattice site 𝑖. In this paper, we
assume spinless electrons, and nearest-neighbor hopping on a hypercubic lattice in 𝑑 → ∞
dimensions. The nonzero elements 𝑡𝑖𝑗 of the hopping matrix are given by

𝑡𝑖𝑗 = 𝑡∗

2
√

𝑑
(3.2)

[42], and depend on the rescaled hopping constant 𝑡∗. We couple this system to an external
electromagnetic field described by

𝐸𝐸𝐸 (𝑟𝑟𝑟, 𝑡) = −∇∇∇𝛷 (𝑟𝑟𝑟, 𝑡) − 1
𝑐

∂𝐴𝐴𝐴 (𝑟𝑟𝑟, 𝑡)
∂𝑡

, (3.3)

where 𝛷 (𝑟𝑟𝑟, 𝑡) is a scalar potential and 𝐴𝐴𝐴 (𝑟𝑟𝑟, 𝑡) is a vector potential. The speed of light
is 𝑐, and we use the Hamiltonian gauge [43] to set the scalar potential 𝛷 (𝑟𝑟𝑟, 𝑡) = 0. The
electric field effect on the hopping matrix is taken into account by performing the Peierls’
substitution [44]. The original matrix element is multiplied by the exponential of the integral
over the vector potential from the lattice vector 𝑅𝑅𝑅𝑖 to the lattice vector 𝑅𝑅𝑅𝑗 as follows:

𝑡𝑖𝑗 → 𝑡𝑖𝑗exp (− 𝑖𝑒
ℏ𝑐

∫
𝑅𝑅𝑅𝑗

𝑅𝑅𝑅𝑖

𝐴𝐴𝐴 (𝑟𝑟𝑟, 𝑡) d𝑟𝑟𝑟) . (3.4)

Here, the absolute value of the electron charge is given by 𝑒. This Peierls’ substitution
is for a single band model, which means there are no dipole transitions between bands
[33]. While the electric fields we are considering vary in time, we assume they are spatially
uniform, so the magnetic field associated with them is negligible and 𝐴𝐴𝐴 (𝑟𝑟𝑟, 𝑡) → 𝐴𝐴𝐴 (𝑡). This
assumption can be made because the wavelength of the driving field is much larger then
the atomic scales. In this case, the momentum-space representation for the Hamiltonian
of noninteracting electrons coupled to a spatially uniform electric field can be written as a
function of the band structure

𝜀 (𝑘𝑘𝑘) = − 𝑡∗
√

𝑑

𝑑
∑
𝛼=1

cos (𝑘𝛼𝑎) , (3.5)

where 𝑎 is the lattice constant. The momentum-space Hamiltonian becomes

ℋ (𝑡) = ∑
𝑘𝑘𝑘

[𝜀 (𝑘𝑘𝑘 − 𝑒𝐴𝐴𝐴 (𝑡)
ℏ𝑐

) − 𝜇] 𝑐†
𝑘𝑘𝑘𝑐𝑘𝑘𝑘 , (3.6)
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3.1 Model

with

𝑐†
𝑘𝑘𝑘 = 1√

𝑁

𝑁
∑
𝑛=1

exp [−𝑖𝑅𝑅𝑅𝑛𝑘𝑘𝑘] 𝑐†
𝑛 (3.7)

and the hermitian conjugate equation for 𝑐𝑘. For many driving fields, such as an electric
field that is periodic in time, the Hamiltonian in Eq. (3.6) is a Floquet Hamiltonian. It
has periodic time dependence due to the time dependence it inherits from the electric field.
However, because the Hamiltonian with the Peierls’ substitution is diagonal in momentum
space, it commutes with itself for all times [ℋ (𝑡) , ℋ (𝑡′)] = 0. This greatly simplifies
the problem. We consider the momentum-space representation of the creation and the
annihilation operator in the Heisenberg picture, where 𝑐𝑘𝑘𝑘 (𝑡) = exp [𝑖𝑡ℋ (𝑡)] 𝑐𝑘𝑘𝑘exp [−𝑖𝑡ℋ (𝑡)],
and use the Hamiltonian in Eq. (3.6) to derive their time evolution, yielding

𝑐𝑘𝑘𝑘 (𝑡) = exp [− 𝑖
ℏ

∫
𝑡

−∞
[𝜀 (𝑘𝑘𝑘 − 𝑒𝐴𝐴𝐴 (𝑡)

ℏ𝑐
) − 𝜇] d𝑡] 𝑐𝑘𝑘𝑘 . (3.8)

This result allows us to analytically calculate the retarded momentum-dependent Green
function, which is defined by

𝐺R (𝑘𝑘𝑘, 𝑡1, 𝑡2) = − 𝑖
ℏ

𝛩 (𝑡1 − 𝑡2) ⟨{𝑐𝑘𝑘𝑘 (𝑡1) , 𝑐†
𝑘𝑘𝑘 (𝑡2)}

+
⟩ . (3.9)

The angular brackets denote thermal averaging ⟨𝑂⟩ = Tr [exp (−𝛽ℋ0) 𝑂] /Tr [exp (−𝛽ℋ0)],
where the inverse temperature is given by 𝛽 = 1/𝑇 and ℋ0 is the field-free Hamiltonian in
Eq. (3.1). Using the time evolution of of the creation and the annihilation operator given in
Eq. (3.8), this yields

𝐺R (𝑘𝑘𝑘, 𝑡1, 𝑡2) = − 𝑖
ℏ

𝛩 (𝑡1 − 𝑡2) 𝑒
𝑖𝜇
ℏ (𝑡1−𝑡2)exp [− 𝑖

ℏ
∫

𝑡1

𝑡2

𝜀 (𝑘𝑘𝑘 − 𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) d𝑡] ⟨𝑐𝑘𝑘𝑘𝑐†
𝑘𝑘𝑘 + 𝑐†

𝑘𝑘𝑘𝑐𝑘𝑘𝑘⟩ .

(3.10)
With the Fermi-Dirac distribution being 𝑓 (𝑥) = 1/ [1 + exp (𝛽𝑥)], the creation and the
annihilation operator satisfy ⟨𝑐†

𝑘𝑘𝑘𝑐𝑘𝑘𝑘⟩ = 𝑓 (𝜀 (𝑘𝑘𝑘) − 𝜇) and ⟨𝑐𝑘𝑘𝑘𝑐†
𝑘𝑘𝑘⟩ = 1 − 𝑓 (𝜀 (𝑘𝑘𝑘) − 𝜇), so it is

obvious that ⟨𝑐𝑘𝑘𝑘𝑐†
𝑘𝑘𝑘 + 𝑐†

𝑘𝑘𝑘𝑐𝑘𝑘𝑘⟩ = 1 [33]. To calculate the momentum-dependent Green function
in Eq. (3.9), we specialize to a vector potential that lies along the diagonal, introducing a
scalar function 𝐴 (𝑡) that is associated with the vector potential via 𝐴𝐴𝐴 (𝑡) = 𝐴 (𝑡) (1, 1, 1, … ).
In this case, the altered band structure is given by

𝜀 (𝑘𝑘𝑘 − 𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) = 𝜀 (𝑘𝑘𝑘) cos (𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) + ̃𝜀 (𝑘𝑘𝑘) sin (𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) , (3.11)

using the complementary energy function

̃𝜀 (𝑘𝑘𝑘) = − 𝑡∗
√

𝑑

𝑑
∑
𝛼=1

sin (𝑘𝛼𝑎) , (3.12)
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3 Noninteracting lattice fermions driven by light pulses

which is the projection of the band velocity along the field direction. The retarded momentum-
dependent Green function is then given by

𝐺R (𝑘𝑘𝑘, 𝑡1, 𝑡2) = − 𝑖
ℏ

𝛩 (𝑡1 − 𝑡2) 𝑒
𝑖𝜇
ℏ (𝑡1−𝑡2) (3.13)

×exp [−𝑖𝜀 (𝑘𝑘𝑘)
ℏ

∫
𝑡1

𝑡2

cos (𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) d𝑡]

×exp [−𝑖 ̃𝜀 (𝑘𝑘𝑘)
ℏ

∫
𝑡1

𝑡2

sin (𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) d𝑡] .

Of course this retarded Green function is independent of temperature as expected for Green
functions of noninteracting systems. Note that in equilibrium the Hamiltonian is constant in
time and hence the whole problem is time-translation invariant. Thus, only time differences
matter and the Green function depends solely on the relative time 𝑡rel = 𝑡1 − 𝑡2. However,
due to the coupling of the lattice fermions to a time-dependent electric field, the Green
function in Eq. (3.13) depends separately on the time 𝑡2 of the creation operator and the
time 𝑡1 of the annihilation operator. The local Green function can be computed by summing
over all momentum vectors 𝑘𝑘𝑘, which corresponds to the integration over 𝜀 and ̃𝜀 respectively,
by using the joint density of states for tight binding electrons on a hypercubic lattice

𝜌0 (𝜀, ̃𝜀) = ( 1√
𝜋𝑡∗𝑎𝑑 )

2
exp [− ( 𝜀

𝑡∗ )
2

− ( ̃𝜀
𝑡∗ )

2
] . (3.14)

For an arbitrary function ̃𝐼 (𝑡1, 𝑡2) ∈ ℝ, the integral over 𝜀 can be calculated by completing
the square, which leads to

1√
𝜋𝑡∗ ∫ d𝜀 exp [− ( 𝜀

𝑡∗ )
2

− 𝑖𝜀 ̃𝐼 (𝑡1, 𝑡2)
ℏ

] = exp ⎡⎢
⎣

− (𝑡∗ ̃𝐼 (𝑡1, 𝑡2)
2ℏ

)
2

⎤⎥
⎦

. (3.15)

Additionally the identity

∣∫
𝑡1

𝑡2

cos (𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) d𝑡∣
2

+ ∣∫
𝑡1

𝑡2

sin (𝑒𝑎𝐴 (𝑡)
ℏ𝑐

) d𝑡∣
2

= ∣∫
𝑡1

𝑡2

exp [𝑖𝑒𝑎𝐴 (𝑡)
ℏ𝑐

] d𝑡∣
2

(3.16)

is used to compute the local Green function, yielding

𝑔R
loc (𝑡1, 𝑡2) = − 𝑖

ℏ
𝛩 (𝑡1 − 𝑡2) 𝑒

𝑖𝜇
ℏ (𝑡1−𝑡2)𝑒−( 𝑡∗

2ℏ )
2
|𝐼(𝑡1,𝑡2)|2 , (3.17)

where 𝐼 (𝑡1, 𝑡2) is given by

𝐼 (𝑡1, 𝑡2) = ∫
𝑡1

𝑡2

exp [𝑖𝑒𝑎𝐴 (𝑡)
ℏ𝑐

] d𝑡 . (3.18)

In this paper, we will assume half filling (𝜇 = 0), so the time-dependent local Green function
in Eq. (3.17) is purely imaginary.
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3.2 Infinite sinusoidal driving

3.2 Infinite sinusoidal driving

For the infinite sinusoidal driving with the frequency 𝛺 and the amplitude 𝐸, the vector
potential is given by

𝐴∞(𝑡) = 𝑐𝐸
𝛺

cos (𝛺𝑡) , (3.19)

whose simple form enables the analytic determination of the local Green function. If we
define the modified amplitude 𝐸0 = 𝑒𝑎𝐸/ℏ, the squared absolute value of 𝐼 (𝑡1, 𝑡2) in Eq.
(3.18) yields

|𝐼∞ (𝑡1, 𝑡2)|2 = 1
𝛺2 ∣∫

𝑡1𝛺

𝑡2𝛺
𝑓𝑐 (𝑡) d𝑡∣

2

+ 1
𝛺2 ∣∫

𝑡1𝛺

𝑡2𝛺
𝑓𝑠 (𝑡) d𝑡∣

2

(3.20)

with the integrands

𝑓𝑐 (𝑡) = cos (𝐸0
𝛺

cos (𝑡)) (3.21a)

𝑓𝑠 (𝑡) = sin (𝐸0
𝛺

cos (𝑡)) . (3.21b)

Both 𝑓𝑐 (𝑡) and 𝑓𝑠 (𝑡) are even functions that are 2𝜋-periodic, therefore they can be expressed
as Fourier series with the Fourier coefficients 𝑐𝑚 and 𝑠𝑚 according to

𝑓𝑐 (𝑡) = 𝑐0
2

+
∞

∑
𝑚=1

𝑐𝑚 cos (𝑚𝑡) (3.22a)

𝑓𝑠 (𝑡) =
∞

∑
𝑚=1

𝑠𝑚 cos (𝑚𝑡) . (3.22b)

Note that due to the fact that 𝑓𝑠 (𝑡) is not only 2𝜋-periodic, but also 𝜋-anti-periodic, the
coefficient 𝑠0 vanishes, while the 𝜋-periodic function 𝑓𝑐 (𝑡) has the coefficient 𝑐0 = 2𝐽0 (𝐸0/𝛺),
where 𝐽𝛼 is the Bessel function of the first kind. Using the two 2𝜋/𝛺-periodic functions
derived from integrating the Fourier coefficients of 𝑓𝑐 and 𝑓𝑠,

𝜙𝑐 (𝑡) = 1
𝛺

∞
∑
𝑚=1

𝑐𝑚
𝑚

sin (𝑚𝛺𝑡) (3.23a)

𝜙𝑠 (𝑡) = 1
𝛺

∞
∑
𝑚=1

𝑠𝑚
𝑚

sin (𝑚𝛺𝑡) , (3.23b)

the integration in Eq. (3.20) can now easily be computed, yielding

|𝐼∞ (𝑡1, 𝑡2)|2 = |𝜙𝑠 (𝑡1) − 𝜙𝑠 (𝑡2)|2 + ∣𝐽0 (𝐸0
𝛺

) 𝑡rel + 𝜙𝑐 (𝑡1) − 𝜙𝑐 (𝑡2)∣
2

. (3.24)

In this form, it is obvious that the increase in |𝐼∞ (𝑡1, 𝑡2)|2 for large relative times is solely
caused by the term dependent on the Bessel function and proportional to 𝑡2

rel; a large
|𝐼∞ (𝑡1, 𝑡2)|2 corresponds to a small Green function as seen in Eq. (3.17). This is because
the periodic functions 𝜙 merely oscillate in time. Hence, if the amplitude and the frequency
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Figure 3.2: Left panel: Negative imaginary part of the local retarded Green function as a
function of the relative time 𝑡rel in units of the inverse rescaled hopping ℏ/𝑡∗. Note that
the real part vanishes because 𝜇 = 0. Right panel: Diagonal DOS as a function of the
frequency 𝜔 in units of the rescaled hopping. Because the DOS is a set of delta functions
at 𝐽0 (𝐸0/𝛺) = 0 the coefficients 𝑔n = −1/ (2𝜋) ∫2𝜋

0
d𝑡relIm [𝐺R

loc (𝑡rel, 0)] cos (𝑛𝑡rel) of the
Fourier series are displayed for 𝐸0 = 2.404𝛺 and 𝐸0 = 5.52𝛺. Other parameters: average
time 𝑡ave = 0, driving frequency 𝛺 = 𝑡∗/ℏ.

of the driving field are chosen in such a way that the Bessel function 𝐽0 (𝐸0/𝛺) is zero, then
the dephasing of the Green function, corresponding to the decay of 𝐺R

loc (𝑡1, 𝑡2) for large 𝑡rel,
no longer occurs.

Figure 3.2 shows the imaginary part of the time-dependent local Green function at 𝑡ave = 0,
as defined in Eq. (2.4) for different amplitudes of the electric field, while the frequency is
kept constant at 𝛺 = 𝑡∗/ℏ. Note that the Green function at half filling is purely imaginary
[see Eq. (3.17)]. In this case, the absolute value of Bessel function is purely dependent
on the amplitude of the driving. If the amplitude is chosen to be 𝐸0 = 2.404𝛺, which
corresponds to the first zero of the Bessel function (displayed in orange), it is clear that
there is no dephasing in 𝑡rel and the local Green function oscillates with a period of 2𝜋/𝛺
between one and a constant value less than one. Note that if the Bessel function is zero,
the squared absolute value of 𝐼∞ (𝑡1, 𝑡2) in Eq. (3.24) is merely a superposition of sinusoidal
functions that are periodic in 2𝜋/𝛺. This means the DOS is a set of delta functions and the
dominant frequencies are 𝜔 = 0 and 𝜔 = ±𝛺. The next zero of the Bessel function occurs
at 𝐸0 = 5.52𝛺, and again the imaginary part oscillates with a period of 2𝜋/𝛺 around a
constant value. However, the amplitude changes and additional peaks appear. Therefore the
DOS is again a set of delta functions, but it consists of more delta peaks than at the first
zero. This behavior continues, as the amplitude takes values of higher zeros of the Bessel
function.

The imaginary part of the Green function at a constant 𝑡2 = 0 [as defined in Eq. (2.7)]
shows the same overall properties when displayed as a function of 𝑡rel, differences being
that the lower extreme value shifts and the oscillations have double the frequency. This
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3.2 Infinite sinusoidal driving

behavior can easily be understood, because in Eq. (3.24) 𝑡1 and 𝑡2 are the arguments of
the function 𝜙, where they solely appear in the argument of the sine function. But in the
average time Green function (2.4), both 𝑡1 and 𝑡2 are dependent on 𝑡rel/2, while they are
dependent on 𝑡rel without an additional factor in the Green function for the horizontal case
(2.7). Therefore the period of the oscillations in 𝑡rel for a constant 𝑡ave is twice as large for a
constant 𝑡2.

Contrary to the behavior at the zeros of the Bessel function, the dephasing in 𝑡rel is fast
at extreme values of the Bessel function like its first minimum at 𝐸0 = 3.83𝛺, which is
displayed in red, because the squared absolute value of |𝐼∞ (𝑡1, 𝑡2)|2 is large, even if 𝑡rel
is still comparatively small. As the argument of the Bessel function becomes smaller, the
dephasing takes longer.

But is it even possible in a pump-probe experiment to measure at frequencies and amplitudes
that allow to reach the first zero of the Bessel function? If we assume the driving frequency
to be in the order of terahertz, which is common for pump-probe experiments (𝛺 ∝ 1012s−1),
the amplitude of the electric field would need to be 𝐸 = 2.404 𝛺ℏ/ (𝑒𝑎) ≈ 15 × 106V/m as
the first zero of the Bessel function is at 𝐽0 (2.404) = 0. Amplitudes of that magnitude can
indeed be realized in pump-probe experiments, one example can be found in Refs. [39, 40]

For a time-independent Hamiltonian it is easy to prove that the DOS is positive semidefinite,
via the Lehmann representation. However, this is not necessarily the case for the DOS of
a driven system where the DOS takes negative values if it is computed at a constant 𝑡ave
or 𝑡2. One can even argue if it is correct to call a spectral function that takes negative
values DOS, because it cannot be interpreted physically as such. We will make a more
specific distinction in chapter 4, but for now continue to call the spectral function defined by
𝜌(𝜔, 𝑡ave) ∶= −𝜋−1Im𝐺(𝜔, 𝑡ave) DOS, in order to keep the notation, especially in the figures,
simple.

For a pure Floquet Hamiltonian the DOS has to be periodic in the Floquet period, which is
the period of the driving, and averaging over this Floquet period in 𝑡ave or 𝑡2, respectively,
does lead to a semidefinite DOS. To show this analytically, we consider the retarded Green
function at half filling, introduced in Eq. (3.13) and write it in terms of the functions 𝜙
introduced in Eq. (3.23), yielding

𝐺R (𝑘𝑘𝑘, 𝑡1, 𝑡2) = − 𝑖
ℏ

𝛩 (𝑡1 − 𝑡2) exp [− 𝑖
ℏ

𝜀 (𝑘𝑘𝑘) 𝐽0 (𝐸0
ℏ

) (𝑡1 − 𝑡2)] (3.25)

×exp [− 𝑖
ℏ

(𝜀 (𝑘𝑘𝑘) 𝜙𝑐 (𝑡1) − 𝜀 (𝑘𝑘𝑘) 𝜙𝑐 (𝑡2))]

×exp [− 𝑖
ℏ

( ̃𝜀 (𝑘𝑘𝑘) 𝜙𝑠 (𝑡1) − ̃𝜀 (𝑘𝑘𝑘) 𝜙𝑠 (𝑡2))] . (3.26)

Defining the 2𝜋/𝛺 periodic function 𝛷 (𝑡,𝑘𝑘𝑘)

𝛷 (𝑡,𝑘𝑘𝑘) = exp [−𝑖𝜀 (𝑘𝑘𝑘)
ℏ

𝜙𝑐 (𝑡) − 𝑖 ̃𝜀 (𝑘𝑘𝑘)
ℏ

𝜙𝑠 (𝑡)] (3.27a)

= ∑
𝑚

𝑒𝑖𝑚𝛺𝑡𝑓𝑚 (𝑘𝑘𝑘) (3.27b)
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3 Noninteracting lattice fermions driven by light pulses

allows us to write this Green function as

𝐺R (𝑘𝑘𝑘, 𝑡ave, 𝑡rel) = − 𝑖
ℏ

exp [−𝑖𝜀 (𝑘𝑘𝑘)
ℏ

𝐽0 (𝐸0
ℏ

) 𝑡rel] 𝛩 (𝑡rel) (3.28)

×𝛷∗ (𝑡ave − 𝑡rel
2

,𝑘𝑘𝑘) 𝛷 (𝑡ave + 𝑡rel
2

,𝑘𝑘𝑘) .

As shown in Appendix A, using the convolution of two 2𝜋/𝛺 periodic functions and the
fact that 𝛷 can be written as a Fourier series with the coefficients 𝑓𝑚, the integral over one
period is given by

𝛺
2𝜋

∫
𝑥+ 2𝜋

𝛺

𝑥
𝛷∗ ( ̃𝑡 − 𝑡

2
) 𝛷 ( ̃𝑡 + 𝑡

2
) d ̃𝑡 = ∑

𝑚
|𝑓𝑚|2𝑒𝑖𝑚𝑡𝛺 . (3.29)

Note that we are suppressing the 𝑘𝑘𝑘 dependence of both 𝛷 and 𝑓𝑚 in order to simplify the
notation.

This allows us to compute the averaged Green function

̄𝐺𝑅 (𝑘𝑘𝑘, 𝑡rel) = 𝛺
2𝜋

∫
𝑥+ 2𝜋

𝛺

𝑥
𝐺𝑅 (𝑘𝑘𝑘, 𝜏, 𝑡rel) d𝜏 (3.30)

and the averaged spectral function ̄𝜌 (𝜔,𝑘𝑘𝑘), yielding

̄𝜌 (𝜔,𝑘𝑘𝑘) = − 1
𝜋

Im (∫
∞

0
𝑒𝑖𝜔𝑡rel ̄𝑔𝑅 (𝑘𝑘𝑘, 𝑡rel) d𝑡rel) (3.31a)

= 1
ℏ

∑
𝑚

|𝑓𝑚|2𝛿 (𝜔 + 𝑚𝛺 − 𝜀 (𝑘𝑘𝑘)
ℏ

𝐽0 (𝐸0
ℏ

)) (3.31b)

which is indeed nonnegative for all 𝜔. While the diagonal and the horizontal DOS corre-
sponding to the infinite sinusoidal driving are different at a given time 𝑡2 for the horizontal
DOS and 𝑡ave for the diagonal DOS (even if 𝑡2 = 𝑡ave), the time-averaged spectral function

̄𝐴 (𝜔,𝑘𝑘𝑘) (and therefore the DOS averaged over the Floquet period) are always the same.
Details can be found in Appendix A.

3.3 Semi-infinite sinusoidal driving starting at 𝑡0 = 0

While a driving field that is switched on at a given time 𝑡0 = 0 but stays on is also not
experimentally implementable, it is useful to study the properties of its DOS because there
are many similarities to the behavior of the DOS of driving pulses that can be experimentally
implemented (see below). The vector potential of this semi-infinite sinusoidal driving is given
by 𝐴 = (𝑐𝐸/𝛺) cos (𝛺𝑡) 𝛩 (𝑡) − (𝑐𝐸/𝛺) 𝛩 (𝑡). Again, the simple form of this expression
allows us to analytically calculate the local retarded Green function in Eq. (3.17). For this
driving, one has to distinguish between three time intervals when calculating the absolute
value squared of 𝐼 (𝑡1, 𝑡2). If both the annihilation operator at 𝑡1 and the creation operator
at 𝑡2 are applied before the field is switched on, i.e. 𝑡2 < 𝑡1 < 0, the Hamiltonian equals
a tight-binding Hamiltonian without an electric field as given in Eq. (3.1). In this case,
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3.3 Semi-infinite sinusoidal driving starting at 𝑡0 = 0

𝐼 (𝑡1, 𝑡2) = 𝑡rel and the local Green function in Eq. (3.17) is a Gaussian in 𝑡rel multiplied by
a step function, which becomes the Gaussian DOS after Fourier transformation to frequency
[33]. However, if the creation operator is applied before the field is switched on, meaning
𝑡2 < 0, while the annihilation operator is applied after the field is turned on (𝑡1 > 0), the
absolute value of 𝐼 (𝑡1, 𝑡2) is given by

∣𝐼𝑡2<0
sm (𝑡1, 𝑡2)∣

2
= ∣−𝑡2 + cos (𝐸0

𝛺
) 𝐹𝑐 (𝑡1, 0) + sin (𝐸0

𝛺
) 𝐹𝑠 (𝑡1, 0)∣

2

+ ∣cos (𝐸0
𝛺

) 𝐹𝑠 (𝑡1, 0) − sin (𝐸0
𝛺

) 𝐹𝑐 (𝑡1, 0)∣
2

.

Here 𝐹𝑐 and 𝐹𝑠 are the integrated functions 𝑓𝑐 (𝑡) and 𝑓𝑠 (𝑡) as defined in Eq. (3.21) and
given by

𝐹𝑐 (𝑡1, 𝑡2) = 𝐽0 (𝐸0
𝛺

) 𝑡rel + 𝜙𝑐 (𝑡1) − 𝜙𝑐 (𝑡2) (3.32a)

𝐹𝑠 (𝑡1, 𝑡2) = 𝜙𝑠 (𝑡1) − 𝜙𝑠 (𝑡2) . (3.32b)

Finally, if the operator times obey 𝑡1 > 𝑡2 > 0, the absolute square of 𝐼 (𝑡1, 𝑡2) yields

∣𝐼𝑡2>0
sm (𝑡1, 𝑡2)∣

2
= ∣cos (𝐸0

𝛺
) 𝐹𝑐 (𝑡1, 𝑡2) + sin (𝐸0

𝛺
) 𝐹𝑠 (𝑡1, 𝑡2)∣

2

+ ∣cos (𝐸0
𝛺

) 𝐹𝑠 (𝑡1, 𝑡2) − sin (𝐸0
𝛺

) 𝐹𝑐 (𝑡1, 𝑡2)∣
2

.

For large average times the DOS of the system coupling to the semi-infinite sinusoidal driving
should equal the DOS of an infinite sinusoidal driving, and by factoring the expression in
Eq. (3.33) it can indeed be shown that it is equal to the expression in Eq. (3.24), i.e.

∣𝐼𝑡2>0
sm (𝑡1, 𝑡2)∣

2
= [cos2 (𝐸0

𝛺
) + sin2 (𝐸0

𝛺
)] × [𝐹 2

𝑐 (𝑡1, 𝑡2) + 𝐹 2
𝑠 (𝑡1, 𝑡2)] (3.33a)

=𝐹 2
𝑐 (𝑡1, 𝑡2) + 𝐹 2

𝑠 (𝑡1, 𝑡2) (3.33b)
= |𝐼∞ (𝑡1, 𝑡2)|2 . (3.33c)

The function 𝐹𝑐 (𝑡1, 𝑡2) is directly proportional to the Bessel function multiplied by 𝑡rel. This
means, that at large average times the relative time at which 𝑡2 = 𝑡ave − (𝑡rel/2) < 0 implies
∣𝐼𝑡2>0

sm (𝑡1, 𝑡2)∣
2

in Eq. (3.32) is so large that the Green function in Eq. (3.17) is essentially
zero. In this case, it does not contribute to the DOS anymore.

This holds true as long as 𝐹𝑐 (𝑡1, 𝑡2) is indeed increasing with 𝑡rel, which is the case as
long as the amplitude and the frequency of the driving are chosen in such a way that the
Bessel function is not zero. However, if the Bessel function is zero, ∣𝐼𝑡2>0

sm (𝑡1, 𝑡2)∣
2

is not

increasing for increasing relative times, while ∣𝐼𝑡2<0
sm (𝑡1, 𝑡2)∣

2
is still increasing because of the

contribution of −𝑡2. This means that even for large average times, the Green function at
𝑡2 < 0, i.e. 𝑡rel > 2𝑡ave, contributes to the diagonal DOS, which will never be a set of delta
functions and therefore never equal the DOS of the system coupled to an infinite drive.
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Figure 3.3: Negative imaginary part of the local Green function at 𝑡ave = 10ℏ/𝑡∗, as a
function of 𝑡2 in units of inverse rescaled hopping ℏ/𝑡∗ for different electric fields. Other
parameters: 𝛺 = 𝑡∗/ℏ. Note that the real part vanishes because 𝜇 = 0.

This scenario is displayed in Fig. 3.3. Here the imaginary part of the local, time-dependent
Green function is plotted as a function of 𝑡2 for fixed 𝑡ave = 10ℏ/𝑡∗. Note that for retarded
quantities 𝑡2 ≤ 𝑡ave holds. The black line is the Heaviside step function, so the semi-infinite
drive is turned on only in the area shaded in grey. The dashed lines correspond to the
imaginary parts of the local, time-dependent Green functions of a semi-infinite drive, while
the solid lines correspond to the infinite drive. Within the shaded box, the curves at the
same amplitude 𝐸0 match perfectly. But outside of that area, where 𝑡2 < 0, the imaginary
parts of the local, time-dependent Green functions corresponding to the semi-infinite drive
decay faster than the functions corresponding to an infinite drive.

For the amplitude 𝐸0 = 3.83𝛺, both the Green function for infinite drive (light green) and
for semi-infinite drive (dark green) have completely decayed when 𝑡2 = 0. This is because
the magnitude of the Bessel function is large at 𝐽0 (3.83) = −0.40. In this case, choosing
𝑡ave = 10ℏ/𝑡∗ is sufficient to interpret the DOS corresponding to the semi-infinite drive as
a Floquet DOS. Contrary to that, the imaginary part of the local, time-dependent Green
function with 𝐸0 = 5.22𝛺 differs significantly from zero at 𝑡2 = 0. This is because the
magnitude of 𝐽0 (5.22) = −0.10 is small. For 𝑡2 < 0 the function for semi-infinite drive
(red) decays faster than for infinite drive (orange), so the DOS will not match due to these
contributions from before 𝑡 = 0 (when the semi-infinite drive is turned off). At this amplitude,
only the DOS corresponding to larger average times can approximate the Floquet results.
Finally, the local time dependent Green function corresponding to 𝐸0 = 2.40𝛺 does not
decay at all for the infinite drive (light blue). This is because 𝐽0 (2.40) = 0. However, for the
semi-infinite drive (dark blue) it starts to decay immediately for 𝑡2 < 0. This means the DOS
corresponding to the infinite drive and the semi-infinite drive will never match, no matter
how large the average time is chosen to be, and the DOS corresponding to semi-infinite
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3.4 Sinusoidal steplike pulse

driving can never be interpreted as the Floquet DOS.

However, for the horizontal Fourier transformation the Green function only contributes
to the horizontal DOS for 𝑡 > 𝑡2, which is why the horizontal DOS corresponding to the
semi-infinite sinusoidal drive always equals the horizontal DOS corresponding to the infinite
drive for all 𝑡2 > 0 for any amplitude and frequency of the electric field.

3.4 Sinusoidal steplike pulse

A pulse that is turned on at 𝑡0 and turned off after 𝑛 ∈ ℕ oscillations, i.e. at a cutoff
time 𝑡c = 2𝜋𝑛/𝛺 is not experimentally implementable either, but there are experimental
implementations that come close. One advantage of it is, that again the DOS can be
computed analytically. Naturally, for 𝑡2 < 𝑡1 < 𝑡c the DOS equals the results for semi-
infinite driving, i.e. depending on the sign of 𝑡2 the absolute value of 𝐼 (𝑡1, 𝑡2) is given by Eq.
(3.32) or Eq. (3.33). This also means that for the diagonal Fourier transform, the average
time needs to be chosen large enough for the DOS corresponding to the semi-infinite driving
to equal the DOS obtained by applying an infinite sinusoidal driving, as explained in section
3.3. However, for 0 < 𝑡2 < 𝑡c < 𝑡1, the absolute value squared of 𝐼 (𝑡1, 𝑡2) is given by

∣𝐼𝑡𝑐<𝑡1sp (𝑡1, 𝑡2)∣
2

= ∣𝑡1 − 𝑡c + cos (𝐸0
𝛺

) 𝐹𝑐 (𝑡c, 𝑡2) + sin (𝐸0
𝛺

) 𝐹𝑠 (𝑡c, 𝑡2)∣
2

+ ∣cos (𝐸0
𝛺

) 𝐹𝑠 (𝑡c, 𝑡2) − sin (𝐸0
𝛺

) 𝐹𝑐 (𝑡c, 𝑡2)∣
2

,

where the growing 𝑡1 − 𝑡c for increasing 𝑡rel causes significant deviations from the DOS
corresponding to infinite driving. Therefore, it is not enough to choose 𝑡ave to be large and
the Bessel function to have a finite size in order to interpret the results with Floquet theory,
but also 𝑡c must be large enough that the change in the local Green function that is caused
by Eq. (3.34) has no further effect on the DOS. Similar to the semi-infinite driving, the
dephasing in 𝑡rel of the local retarded Green function is significantly faster if the Bessel
function of the amplitude divided by the frequency of the electric field is large. Since the
absolute value of 𝐼 (𝑡1, 𝑡2) for 𝑡2 < 0 and for 𝑡1 > 𝑡c, given in Eq. (3.32) and Eq. (3.34)
respectively, is eventually increasing for any electric field, while it is oscillating equally to
the absolute value of 𝐼 (𝑡1, 𝑡2) of the infinite sinusoidal driving for 0 < 𝑡2 < 𝑡1 < 𝑡c and
𝐽0 (𝐸0/𝛺) = 0, the DOS will never be a set of delta functions. The Green function for
𝑡1 > 𝑡c will eventually contribute to the DOS for both the horizontal and the diagonal
Fourier transform, therefore at zeros of the Bessel function, the measured DOS corresponding
to the sinusoidal steplike pulse can never be interpreted using Floquet theory, no matter
which Fourier transform is chosen.

Studying the diagonal DOS for 0 < 𝑡ave < 𝑡c/2, it is obvious that 𝑡2 < 0 applies before
𝑡1 > 𝑡c needs to be taken into account, therefore here the results correspond to the results
for the semi-infinite driving. However, for 𝑡c/2 < 𝑡ave < 𝑡c, the Green function at 𝑡c < 𝑡1
needs to be considered before 𝑡2 < 0 applies. Therefore, for Floquet theory to be valid, the
Green function has to be approximately zero at 𝑡1 = 𝑡𝑐 in order for it to have a negligible
contribution to the DOS. Because the dephasing in 𝑡rel in the local Green function is faster
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3 Noninteracting lattice fermions driven by light pulses

the larger the value of the Bessel function multiplied by sin (𝐸0/𝛺) and cos (𝐸0/𝛺) is, the
cutoff time 𝑡𝑐 can be chosen significantly smaller for large values of the Bessel functions.

Note that it is most suitable to set the average time to 𝑡ave = 𝑡c/2 because in this case
𝑡2 = 0 and 𝑡1 = 𝑡𝑐 occur at the same relative time 𝑡rel = 𝑡c. When 𝑡ave is chosen to be the
minimal average time 𝑡min

ave at which the DOS corresponding to a semi-infinite drive equals
the DOS for infinite driving, then 𝑡c = 2𝑡min

ave is the shortest cutoff time at which the DOS of
the steplike pulse can be interpreted with Floquet theory.
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Figure 3.4: The diagonal DOS corresponding to the steplike pulse that starts at 𝑡 = 0
and is turned off after 𝑛 oscillations at a cutoff time 𝑡c = 2𝜋𝑛/𝛺 and corresponding to
an infinite sinusoidal drive for 𝛺 = 𝑡∗/ℏ, 𝑡ave = 30ℏ/𝑡∗ and two different amplitudes
𝐸0 = 5.22𝛺 (upper panel) and 𝐸0 = 𝜋𝛺/4 (lower panel).

Figure 3.4 displays the diagonal DOS corresponding to the steplike pulse and to infinite
sinusoidal driving for 𝛺 = 𝑡∗/ℏ at two different amplitudes of the electric field. The average
time is chosen to be 𝑡ave = 30ℏ/𝑡∗ because earlier analyses have shown that this is sufficiently
large for the diagonal DOS of the semi-infinite sinusoidal drive to equal the DOS associated
with infinite driving. For 𝑡𝑐 < 𝑡ave, the squared absolute value of 𝐼 (𝑡1, 𝑡2) is given by |𝑡rel|

2,
so for 𝑡2 < 𝑡1 < 0, the local retarded Green function (and therefore the DOS) are Gaussian
and equal to the noninteracting DOS, as explained in section 3.3. This is why the blue
line at 𝑛 = 4, i.e. at 𝑡c = 4 ⋅ 2𝜋ℏ/𝑡∗ < 𝑡ave = 30ℏ/𝑡∗, is Gaussian and the same for both
amplitudes of the electric field.

In the upper panel of Fig. 3.4, the amplitude of the electric field is given by 𝐸0 = 5.22𝛺,
so that the magnitude of the Bessel function is small [𝐽0 (5.22) = −0.10]. This means the
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3.5 Sinusoidal Gaussian pulse

dephasing in 𝑡rel is slow (as can be seen in Fig. 3.2), so 𝑡𝑐 has to be chosen quite large in
order for Floquet theory to be applicable. When contemplating the DOS at 𝑛 ∈ {5, 6, 7} in
the upper panel, it is obvious that it is completely different from the DOS of the infinite
sinusoidal pulse, which is displayed in orange. Only at 𝑛 = 8 do we start to see some
similarity, and the lines seem to match at 𝑛 = 9. However, only 𝑛 = 10 (this is not displayed,
as the deviations from 𝑛 = 9 are too small to be seen) is sufficient for the two diagonal DOS
to be essentially equal. This means 𝑡𝑐 needs to be chosen to be twice as large as 𝑡ave when
the results are meant to be interpreted with Floquet theory.

In the lower panel of Fig. 3.4, the amplitude of the electric field is chosen to be 𝐸0 = 0.25𝜋𝛺.
In this case, the magnitude of 𝐽0 (0.25𝜋) = 0.602 is large and both cos (0.25𝜋) = sin (0.25𝜋) =
1/

√
2 are large too. Contrary to the DOS corresponding to a small value of the Bessel

function, we find that the Gaussian diagonal DOS at 𝑡ave > 𝑡c (𝑛 = 4, blue), shows similarities
to the diagonal DOS corresponding to the infinite sinusoidal driving. Furthermore, as soon
as 𝑡ave < 𝑡c (𝑛 = 5, green), the DOS are equal. Note that the average time in the lower
panel is chosen to be 𝑡ave = 30ℏ/𝑡∗ to ensure comparability with the upper panel. But
while 𝑡ave = 30ℏ/𝑡∗ ≈ 𝑡min

ave holds for 𝐸0 = 5.22𝛺 (upper panel), the minimal average time
for 𝐸0 = 0.25𝜋𝛺 is much smaller at 𝑡min

ave ≪ 𝑡ave = 30ℏ/𝑡∗. Therefore, in the lower panel,
𝑡c ≪ 2𝑡ave is sufficient to interpret the DOS with Floquet theory.

The observations above hold for the horizontal DOS as well, the major difference being that
𝑡ave does not need to be chosen as large. In fact, in this case, choosing 𝑡ave = 0 is ideal,
as only the magnitude of 𝑡c − 𝑡ave determines the quality of the results for a given electric
field.

3.5 Sinusoidal Gaussian pulse

A field pump that is implementable in an experiment is a sinusoidal electric field that is
modulated with a Gaussian envelope, i.e. an electric field that is given by

𝐸 (𝑡) = 𝐸 sin (𝛺𝑡) exp [− ( 𝑡
𝑡E

)
2
] (3.34a)

= −𝑖𝐸
2

exp [− (𝛺𝑡E
2

)
2
] (exp [(𝛺𝑡E

2
+ 𝑖 𝑡

𝑡E
)

2
] − exp [(𝛺𝑡E

2
− 𝑖 𝑡

𝑡E
)

2
]) ,

(3.34b)

where 𝑡E is the width of the Gaussian. The vector potential 𝐴G corresponding to the field
in Eq. (3.34a) can be computed using the imaginary error function

erfi (𝑎 + 𝑖𝑏𝑥) = 2𝑏𝑖√
𝜋

∫
𝑥

0
exp [(𝑎 + 𝑢𝑏𝑖)2] d𝑢 𝑎, 𝑏 ∈ ℝ , (3.35)

which obeys
erfi (𝑎 + 𝑖𝑏𝑥) + erfi (𝑎 − 𝑖𝑏𝑥) = 2Re [erfi (𝑎 + 𝑖𝑏𝑥)] . (3.36)
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3 Noninteracting lattice fermions driven by light pulses

It is given by

𝐴G (𝑡) = 𝑐𝐸𝑡E
√

𝜋
2

𝑒−( 𝛺𝑡E
2 )

2

Re [erfi (𝛺𝑡E
2

+ 𝑖𝑡
𝑡E

)] . (3.37)

Using the Faddeeva function

w (𝑧) = 𝑒−𝑧 (1 + 𝑖erfi (𝑧)) , (3.38)

this vector potential can also be expressed as

𝐴G (𝑡) = 𝑐𝐸𝑡E
√

𝜋
2

𝑒−( 𝑡
𝑡E

)
2

Im [w (𝛺𝑡E
2

+ 𝑖𝑡
𝑡E

) 𝑒𝑖𝛺𝑡] , (3.39)

and it shares many properties with the vector potential for the infinite sinusoidal pulse in Eq.
(3.19). Both vector potentials have the same zeros and oscillate with the same frequency,
the major difference is the decaying amplitude for the oscillations in the vector potential 𝐴G.
Since we are not able to calculate an analytic form for the local retarded Green function from
that, we simply calculate it numerically. What we find is that as the Gaussian broadens,
the corresponding DOS does not simply approach the DOS of an infinite sinusoidal drive,
but oscillates around it (see Fig. 3.5b). It requires a second averaging, more precisely a
running average over one period of these oscillations in 𝜔, for the DOS of the Gaussian pulse
to match the DOS of the infinite sinusoidal driving.

This can be traced back to an additional peak in the imaginary part of the time-dependent
local Green function, whose position and shape are functions of the amplitude 𝐸0, the
frequency 𝛺 and the width 𝑡E of a pulse (see Fig. 3.5a). Figure 3.5a shows that for a wide
Gaussian, the imaginary part of the time-dependent local Green function perfectly matches
the imaginary part of the time-dependent local Green function of the system coupling to
an infinite drive up to a relative time at which the Green function of the infinite drive
completely decays. The Green function of the Gaussian pulse has a single complex revival
at a later relative time.

The amplitude of the electric field is chosen to be 𝐸0 = 3.83𝛺 so the Bessel function
of the amplitude divided by the frequency is at its first minimum. This ensures a fast
decay of the Green function corresponding to the infinite sinusoidal drive as explained in
Sect. 3.2. Therefore, this amplitude leads to the best agreement between the Green function
corresponding to an infinite drive (orange) and the Green function of the pulsed systems
(blue and green) before the latter Green functions have their revival.

This behavior is illustrated further in Fig. 3.5b, which displays the diagonal DOS corre-
sponding to an infinite sinusoidal drive (blue) and a pulsed system (green) in frequency space.
Both diagonal DOS are averaged over the Floquet period from 𝑡ave = −𝜋/𝛺 to 𝑡ave = 𝜋/𝛺,
evenly around the center of the pulse. Any averaging that is not centered around the pulse
leads to significantly worse results. The orange line in Fig. 3.5b is the running average in
frequency 𝜔 over one period of the oscillations in the diagonal DOS of the pulsed system,
i.e., the average over one period of the oscillations of the green line.

For an amplitude at which the Bessel Function 𝐽0 (𝐸0/𝛺) is small (𝐸0 = 5.22𝛺, upper
panel in Fig. 3.5b), the diagonal DOS of the pulsed system shows large deviations from the
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3.5 Sinusoidal Gaussian pulse
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(a) Negative imaginary part of the local Green
function at a constant average time 𝑡ave = 0, as
a function of 𝑡rel in units of inverse rescaled
hopping ℏ/𝑡∗ at 𝐸0 = 3.83𝛺 for an infinite
sinusoidal drive (orange) and for two Gaussians
where the product of the width of the Gaussian
and the frequency of the electric field is 𝛺𝑡E =
10 (blue) and 𝛺𝑡E = 20 (green) respectively, at
three different driving frequencies 𝛺 = 0.5𝑡∗/ℏ
(upper panel), 𝛺 = 𝑡∗/ℏ (middle panel) and
𝛺 = 1.5𝑡∗/ℏ (lower panel).
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Figure 3.5: Negative imaginary part of the local Green function and diagonal DOS for a
sinusoidal Gaussian pulse and variing parameters 𝛺, 𝑡E and 𝑡ave.
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3 Noninteracting lattice fermions driven by light pulses

diagonal DOS corresponding to the infinite sinusoidal drive even after taking the running
average (especially for small frequencies 𝜔). However, at 𝐸0 = 3.83𝛺 (first minimum of the
Bessel function, second panel in Fig. 3.5b), the agreement between the diagonal DOS of the
system coupling to an infinite sinusoidal drive and the running average over the diagonal
DOS of the pulsed system is good (all parameters except for 𝐸0 are the same in the two
upper panels).

To explain the connection between the frequency of the oscillations in the DOS and both
the width of the Gaussian 𝑡E and the frequency 𝛺 of the electric field, it is useful to study
the imaginary part of the local time dependent Green function (see Fig. 3.5a). For a wider
Gaussian, i.e., larger 𝑡E (for fixed 𝛺) the revival occurs later, meaning that the oscillations
in the DOS show a higher frequency. In fact, the time at which the revival occurs seems to
be almost linearly connected to the width of the Gaussian, as a shift by some factor 𝛼 in the
width 𝑡E → 𝛼𝑡E leads to the revival time shifting from 𝑡rel to 𝛼𝑡rel. Varying 𝛺 on the other
hand has little effect on the relative time at which the revival occurs, but for a constant pulse
width 𝑡E the agreement between the Green function of the infinitely driven system and the
Green function of the pulsed system diminishes for very small 𝛺. Another disadvantage of
low frequencies is that the Fourier period 2𝜋/𝛺 increases, so when calculating the averaged
DOS the Green function requires contributions from average times that are much further
away from the center of the pulse.

Figure 3.5a shows that at any given frequency 𝛺, the revival occurs later whenever the
product 𝛺𝑡E is larger. That is, the green peak for 𝛺𝑡E = 20 always occurs at a later relative
time than the blue peak at 𝛺𝑡E = 10. The agreement between the running average of the
DOS of the pumped system and the DOS of the system coupling to an infinite drive is
generally better for later times of the revival in the Green function. This is because for
early arrival times, the Green function corresponding to the infinite drive may not have
completely decayed when the revival occurs. That is, the resemblance between the two DOS
is better at high frequencies 𝛺 and for broad Gaussian pulses. This is not surprising, as
it means that the pumped field resembles the infinite sinusoidal field when it has a larger
amount of oscillations. Therefore it is more interesting to compare the Green functions and
the resulting DOS at varying frequencies 𝛺 where the product 𝛺𝑡E of the width of the pulse
and the frequency of the electric field is kept constant.

By comparing the revival times at the frequencies 𝛺 = 0.5𝑡∗/ℏ, 𝛺 = 𝑡∗/ℏ and 𝛺 = 1.5𝑡∗/ℏ
(with 𝛺𝑡E fixed) in Fig. 3.5a, it is clear that the revival occurs later for lower frequencies.
This directly results from the later occurrence of the revival as the Gaussian broadens. At
𝛺 = 0.5𝑡∗/ℏ (upper panel of Fig. 3.5a), the revivals of both 𝛺𝑡E = 10 and 𝛺𝑡E = 20 occur
long after the Green function corresponding to the infinite drive has decayed. This means
that the agreement between the curves is good up to this point. But this agreement becomes
worse at larger frequencies. For 𝛺 = 𝑡∗/ℏ (middle panel in Fig. 3.5a) the green curve at
𝛺𝑡E = 20 still matches the Green function of the system coupling to an infinite drive up to
the point where the latter one has decayed, but the revival of the blue curve at 𝛺𝑡E = 10
moves to times 𝑡rel where the Green function corresponding to the infinite drive has not
completely decayed. The deviations before the decay of the Green function become even
larger at higher frequencies like 𝛺 = 1.5𝑡∗/ℏ (lower panel in Fig. 3.5a). This implies that
the applicability of Floquet theory is strongly dependent on the width of the Gaussian, and
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3.5 Sinusoidal Gaussian pulse

to a lesser extent on the driving frequency 𝛺. A wide Gaussian ensures that the measured
DOS resembles the DOS of the infinitely driven system, even if the frequency of the driving
field is low.

Figure 3.5b confirms these conclusions. Comparing the lower three panels, where the width
of the Gaussian and the frequency of the electric field are chosen so 𝛺𝑡E = 30 holds, it
becomes clear that the frequency with which the diagonal DOS of the pulsed system oscillates
around the DOS corresponding to the infinite drive is increasing as the Gaussian broadens
and the frequency of the driving field decreases. Note that even though the diagonal DOS of
the pulsed system (green) is averaged over the Floquet period, the oscillations take negative
values, i.e. the averaged DOS is not semidefinite even if the Gaussian is broad. As explained
in Sect. 3.2, it is required for the DOS averaged over the Floquet period to be semidefinite
if we want the pulsed system to be representative of the Floquet results. Fortunately,
the orange line that results from calculating the running average over one period of the
oscillations in the DOS (corresponding to the Gaussian pulse) is semidefinite and resembles
the DOS of the infinitely driven system well.
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Figure 3.6: The left panel: Green function of both the pulsed system (labeled ”Gauss”)
and the system that is driven for an infinitely long time (labeled ”Infinite”) for a constant
𝑡2 = 0 (ℱH) and a constant 𝑡ave = 0 (ℱD). Right panel: horizontal and diagonal DOS
of both systems, averaged over one Fourier period in 𝑡2 and 𝑡ave respectively. Other
parameters: 𝐸0 = 3.83𝛺, 𝛺 = 𝑡∗/ℏ and 𝑡E = 30ℏ/𝑡∗.

The results for the horizontal Fourier transformation are similar to the results obtained using
the diagonal Fourier transformation. The major difference is a factor of 2 in the relative
time that was already mentioned in Sec. 3.2 and is caused by the relation 𝑡1 = 𝑡ave + 𝑡rel/2.
The left panel in Fig. 3.6 shows the Green function of both the pulsed system and the
system that is driven for an infinitely long time at 𝐸0 = 3.83𝛺, 𝛺 = 𝑡∗/ℏ and 𝑡E = 30ℏ/𝑡∗,
both for 𝑡ave = 0 and for 𝑡2 = 0. Note that the Green functions are given in terms of 𝑡rel/2
for the constant average time 𝑡ave = 0 (magenta) and in terms of 𝑡rel for a constant 𝑡2 = 0
(green). This is to emphasize the fact that the peak of the revival in the Green function
corresponding to a constant 𝑡2 takes place at exactly half of the relative time at which the
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3 Noninteracting lattice fermions driven by light pulses

peak of the revival in the Green function corresponding to a constant 𝑡ave is located. In fact,
for small relative times, even the relative times at which the Green functions of the system
that is coupling to an infinite drive (orange and blue) go through extrema are separated by
this factor 2.

The right panel of Fig. 3.6 displays the diagonal and the horizontal DOS of the pulsed system
and the infinitely driven system, both averaged over one Fourier period from 𝑡ave = −𝜋/𝛺
to 𝑡ave = 𝜋/𝛺 for constant 𝑡ave and from 𝑡2 = −𝜋/𝛺 to 𝑡2 = 𝜋/𝛺 for constant 𝑡2. Note that
this averaging leads to exactly the same DOS for the infinite drive (blue and orange), no
matter which Fourier transform is computed (as shown in Sec. 3.2). The diagonal DOS
(magenta) of the pulsed system, however, oscillates with almost double the frequency of
the horizontal DOS (green) of the same system. While the period of the oscillations in the
horizontal DOS is almost perfectly constant and the amplitude of these oscillations decreases
monotonically, the period of the oscillations of the horizontal DOS varies significantly more.
Though the amplitude of the horizontal DOS shows an overall decay, it does not decrease
monotonically. This leads to a slightly worse agreement between the DOS corresponding to
the infinite drive and the running average over one period of the oscillations in the DOS for
the Gaussian pulse when the DOS is horizontal.

Note that the second ”revival” peak of the time dependent local Green function is expected
to be smaller for interacting systems where Green functions decay more rapidly in imaginary
time. So these oscillations may be reduced when interactions are included.
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4 Periodically driven, interacting systems

In section 3.2 we found proof that conventional definition of the instantaneous DOS as the
imaginary part of the retarded local Green function evaluated at fixed 𝑡ave is not positive
semi-definite. But the time-averaged density of states always is. In this chapter we will
generalize these results for periodically driven, interacting systems, which allows us to draw
general conclusions about spectral functions, their sum rules and the Dyson equation. To
distinguish between a spectral function that is not necessarily positive-semidefinite and a
spectral function that can indeed be interpreted as a DOS we will generally refer to the
function defined by 𝜌(𝜔, 𝑡ave) ∶= −𝜋−1Im𝐺(𝜔, 𝑡ave) as spectral function and only call it DOS
when we can proof that it is nonnegative and can hence be interpreted as a DOS as in
equilibrium.

4.1 Positivity of the spectral densities of retarded Floquet Green
functions

When studying the spectral functions of a periodically driven, interacting system, it is useful
to first to recall the Lehmann representation for a constant Hamiltonian ℋ. Let us assume
that {|𝑚⟩} is an eigen basis of ℋ with eigen values 𝜖𝑚 and that the system is in the state
|𝑚⟩ with probability 𝑝𝑚 ≥ 0 and ∑𝑚 𝑝𝑚 = 1. We do not necessarily require a thermal
distribution 𝑝𝑚 ∝ exp(−𝛽𝜖𝑚), but we do require monotonicity for the bosonic case, where
𝑝𝑚 ≥ 𝑝𝑛 if 𝜖𝑚 ≤ 𝜖𝑛. For a Hamiltonian that is constant in time, the probability 𝑝𝑚 is given
by

𝑝𝑚 = 1
𝑍

𝑒−𝛽𝜖𝑛 (4.1)

with the partition function 𝑍 = Tr𝑒−𝛽ℋ [45]. In this case, the greater Green function (2.2a)
is given by

𝐺>(𝑡1, 𝑡2) ∶= − 𝑖 ⟨𝑐(𝑡1)𝑐†(𝑡2)⟩ (4.2a)
= − 𝑖 ∑

𝑚
𝑝𝑚 ⟨𝑚| 𝑐(𝑡1)𝑐†(𝑡2) |𝑚⟩ . (4.2b)

At this point, it is useful to switch from the Heisenberg picture, where the operators
depend on time and contain the information that is necessary to describe the system, to
the Schrödinger picture, where the evolution of the system is contained in the state vectors.
The transformation from the Heisenberg to the Schrödinger picture for operators that have
no explicit time dependence in the Schrödinger picture is given by

𝑐H(𝑡) = 𝑈† (𝑡, 𝑡0) 𝑐S𝑈 (𝑡, 𝑡0) . (4.3)
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4 Periodically driven, interacting systems

To simplify notation, we will suppress the time dependence in the following calculations,
and simply write 𝑐(𝑡) for an operator in the Heisenberg picture and 𝑐 for an operator in the
Schrödinger picture. The time evolution operator for a Hamiltonian that is constant in time
is given by

𝑈 (𝑡, 𝑡0) = exp [−𝑖ℋ (𝑡 − 𝑡0)] . (4.4)

It is easy to see that 𝑈† (𝑡, 𝑡0) = 𝑈 (𝑡0, 𝑡), so the greater Green function is given by

𝐺>(𝑡1, 𝑡2) = − 𝑖 ∑
𝑚

𝑝𝑚 ⟨𝑚| 𝑈 (𝑡0, 𝑡1) 𝑐𝑈 (𝑡1, 𝑡0) 𝑈 (𝑡0, 𝑡2) 𝑐†𝑈 (𝑡, 𝑡0) |𝑚⟩ (4.5a)

= − 𝑖 ∑
𝑚

𝑝𝑚 ⟨𝑚| 𝑒𝑖ℋ(𝑡1−𝑡0)𝑐𝑒−𝑖ℋ𝑡1𝑒𝑖ℋ𝑡2𝑐†𝑒−𝑖ℋ(𝑡2−𝑡0) |𝑚⟩ . (4.5b)

At this point we can use that {|𝑚⟩} is an eigen basis of ℋ, so

𝑒−𝑖ℋ𝑡 |𝑚⟩ = |𝑚⟩ 𝑒−𝑖𝜖𝑚𝑡 (4.6)

holds, and we get

𝐺>(𝑡1, 𝑡2) = − 𝑖 ∑
𝑚

𝑝𝑚 ⟨𝑚| 𝑈 (𝑡0, 𝑡1) 𝑐𝑈 (𝑡1, 𝑡0) 𝑈 (𝑡0, 𝑡2) 𝑐†𝑈 (𝑡, 𝑡0) |𝑚⟩ (4.7a)

= − 𝑖 ∑
𝑚,𝑛

𝑝𝑚𝑒𝑖𝜖𝑚𝑡1 ⟨𝑚| 𝑐 |𝑛⟩ 𝑒−𝑖𝜖𝑛𝑡1𝑒𝑖𝜖𝑛𝑡2 ⟨𝑛| 𝑐† |𝑚⟩ 𝑒−𝑖𝜖𝑚𝑡2 (4.7b)

= − 𝑖 ∑
𝑚,𝑛

𝑝𝑚𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel |⟨𝑚| 𝑐 |𝑛⟩|2 . (4.7c)

This obviously only depends on the relative time. The same holds for both the lesser Green
function, which yields

𝐺<(𝑡1, 𝑡2) ∶= ± 𝑖 ⟨𝑐†(𝑡2)𝑐(𝑡1)⟩ (4.8)
= ± 𝑖 ∑

𝑚,𝑛
𝑝𝑛𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel |⟨𝑚| 𝑐 |𝑛⟩|2 (4.9)

and the retarded Green function, which is given by

𝐺R (𝑡rel) = −𝑖 ∑
𝑚,𝑛

(𝑝𝑚 ± 𝑝𝑛) 𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel |⟨𝑚| 𝑐 |𝑛⟩|2 𝛩(𝑡rel) , (4.10)

and where the + refers to fermionic operators and the − to bosonic ones. The frequency
dependent response yields

𝐺R (𝜔) = − 𝑖 ∑
𝑚,𝑛

(𝑝𝑚 ± 𝑝𝑛) |⟨𝑚| 𝑐 |𝑛⟩|2 lim
𝛿→0+

∫
∞

0
𝑒𝑖(𝜔+𝑖𝛿+𝜖𝑚−𝜖𝑛)𝑡rel𝑑𝑡rel (4.11a)

= − 𝑖 ∑
𝑚,𝑛

(𝑝𝑚 ± 𝑝𝑛) |⟨𝑚| 𝑐 |𝑛⟩|2 {𝜋𝛿 (𝜔 + 𝜖𝑚 − 𝜖𝑛) + 𝑖𝑃 [ 1
𝜔 + 𝜖𝑚 − 𝜖𝑛

]} , (4.11b)

where 𝑃 stands for the principle value of the pole. The spectral function is hence given by

𝜌 (𝜔) = − 1
𝜋

Im [𝐺R (𝜔)] (4.12a)

= ∑
𝑚,𝑛

(𝑝𝑚 ± 𝑝𝑛) |⟨𝑚| 𝑐 |𝑛⟩|2 𝛿 (𝜔 + 𝜖𝑚 − 𝜖𝑛) , (4.12b)
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4.1 Positivity of the spectral densities of retarded Floquet Green functions

which does not depend on 𝑡ave because ℋ is constant. Recall that 𝜌(𝜔) is strictly nonnegative
in the fermionic case and in the bosonic case for 𝜔 ≥ 0 since 𝜖𝑛 ≥ 𝜖𝑚 implies 𝑝𝑛 ≤ 𝑝𝑚; for
bosons and 𝜔 ≤ 0 𝜌(𝜔) is nonpositive.

If the Hamiltonian is not constant but periodic in time, the situation is more complicated,
because of the time dependence of the Floquet state solutions |𝑚, 𝑡⟩ given in Eq. (2.12). We
assume that the system was at some time 𝑡0 in the Floquet state |𝑚, 𝑡0⟩ with probability
𝑝𝑚, so the greater Green function we have to consider here is given by

𝐺>(𝑡1, 𝑡2) = −𝑖
∞

∑
𝑚=0

𝑝𝑚 ⟨𝑚, 𝑡0| 𝑐(𝑡1)𝑐†(𝑡2) |𝑚, 𝑡0⟩ . (4.13)

Inserting the time evolution operator

𝑈(𝑡1, 𝑡2) = ∑
𝑚

exp(−𝑖𝜖𝑚(𝑡1 − 𝑡2)) |𝑚, 𝑡1⟩ ⟨𝑚, 𝑡2| (4.14)

we derived in section 2.2 yields

𝐺>(𝑡1, 𝑡2) = −𝑖
∞

∑
𝑚=0

𝑝𝑚 ⟨𝑚, 𝑡0| 𝑈(𝑡0, 𝑡1) 𝑐 𝑈(𝑡1, 𝑡2)𝑐† 𝑈(𝑡2, 𝑡0) |𝑚, 𝑡0⟩ (4.15)

= −𝑖
∞

∑
𝑚,𝑛=0

𝑝𝑚𝑒−𝑖𝜖𝑚(𝑡0−𝑡1) ⟨𝑚, 𝑡1| 𝑐 |𝑛, 𝑡1⟩ 𝑒−𝑖𝜖𝑛(𝑡1−𝑡2) ⟨𝑛, 𝑡2| 𝑐† |𝑚, 𝑡2⟩ 𝑒−𝑖𝜖𝑚(𝑡2−𝑡0).

(4.16)

= −𝑖
∞

∑
𝑚,𝑛=0

𝑝𝑚𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel ⟨𝑚, 𝑡1| 𝑐 |𝑛, 𝑡1⟩ ⟨𝑛, 𝑡2| 𝑐† |𝑚, 𝑡2⟩ . (4.17)

Obviously the dependence on 𝑡0 cancels out so that one may choose any appropriate
instant. From this point, the proof of the nonnegativity of the averaged spectral function
for periodically driven, interacting systems closely resembles the proof for the periodically
driven, noninteracting system in infinite dimensions, that we gave in section 3.2. We define
the 𝑇-periodic functions

𝛷𝑚,𝑛(𝑡) ∶= ⟨𝑚, 𝑡| 𝑐 |𝑛, 𝑡⟩ (4.18)

that generalize the 𝑇-periodic functions in Eq. (3.27), by including the Floquet incices 𝑚
and 𝑛. Eq. (4.18) directly implies

𝛷∗
𝑚,𝑛(𝑡) ∶= ⟨𝑛, 𝑡| 𝑐† |𝑚, 𝑡⟩ (4.19)

so that we can express (4.17) by

𝐺>(𝑡1, 𝑡2) = −𝑖
∞

∑
𝑚,𝑛=0

𝑝𝑚𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel𝛷𝑚,𝑛(𝑡1)𝛷∗
𝑚,𝑛(𝑡2). (4.20)

Analog to the lesser Green function in (4.20), the greater Green function can be expressed
as

𝐺<(𝑡1, 𝑡2) = ±𝑖
∞

∑
𝑚,𝑛=0

𝑝𝑛𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel𝛷𝑚,𝑛(𝑡1)𝛷∗
𝑚,𝑛(𝑡2). (4.21)
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4 Periodically driven, interacting systems

yielding the retarded Green function

𝐺R(𝑡1, 𝑡2) = 𝐺>(𝑡1, 𝑡2) − 𝐺<(𝑡1, 𝑡2)𝛩(𝑡1 − 𝑡2) (4.22a)

= −𝑖
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) 𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel𝛷𝑚,𝑛(𝑡1)𝛷∗
𝑚,𝑛(𝑡2)𝛩(𝑡1 − 𝑡2). (4.22b)

This result strongly resembles (4.10), but cannot be Fourier transformed directly due to the
time dependence of 𝛷𝑚,𝑛(𝑡). But the latter can be represented by its Fourier series due to
its periodicity

𝛷𝑚,𝑛(𝑡) = ∑
𝛼∈ℤ

𝑓 (𝛼)
𝑚,𝑛𝑒𝑖𝛼𝛺𝑡 (4.23a)

𝛷∗
𝑚,𝑛(𝑡) = ∑

𝛼∈ℤ
(𝑓 (𝛼)

𝑚,𝑛)
∗

𝑒−𝑖𝛼𝛺𝑡 , (4.23b)

where 𝛺 = 2𝜋/𝑇.

The Wigner representation [37] of the retarded Green function is defined to be

𝐺ℓ(𝜔) = ∫
∞

∞
𝑑𝑡rel𝑒𝑖𝜔𝑡rel

1
𝑇

∫
𝑇
2

− 𝑇
2

𝑑𝑡ave𝑒𝑖ℓ𝛺𝑡ave𝐺R(𝑡1, 𝑡2). (4.24)

The physical interpretation of the Wigner representation is, that 𝐺ℓ is the ℓth oscillating
mode in 𝑡ave of 𝐺ℓ(𝑡1, 𝑡2) [25]. To calculate the Wigner representation of Eq. (4.22b), we
first compute the integral over the average time, given by

1
𝑇

∫
𝑇
2

− 𝑇
2

𝑑𝑡ave𝑒𝑖ℓ𝛺𝑡ave𝛷𝑚,𝑛 (𝑡ave + 𝑡rel
2

) 𝛷∗
𝑚,𝑛 (𝑡ave − 𝑡rel

2
) = ∑

𝛼
𝑓 (𝛼)

𝑚,𝑛 (𝑓 (𝛼+ℓ)
𝑚,𝑛 )

∗
𝑒𝑖𝛺𝑡rel(𝛼+ ℓ

2 ) .

(4.25)

This leads to the Wigner representation

𝐺ℓ(𝜔) = − 𝑖
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼

𝑓 (𝛼)
𝑚,𝑛 (𝑓 (𝛼+ℓ)

𝑚,𝑛 )
∗

∫
∞

−∞
𝑑𝑡rel𝛩(𝑡rel)𝑒𝑖𝜔𝑡rel𝑒𝑖(𝜖𝑚−𝜖𝑛)𝑡rel𝑒𝑖𝛺𝑡rel(𝛼+ ℓ

2 )

(4.26a)

= − 𝑖
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼

𝑓 (𝛼)
𝑚,𝑛 (𝑓 (𝛼+ℓ)

𝑚,𝑛 )
∗

lim
𝛥→0+

∫
∞

0
𝑑𝑡rel𝑒𝑖𝑡rel(𝜖𝑚−𝜖𝑛+𝛺(𝛼+ ℓ

2 )+𝜔+𝑖𝛥)

(4.26b)

= − 𝑖
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼

𝑓 (𝛼)
𝑚,𝑛 (𝑓 (𝛼+ℓ)

𝑚,𝑛 )
∗

× {𝜋𝛿 (𝛥𝜖) + 𝑖P [ 1
𝛥𝜖

]} . (4.26c)

In Eq. (4.26c) we defined

𝛥𝜖 ∶= 𝜔 − (𝜖𝑛 − 𝜖𝑚) + (𝛼 + ℓ/2) 𝛺 . (4.27)

At this point we can obtain the Fourier coefficients

𝜌(𝜔, 𝑡ave) = ∑
𝛼∈ℤ

𝐴ℓ(𝜔) exp(−𝑖ℓ𝛺𝑡ave) (4.28)
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4.1 Positivity of the spectral densities of retarded Floquet Green functions

of the Fourier series of the retarded spectral function:

𝜌ℓ(𝜔) = − 1
𝜋

Im𝐺ℓ(𝜔) (4.29a)

=
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼∈ℤ

𝑓 (𝛼)
𝑚,𝑛𝑓 (𝛼+ℓ)∗

𝑚,𝑛 𝛿(𝛥𝜖) . (4.29b)

This equation yields the general spectral representation of Floquet response functions; it
generalizes the Lehmann representation in equilibrium.

What can be deduced generally from (4.29)? For ℓ ≠ 0 we do not see any possibility for
a general conclusion on positivity or reality of the spectral function. But for ℓ = 0, it is
obvious that

𝜌0(𝜔)=
∞

∑
𝑚,𝑛=0

(𝑝𝑚 + 𝑝𝑛) ∑
𝛼∈ℤ

∣𝑓 (𝛼)
𝑚,𝑛∣

2
𝛿(𝜔 − 𝜖𝑛 + 𝜖𝑚 + 𝛼𝛺) ≥ 0 (4.30a)

in the fermionic case, i.e., 𝜌0(𝜔) is nonnegative and can hence be interpreted as density-
of-states just like in equilibrium. This conclusion is closely related to Bochner’s theorem
[46]. Note that no general conclusion is possible in the bosonic case since the interplay
of the factor (𝑝𝑚 − 𝑝𝑛) and the shift 𝛼𝛺 can be intricate. We stress that the case ℓ = 0
corresponds precisely to the average of 𝜌(𝜔, 𝑡ave) over one period of 𝑡ave as we used previously
in section 3.2 to reach physically meaningful results. Other authors have also averaged over
one period to avoid negative spectral densities [23, 24], but without explaining why the
results must be nonnegative. The above derivation puts this averaging procedure on a firm
mathematical basis.

Sum rules are another useful spin-off from spectral representations. Using Eq. (4.29), we
consider the zeroth-moment sum rule 𝑆 and obtain

𝑆 ∶= ∫
∞

−∞
𝜌0(𝜔)𝑑𝜔 (4.31a)

=
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼∈ℤ

∣𝑓 (𝛼)
𝑚,𝑛∣

2
(4.31b)

= 1
𝑇

∞
∑

𝑚,𝑛=0
(𝑝𝑚 ± 𝑝𝑛) ∫

𝑡+𝑇

𝑡
|𝛷𝑚,𝑛(𝑡′)|2𝑑𝑡′ (4.31c)

where the last step results from Parseval’s identity. Re-inserting the definition from Eq. (4.18)
for 𝛷𝑚,𝑛(𝑡) and using the completeness relation we derive in section 2.2 1 = ∑𝑛 |𝑛, 𝑡⟩ ⟨𝑛, 𝑡|,
we arrive at the general sum rule

𝑆 = 1
𝑇

∑
𝑚

𝑝𝑚 ∫
𝑡+𝑇

𝑡
⟨𝑚, 𝑡′| [𝑐, 𝑐†]± |𝑚, 𝑡′⟩ 𝑑𝑡′ (4.32)

which is consistent with the value of 𝐺(𝑡 + 0, 𝑡) in (2.1) averaged over one period 𝑇. While
in equilibrium, the sum rule is given by the expectation value of the (anti)commutator for
(fermionic) bosonic operators, it is given by the temporal average in the Floquet regime.
Hence, we find tangible evidence that the equivalent of a constant expectation value or a
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4 Periodically driven, interacting systems

constant spectral density at equilibrium is the temporal average of such an expectation
value or of such a spectral function, respectively. The sum rules for higher moments of the
spectral densities are commutators of products of operators in time so that they become
convolutions after Fourier transformations in Floquet representation. Examples of such sum
rules are given in Appendix B.

The sum rule in Eq. (4.32) is particularly meaningful if we consider fermionic or bosonic single-
particle progagators, i.e., 𝑐 is a single-particle annihilation operator and 𝑐† the corresponding
creation operator. Then, every expectation value on the right hand side equals unity and so
does the temporal average and the weighted sum. Hence, the sum rule is indeed rigorously
the same as in equilibrium for the averaged spectral functions. We then conclude that a
fermionic spectral density in the Floquet regime can be interpreted to be a density-of-states
similar to what happens in equilibrium. This has been used already in many numerical
studies, see for instance Refs. [21, 22, 25].

Finally, we pass from the Wigner representation to the often employed equivalent Floquet
representation. They are related by

𝐺ℓ𝑗 (𝜔) ∶= 𝐺ℓ−𝑗 (𝜔 + (ℓ + 𝑗)/2𝛺) , (4.33)

where ℓ, 𝑗 ∈ ℤ according to Tsuji et al. [25]. It is obvious that the Floquet representation
does not contain more information than the Wigner representation. Indeed, the Floquet
representation is redundant unless one restricts its argument 𝜔 to the interval (−𝛺/2, 𝛺/2]
[25], but this restriction is not needed otherwise. Obviously, (4.33) implies that the physically
meaningful averaged Green functions appearing in Wigner representation at index zero occur
in Floquet representation on the diagonal, i.e., for ℓ = 𝑗 one has 𝐺ℓℓ (𝜔) = 𝐺0 (𝜔 + ℓ𝛺)
where different indices ℓ correspond to different shifts relative to 𝐺00. This Green function
and the spectral density 𝜌0(𝜔) stemming from its imaginary part are generically studied in
numerics [21, 22, 25] because they behave like equilibrium spectral densities. The negative
spectral densities found in Ref. [25] for the gauge-invariant Green function may either be
due to the gauge phase.

For completeness, we also provide the general expression for the non-diagonal Floquet
representation of the retareded Green function. To obtain this expression, we first employ
the shift ℓ → ℓ − 𝑗 in Eq. (4.26c), yielding

𝐺ℓ−𝑗(𝜔) = −𝑖
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼

𝑓 (𝛼)
𝑚,𝑛 (𝑓 (𝛼+ℓ−𝑗)

𝑚,𝑛 )
∗

×

{𝜋𝛿 (𝜖𝑚 − 𝜖𝑛 + 𝛺 (𝛼 + ℓ − 𝑗
2

) + 𝜔) + 𝑖P [ 1
𝜖𝑚 − 𝜖𝑛 + 𝛺 (𝛼 + ℓ−𝑗

2 ) + 𝜔
]} .

(4.34)

Now we shift the frequency 𝜔 → 𝜔 + 𝛺 ( ℓ+𝑗
2 ) and write the retarded Green function as a

32



4.1 Positivity of the spectral densities of retarded Floquet Green functions

Floquet matrix, as defined in Eq. (4.33)

𝐺ℓ𝑗 (𝜔) =𝐺ℓ−𝑗 (𝜔 + 𝛺 (ℓ + 𝑗
2

)) (4.35)

= − 𝑖
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼

𝑓 (𝛼)
𝑚,𝑛 (𝑓 (𝛼+ℓ−𝑗)

𝑚,𝑛 )
∗

×

{𝜋𝛿 (𝜖𝑚 − 𝜖𝑛 + 𝜔 + 𝛺 (𝛼 + ℓ)) + 𝑖P [ 1
𝜖𝑚 − 𝜖𝑛 + 𝜔 + 𝛺 (𝛼 + ℓ)

]} , (4.36)

or with 𝛼 → 𝛼 − ℓ

𝐺ℓ𝑗(𝜔) =
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼

𝑓 (𝛼−ℓ)
𝑚,𝑛 (𝑓 (𝛼−𝑗)

𝑚,𝑛 )
∗

×

{−𝑖𝜋𝛿 (𝜖𝑚 − 𝜖𝑛 + 𝜔 + 𝛺𝛼) + P [ 1
𝜖𝑚 − 𝜖𝑛 + 𝜔 + 𝛺𝛼

]} . (4.37)

The non-diagonal Floquet spectral functions 𝜌ℓ𝑗(𝜔) = −(𝜋)−1Im𝐺ℓ𝑗(𝜔) are hence given by

𝜌ℓ𝑗(𝜔) =
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∑
𝛼∈ℤ

𝑓 (𝛼−ℓ)
𝑚,𝑛 𝑓 (𝛼−𝑗)∗

𝑚,𝑛 (𝜔 − (𝜖𝑛 − 𝜖𝑚) + 𝛼𝛺) . (4.38)

This expression helps to understand why one obtains a positive spectral function upon
summing over all Floquet indices ℓ and 𝑗 as done in Ref. [20]. Clearly

𝜌𝛴(𝜔) ∶ = ∑
ℓ,𝑗∈ℤ

𝜌ℓ𝑗(𝜔) (4.39a)

=
∞

∑
𝑚,𝑛=0

(𝑝𝑚 ± 𝑝𝑛) ∣𝐹𝑚,𝑛∣2 ∑
𝛼∈ℤ

𝛿 (𝜔 − 𝜖𝑛 + 𝜖𝑚 + 𝛼𝛺) (4.39b)

which also yields a nonnegative spectral density with

𝐹𝑚,𝑛 ∶= ∑
ℓ∈ℤ

𝑓 (ℓ)
𝑚,𝑛 = 𝛷𝑚,𝑛(𝑡 = 0). (4.40)

Note that no dependence on 𝛼 remains except a shift by 𝛼𝛺. Thus, the sum over 𝛼 on
the right hand side of (4.39b) implies a divergence. But if we fix 𝛼 to one single value or
normalize with respect to the number of Floquet replica considered for this purpose, one
obtains the neat sum rule

∞
∑

𝑚,𝑛=0
(𝑝𝑚 ± 𝑝𝑛) ∣𝐹𝑚,𝑛∣2 = ∑

𝑚
𝑝𝑚 ⟨𝑚, 0| [𝑐, 𝑐†]± |𝑚, 0} (4.41a)

= ⟨[𝑐, 𝑐†]±⟩ ∣
𝑡=0

(4.41b)

= 1 (4.41c)

where the last equation holds for 𝑐 a fermionic or bosonic single-particle annihilation operator
only.
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4.2 Dyson equation for periodically driven systems

The Dyson equation

𝐺 (𝑡1, 𝑡2) = 𝐺0 (𝑡1, 𝑡2) + ∫ d𝑡3 ∫ d𝑡4 𝐺0 (𝑡1, 𝑡3) 𝛴 (𝑡3, 𝑡4) 𝐺 (𝑡4, 𝑡2) (4.42)

connects the noninteracting Green function 𝐺0 (𝑡, 𝑡′) and the interacting Green function
𝐺 (𝑡, 𝑡′) with the self energy 𝛴 (𝑡, 𝑡′) [47]. The Green functions in Eq. (4.42) are retarded, but
we suppress the Index R in order to simplify the notation. In equilibrium, a transformation
from time space to energy space simplifies this equation significantly and allows one to solve
for the interacting Green function in momentum space by a mere matrix inversion [48, 49].
Since we know about the properties of the imaginary part of the diagonal elements of the
interacting Green function in the Floquet representation, it is useful to find the Floquet
representation of the Dyson equation. The Wigner representation as given in Eq. (4.24)
for the greater Green function can be generalized for any function 𝐹 (𝑡, 𝑡′) that satisfies
𝐹 (𝑡, 𝑡′) = 𝐹 (𝑡 + 𝑇 , 𝑡′ + 𝑇). It is given by

𝐹𝑛 (𝜔) = 1
𝑇

∫
∞

−∞
d𝑡rel ∫

𝑇
2

− 𝑇
2

d𝑡ave𝑒𝑖𝜔𝑡rel𝑒𝑖 2𝜋𝑛
𝑇 𝑡ave𝐹 (𝑡, 𝑡′) , (4.43)

so the reverse transformation yields

𝐹 (𝑡, 𝑡′) = 1
2𝜋

∑
𝑛

exp [−𝑖2𝜋𝑛
𝑇

(𝑡 + 𝑡′

2
)] ∫ d𝜔exp [−𝑖𝜔 (𝑡 − 𝑡′)] 𝐹𝑛 (𝜔) . (4.44)

We assume the self energy has the required periodicity and its Wigner representation 𝛴𝑚 (𝜔)
is connected to 𝛴 (𝑡3, 𝑡4) by

𝛴 (𝑡3, 𝑡4) = 1
2𝜋

∑
𝑚

exp [−𝑖2𝜋𝑚
𝑇

(𝑡3 + 𝑡4
2

)] (∫ d𝜔𝑒−𝑖𝜔(𝑡3−𝑡4)𝛴𝑚 (𝜔)) . (4.45)

In this case we can write the Dyson equation as

𝐺 (𝑡1, 𝑡2) = 1
2𝜋

∑
𝑛

exp [−𝑖2𝜋𝑛
𝑇

𝑡ave] (∫ d𝜔𝑒−𝑖𝜔𝑡rel𝐺0
𝑛 (𝜔)) (4.46)

+ 1
2𝜋

∑
𝑛,𝑚,𝑙

∭ d𝜔𝑎d𝜔𝑏d𝜔𝑐 𝐺0
𝑛 (𝜔𝑎) 𝛴𝑚 (𝜔𝑏) 𝐺ℓ (𝜔𝑐)

exp [−𝑖𝑡ave (𝑛𝜋
𝑇

+ 𝜔𝑎 + ℓ𝜋
𝑇

− 𝜔𝑐)] exp [−𝑖𝑡rel
2

(𝑛𝜋
𝑇

+ 𝜔𝑎 − ℓ𝜋
𝑇

+ 𝜔𝑐)]

𝛿 (𝑛𝜋
𝑇

+ 𝑚𝜋
𝑇

− 𝜔𝑎 + 𝜔𝑏) 𝛿 (𝑚𝜋
𝑇

+ ℓ𝜋
𝑇

− 𝜔𝑏 + 𝜔𝑐) ,

where we used

∫
∞

−∞
d𝑡3 exp [−𝑖𝑡3 (𝑛𝜋

𝑇
+ 𝑚𝜋

𝑇
− 𝜔𝑎 + 𝜔𝑏)] = 2𝜋𝛿 (𝑛𝜋

𝑇
+ 𝑚𝜋

𝑇
− 𝜔𝑎 + 𝜔𝑏) (4.47)

34



4.2 Dyson equation for periodically driven systems

and the analogous for the integration over 𝑡4. The evaluation of the delta functions yields

2𝜋𝐺 (𝑡1, 𝑡2) = ∑
𝑛

exp [−𝑖2𝜋𝑛
𝑇

𝑡ave] (∫ d𝜔𝑒−𝑖𝜔𝑡rel𝐺0
𝑛 (𝜔)) (4.48)

+ ∑
𝑛,𝑚,ℓ

∫ d𝜔 𝐺0
𝑛 (𝜔) 𝛴𝑚 (𝜔 − 𝑛𝜋

𝑇
− 𝑚𝜋

𝑇
) 𝐺ℓ (𝜔 − ℓ𝜋

𝑇
− 𝑛𝜋

𝑇
− 2𝑚𝜋

𝑇
)

×exp [−2𝜋𝑖𝑡ave
𝑇

(𝑛 + ℓ + 𝑚)] exp [−𝑖𝑡rel (𝜔 − ℓ𝜋
𝑇

− 𝑚𝜋
𝑇

)]

so we can calculate the reverse transformation given in Eq. (4.44) and obtain the Wigner
representation of the Dyson Equation, which is given by

𝐺𝑘 (�̃�) = 1
𝑇

∫
∞

−∞
d𝑡rel ∫

𝑇
2

− 𝑇
2

d𝑡ave𝑒𝑖�̃�𝑡rel𝑒𝑖 2𝜋𝑘
𝑇 𝑡ave (4.49a)

= 𝐺0
𝑘 (�̃�) (4.49b)

+ ∑
𝑛,𝑚

𝐺0
𝑛 (�̃� + 𝑘𝜋

𝑇
− 𝑛𝜋

𝑇
) 𝛴𝑚 (�̃� + 𝑘𝜋

𝑇
− 2𝑛𝜋

𝑇
− 𝑚𝜋

𝑇
) 𝐺𝑘−𝑛−𝑚 (�̃� − 𝑛𝜋

𝑇
− 𝑚𝜋

𝑇
) .

To get from the Wigner representation of the Dyson equation to the Floquet representation,
we use the relation in Eq. (4.33) and the relation

𝐺𝑘𝑛 (𝜔) = 𝐺𝑘−ℓ,𝑛−ℓ (𝜔 + 2𝜋ℓ
𝑇

) . (4.50)

It requires several shifts in 𝜔 and the summation variables, namely (in this order) 𝑛 → 𝑘 − 𝑛,
𝜔 → 𝜔 + 𝜋𝑘/𝑇, 𝑚 → 𝑛 − 𝑚, and the introduction of a new index ℓ via 𝑘 → 𝑘 − ℓ,
𝜔 → 𝜔 + 2𝜋ℓ/𝑇, 𝑚 → 𝑚 − ℓ and 𝑛 → 𝑛 − ℓ to arrive at

𝐺𝑘ℓ (𝜔) = 𝐺0
𝑘ℓ (𝜔) + ∑

𝑛,𝑚
𝐺0

𝑘,𝑛 (𝜔) 𝛴𝑛,𝑚 (𝜔) 𝐺𝑚,𝑙 (𝜔) . (4.51)

This result is well known and can also be found in Ref. [25]. Now it is obvious that the
Dyson equation can be written as a matrix equation

𝐺 = 𝐺0 + 𝐺0𝛴 𝐺 , (4.52)

where we are suppressing the 𝜔 dependence of the matrices to simplify the notation. Equa-
tion (4.52) is exactly analogous to the Dyson equation in equilibrium, and solving for the
interacting Green function gives

𝐺 = 1

(𝐺0)
−1

− 𝛴
. (4.53)

The analogy between the Dyson equation in equilibrium and the nonequilibrium Dyson
equation in Floquet representation illustrates that periodically driven systems share many
formal properties with systems in equilibrium.

If we made the severe assumption that both 𝐺0 and 𝛴 are diagonalizable and that 𝐺0 has
real eigenvalues (we will show this last property in the following for a specific model), the
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4 Periodically driven, interacting systems

sign of the imaginary part of 𝛴 would indeed determine the imaginary part of 𝐺, which
would be another property that could be directly generalized from equilibrium to Floquet
systems. Hence, knowing the sign of the imaginary part of 𝐺 would in turn allow to reach
conclusions about the sign of the imaginary part of 𝛴.

Unfortunately, we are not aware of an argument that diagonalizability of 𝐺0 and 𝛴 is
generally given, therefore, next, we derive properties of the noninteracting, retarded Green
function. In Ref. [25] it can be found that the inverse of the noninteracting Green function
in Floquet matrix representation is given by

(𝐺R (𝑘𝑘𝑘))−1
𝑚𝑛

(𝜔) = {
𝜔 + 𝑛𝛺 + 𝜇 + 𝑖𝜂 − 𝜀0 (𝑘𝑘𝑘) ∀ 𝑛 = 𝑚
−𝜀𝑚−𝑛 (𝑘𝑘𝑘) ∀ 𝑛 ≠ 𝑚

, (4.54)

where the Wigner representation of the band structure 𝜀𝑚−𝑛(𝑘𝑘𝑘) in Eq. (3.5) is given by

𝜀𝑚−𝑛(𝑘𝑘𝑘) = ∫
𝜋

−𝜋
d𝑧𝑒𝑖(𝑚−𝑛)𝑧𝜀 (𝑘𝑘𝑘 − 𝑒𝐴𝐴𝐴 ( 𝑧

𝛺
)) . (4.55)

We specialize to a hypercubic lattice and a vector potential that lies along the diagonal, as
we did in section 3.1, to use Eq. (3.11) and write the band structure as

𝜀𝑚−𝑛(𝑘𝑘𝑘) = 1
2𝜋

∫
𝜋

−𝜋
d𝑧 cos ((𝑚 − 𝑛) 𝑧) [𝜀(𝑘𝑘𝑘) cos (𝑒𝑎

𝑐
𝐴 ( 𝑧

𝛺
)) + ̃𝜀(𝑘𝑘𝑘) sin (𝑒𝑎

𝑐
𝐴 ( 𝑧

𝛺
))] (4.56)

+ 𝑖
2𝜋

∫
𝜋

−𝜋
d𝑧 sin ((𝑚 − 𝑛) 𝑧) [𝜀(𝑘𝑘𝑘) cos (𝑒𝑎

𝑐
𝐴 ( 𝑧

𝛺
)) + ̃𝜀(𝑘𝑘𝑘) sin (𝑒𝑎

𝑐
𝐴 ( 𝑧

𝛺
))] .

From the vector potential 𝜌∞(𝑡) = 𝑐𝐸/𝛺 cos (𝛾𝑡) as defined in (3.19), we can conclude
that

𝐴 ( 𝑧
𝛺

) = 𝑐𝐸
𝛾

cos(𝑧) = 𝑐𝐸0
𝑒𝑎𝛺

cos(𝑧) , (4.57)

which simplifies Eq. (4.56) because both cos [𝐸0/𝛺 cos(𝑧)] and sin [𝐸0/𝛺 cos(𝑧)] are even in
𝑧, while sin [(𝑚 − 𝑛) 𝑧] is odd in 𝑧. The integration in Eq. (4.56) runs over a symmetric
interval in 𝑧, so the imaginary part vanishes and 𝜀𝑚−𝑛(𝑘𝑘𝑘) is a real function, given by

𝜀𝑚−𝑛(𝑘𝑘𝑘) = 1
2𝜋

∫
𝜋

−𝜋
d𝑧 cos ((𝑚 − 𝑛) 𝑧) [𝜀(𝑘𝑘𝑘) cos (𝐸0

𝛺
cos(𝑧)) + ̃𝜀(𝑘𝑘𝑘) sin (𝐸0

𝛺
cos(𝑧))] .

(4.58)

At this point we define 𝐸𝛺 = 𝐸0/𝛺 in order to simplify notation. Both integrations in
Eq. (4.58) are related to the Bessel function of first kind by

1
2𝜋

∫
𝜋

−𝜋
d𝑧 cos (𝑎𝑧) cos (𝐸𝛺 cos(𝑧)) =

⎧{
⎨{⎩

0 ∀𝑎 = odd
−𝐽|𝑎| (𝐸𝛺) ∀𝑎 = even, 𝑎 mod 4 = 2
𝐽|𝑎| (𝐸𝛺) ∀𝑎 = even, 𝑎 mod 4 = 0

(4.59)

1
2𝜋

∫
𝜋

−𝜋
d𝑧 cos (𝑎𝑧) sin (𝐸𝛺 cos(𝑧)) =

⎧{
⎨{⎩

0 ∀𝑎 = even
𝐽|𝑎| (𝐸𝛺) ∀𝑎 = odd, (𝑎 + 1) mod 4 = 2
−𝐽|𝑎| (𝐸𝛺) ∀𝑎 = odd, (𝑎 + 1) mod 4 = 0

. (4.60)
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4.2 Dyson equation for periodically driven systems

The Floquet matrix representation 𝜀𝑚𝑛(𝑘𝑘𝑘) = 𝜀𝑚−𝑛(𝑘𝑘𝑘) of the band structure is hence given
by

𝜀𝑚𝑛(𝑘𝑘𝑘) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋱
… +𝜀(𝑘𝑘𝑘)𝐽0 (𝐸𝛺) + ̃𝜀(𝑘𝑘𝑘)𝐽1 (𝐸𝛺) −𝜀(𝑘𝑘𝑘)𝐽2 (𝐸𝛺) − ̃𝜀(𝑘𝑘𝑘)𝐽3 (𝐸𝛺) …
… + ̃𝜀(𝑘𝑘𝑘)𝐽1 (𝐸𝛺) +𝜀(𝑘𝑘𝑘)𝐽0 (𝐸𝛺) + ̃𝜀(𝑘𝑘𝑘)𝐽1 (𝐸𝛺) −𝜀(𝑘𝑘𝑘)𝐽2 (𝐸𝛺) …
… −𝜀(𝑘𝑘𝑘)𝐽2 (𝐸𝛺) + ̃𝜀(𝑘𝑘𝑘)𝐽1 (𝐸𝛺) +𝜀(𝑘𝑘𝑘)𝐽0 (𝐸𝛺) + ̃𝜀(𝑘𝑘𝑘)𝐽1 (𝐸𝛺) …
… − ̃𝜀(𝑘𝑘𝑘)𝐽3 (𝐸𝛺) −𝜀(𝑘𝑘𝑘)𝐽2 (𝐸𝛺) + ̃𝜀(𝑘𝑘𝑘)𝐽1 (𝐸𝛺) +𝜀(𝑘𝑘𝑘)𝐽0 (𝐸𝛺) …

⋱ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.61)

which differs from the result presented in Ref. [25] only by a unitary matrix transformation
𝜀 = 𝑀−1 ̃𝜀 𝑀 with the transformation matrix

𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⋱ ⋮ ⋮ ⋮ ⋮ ⋱
… 1 0 0 0 …
… 0 𝑖 0 0 …
… 0 0 −1 0 …
… 0 0 0 −𝑖 …

⋱ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4.62)

This means that the Floquet matrix representation of the inverse noninteracting Green
function as defined in Eq. (4.54) has merely an infinitesimal imaginary part for a hypercubic
lattice and a sinusoidal driving. This statement can be extended to the noninteracting Green
function since the inverse of a real matrix is real. The Dyson equation (4.52) can therefore
be separated into a real and an imaginary part, where

Im [𝐺] = 𝐺0 (Re [𝛴] Im [𝐺] + Im [𝛴] Re [𝐺]) . (4.63)

Since we know that the diagonal elements of the Green function in Floquet matrix represen-
tation have an imaginary part that is smaller or equal to zero, we can conclude that

Tr [𝐺0 (Re [𝛴] Im [𝐺] + Im [𝛴] Re [𝐺])] ≤ 0 . (4.64)

One can also start from the Dyson equation that is solved for the Green function, as given
in Eq. (4.53), where it is useful to recall the identity

1
𝐴 ± 𝑖𝐵

= 1
𝐴 + 𝐵 𝐴−1𝐵

(𝟙 ∓ 𝑖𝐴−1𝐵) ∀𝐴, 𝐵 ∈ ℝ . (4.65)

This allows to calculate the imaginary part of the Green function and conclude that

Tr
⎡
⎢
⎣

[(𝐺0)
−1

− Re (𝛴)]
−1

Im (𝛴)

(𝐺0)
−1

− Re (𝛴) + Im (𝛴) [(𝐺0)
−1

− Re (𝛴)]
−1

Im (𝛴)

⎤
⎥
⎦

≤ 0 . (4.66)

Note that Eq. (4.66) requires [(𝐺0)
−1

− Re (𝛴)] to be invertible. But even though these
statements about the trace can be deduced mathematically, there is no obvious analogy
to equilibrium, where the sign of the imaginary part of the Green function can be directly
deduced from the sign of the imaginary part of the interacting Green function. As stated
above, such a connection only exists if both 𝐺0 and 𝛴 are diagonalizable.
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5 Summary and outlook

In this thesis, we have examined situations where one might be able to observe Floquet
behavior for both interacting and noninteracting systems. We studied noninteracting,
fermionic systems (which do not heat up) in chapter 3 and compared the exact Floquet
solutions for the retarded Green functions to a number of different cases including a semi-
infinite drive and a periodic drive with a Gaussian envelope (to make it into a pulse which
is experimentally realizable). The true Floquet system has a Hamiltonian that is periodic
with respect to the period of the driving.

We observed a number of interesting results. First, for the pure Floquet system, the
conventional definition of the instantaneous DOS as the imaginary part of the retarded
local Green function evaluated at fixed 𝑡ave or 𝑡2, is not positive semi-definite. But the
time-averaged density of states always is. This holds both for the diagonal and the horizontal
Green function.

Second, when an ac electric field is applied along the main diagonal direction of the lattice,
the value of the Bessel function 𝐽0 (𝐸0/𝛾) is critical in determining the subsequent behavior.
In the Floquet limit, one will obtain a local DOS that is a sequence of delta functions
when 𝐽0 (𝐸0/𝛾) = 0; they become broadened and lose their identity as 𝐽0 becomes larger in
magnitude.

Third, even if the Hamiltonian is not strictly periodic, Floquet theory is still applicable as a
good approximation if certain other requirements are met. In particular, when |𝐽0 (𝐸0/𝛾)| is
large, the pulsed system appears quite close to the Floquet result. But, as mentioned above,
when we are at a zero of the Bessel function, it is never feasible to find the pumped system
looking like the Floquet one.

In particular, if we employ a Gaussian envelope function, the width of the envelope is the
primary predictor of whether the system will look like a periodic Floquet system. A wide
Gaussian ensures that the measured DOS resembles the DOS of the infinitely driven system,
even if the frequency of the driving field is low. On the other hand, measuring at high
frequencies does not compensate for a narrow Gaussian. Hence, it is not true that one can
simply count the number of oscillations inside one or two standard deviations of the pulse
to determine whether it will behave like a Floquet system—this only holds if the Gaussian
pulse width is wide enough.

Surprisingly, even if the system resembles a periodic Floquet system in the time domain, it is
not sufficient to average the DOS over one period of the driving (in 𝑡ave or 𝑡2) to reproduce
the DOS of the corresponding Floquet Hamiltonian (even if the amplitude 𝐸0, the frequency
𝛾 and the width of the Gaussian 𝑡𝐸 are optimally chosen). Instead, it further requires a
second averaging, precisely the running average (in the frequency domain) over one period
of the oscillations, for the pulsed DOS to resemble the DOS of the infinite drive.
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As interactions are added in (see as a first step Ref. [14]), we expect it to be easier for
the Gaussian pumped system to look Floquet like, because the extra scattering due to the
interactions will cause the Green functions to decay more rapidly in relative time. This
will, in turn, widen the parameter space where the pulsed system appears to behave more
like the corresponding Floquet system. If the pump adds substantial heat to the system a
high temperature stationary state will be reached in which we do not expect the retarded
Green function to depend strongly on temperature. Of course it will have larger effect on
lesser Green functions, but we are not discussing those here. We look forward to seeing
more experiments that will illustrate this behavior in the future.

In chapter 4, we considered a broad range of nonequilibrium systems (including interacting
systems) which are in the Floquet regime, i.e., they are given in a mixture of quasi-stationary
Floquet states which solve the time-dependent Schrödinger equation. For this setting,
we rigorously established a generalization of the Lehmann representation. The spectral
representation of two-time Floquet response functions include the cases of fermionic and
bosonic single-particle propagators. We clarified the relation to the Wigner representation,
which exploits the periodicity in the average time of the two times and to the Floquet
representation.

Our results in section 4.1 show precisely when fermionic spectral functions must be non-
negative and can be interpreted as densities-of-states. We also established some exact sum
rules.

When studying the Dyson equation for periodically driven systems in section 4.2, we found an
analogy between the Dyson equation in equilibrium and the nonequilibrium Dyson equation
in Floquet representation, which illustrates that periodically driven systems share many
formal properties with systems in equilibrium. But despite the fact that in equilibrium one
deduces from the Dyson equation that the imaginary part of the self-energy is nonnegative,
no similar result holds in the Floquet regime. Conclusions about the imaginary part of
the nonequilibrium self energy are not possible, unless certain assumptions about the
diagonalizability of the self energy and the noninteracting Green function are made.

As an outlook, we think that more information on the mathematical properties of the
self-energy in the Floquet regime is also desirable. One might conjecture that the self-energy
averaged over 𝑡ave should also behave as in equilibrium. But the Floquet Dyson equation is
too complicated and does not appear to permit one to establish this fact.
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A Convolution of periodic functions

We start with two arbitrary 2𝜋/𝛾 periodic functions 𝑓 (𝑡) and 𝑔 (𝑡), which can be expressed
as the following Fourier series:

𝑓 (𝑡) = ∑
𝑚

𝑒𝑖𝑚𝛾𝑡𝑓𝑚 (A.1a)

𝑔 (𝑡) = ∑
𝑚

𝑒𝑖𝑚𝛾𝑡𝑔𝑚 . (A.1b)

The convolution of these two functions is given by

ℎ (𝑡) = 𝛾
2𝜋

∫
𝑥+ 2𝜋

𝛾

𝑥
𝑔 (𝑡 − 𝑡′) 𝑓 (𝑡′) d𝑡′ (A.2a)

= 𝛾
2𝜋

∫
𝑥+ 2𝜋

𝛾

𝑥
∑
𝑚,𝑛

𝑒𝑖𝑛𝛾(𝑡−𝑡′)𝑒𝑖𝑚𝛾𝑡′𝑔𝑛𝑓𝑚d𝑡′ (A.2b)

= ∑
𝑚,𝑛

𝑔𝑛𝑓𝑚𝑒𝑖𝑛𝑡𝛾 𝛾
2𝜋

∫
𝑥+ 2𝜋

𝛾

𝑥
𝑒𝑖𝛾(𝑚−𝑛)𝑡′d𝑡′

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝛿𝑚,𝑛

(A.2c)

= ∑
𝑚

𝑔𝑚𝑓𝑚𝑒𝑖𝑚𝑡𝛾 (A.2d)

= ∑
𝑚

ℎ𝑚𝑒𝑖𝑚𝑡𝛾 . (A.2e)

which is also 2𝜋/𝛾 periodic and has Fourier coefficients ℎ𝑚 = 𝑔𝑚𝑓𝑚. This means that if
the coefficients 𝑓𝑚 and 𝑔𝑚 are complex conjugates of each other, the coefficients of the
convolution are positive and obey ℎ𝑚 = |𝑓𝑚|2 ≥ 0. Coefficients that are complex conjugates
naturally arise when the 2𝜋/𝛾 periodic functions obey 𝑔 (𝑡) = 𝑓∗ (−𝑡) = ∑𝑚 exp [𝑖𝑚𝛾𝑡] 𝑓∗

𝑚.

Using this identity and substituting either ̃𝑡 = 𝑡′ − 𝑡 or ̃̃𝑡 = 𝑡′ − (𝑡/2), the convolution
becomes

ℎ (𝑡) = 𝛾
2𝜋

∫
𝑥+ 2𝜋

𝛾

𝑥
𝑓∗ (𝑡′ − 𝑡) 𝑓 (𝑡′) d𝑡′ (A.3a)

= 𝛾
2𝜋

∫
�̃�+ 2𝜋

𝛾

�̃�
𝑓∗ ( ̃𝑡) 𝑓 ( ̃𝑡 + 𝑡) d ̃𝑡 (A.3b)

= 𝛾
2𝜋

∫
̃�̃�+ 2𝜋

𝛾

̃�̃�
𝑓∗ ( ̃̃𝑡 − 𝑡

2
) 𝑓 ( ̃̃𝑡 + 𝑡

2
) d ̃̃𝑡 (A.3c)

= ∑
𝑚

|𝑓𝑚|2𝑒𝑖𝑚𝑡𝛾 . (A.3d)
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The averaged local retarded Green’s function, as defined in Eq. (3.30) of the infinitely driven
field, has exactly the form of Eq. (A.3b) when the retarded Green’s function is given as a
function of 𝑡1 and 𝑡2 by identifying 𝑡2 = ̃𝑡. At the same time it has exactly the form of (A.3c)
when writing the retarded Green’s function as a function of 𝑡ave and 𝑡rel and identifying
𝑡ave = ̃̃𝑡. Therefore the time-averaged local retarded Green’s function is given by

̄𝐺𝑅 (𝑘𝑘𝑘, 𝑡rel) = − 𝑖
ℏ

𝛩 (𝑡rel) 𝑒− 𝑖𝜀(𝑘𝑘𝑘)
ℏ 𝐽0( 𝐸0

ℏ )𝑡rel ∑
𝑚

|𝑓𝑚|2 𝑒𝑖𝑚𝑡rel𝛾 (A.4a)

no matter which Fourier transform is chosen. The averaged spectral function as defined in
Eq. (3.31a) yields

̄𝜌 (𝜔,𝑘𝑘𝑘) = − 1
𝜋

Im [− 𝑖
ℏ

∑
𝑚

|𝑓𝑚|2 lim
𝜂→0+

∫
∞

0
𝑒𝑖𝑡rel(𝜔+𝑚𝛾− 𝜀(𝑘𝑘𝑘)

ℏ 𝐽0( 𝐸0
ℏ )+𝑖𝜂)d 𝑡rel] (A.5a)

= ∑
𝑚

|𝑓𝑚|2

ℏ
𝛿 (𝜔 + 𝑚𝛾 − 𝜀 (𝑘𝑘𝑘)

ℏ
𝐽0 (𝐸0

ℏ
)) . (A.5b)

This is manifestly nonnegative and completes the proof.
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B Sum rules for higher moments of the spectral
densities in the Hubbard model

We already discussed the zeroth moment sum rule in Eq. (19), which is valid for any
given Hamiltonian. To analyze higher spectral moment sum rules, we have to specify the
underlying model, as the sum rules depend on the particular form of the Hamiltonian. Here
we will present results for the Hubbard Hamiltonian, which is one of the simplest models to
describe electron-electron interactions. Furthermore, it is a model for which the sum rules
are well-known [50]. The Hubbard-Hamiltonian is given by

ℋH (𝑡) = − ∑
𝑖𝑗𝜎

𝑡𝑖𝑗 (𝑡) 𝑐†
𝑖𝜎𝑐𝑗𝜎 + ∑

𝑖
𝑈𝑖 (𝑡) 𝑛𝑖↓𝑛𝑖↑ − ∑

𝑖
𝜇𝑖 (𝑡) (𝑛𝑖↓ + 𝑛𝑖↑) (B.1)

where 𝑡𝑖𝑗 (𝑡) is the time-dependent Hermitian electron hopping matrix, 𝑈𝑖 (𝑡) is the time-
dependent on-site Hubbard repulsion, and 𝜇𝑖 (𝑡) is a time-dependent local site energy. To
simplify the formulas, we introduce the notation [�̃� = �̂� (𝑡ave)] to indicate the operator (or
function) is evaluated at the average time 𝑡ave after taking the limit 𝑡rel → 0. We assume
that ̃𝑡𝑖𝑗, ̃𝑈𝑖 and ̃𝜇𝑖 are 𝑇 periodic in 𝑡ave and therefore can be written as a Fourier series

̃𝑡𝑖𝑗 = ∑
𝑛

𝑡𝑛
𝑖𝑗exp [𝑖𝑛2𝜋

𝑇
𝑡] (B.2)

(analogous for ̃𝑈𝑖 and ̃𝜇𝑖). The zeroth moment sum rule is given by 𝜇𝑅0
𝑖𝑗𝜎 (𝑡ave) = 𝛿𝑖𝑗, so

integrating over one period

1
𝑇

∫
𝑥+𝑇

𝑥
𝜇𝑅0

𝑖𝑗𝜎 (𝑡ave) d𝑡ave = 𝛿𝑖𝑗 (B.3)

does not change the result. This is different for the first moment, which is given by

𝜇𝑅1
𝑖𝑗𝜎 (𝑡ave) = − ̃𝑡𝑖𝑗 − 𝛿𝑖𝑗 ̃𝜇𝑖 + 𝛿𝑖𝑗

̃𝑈𝑖 ⟨�̃�𝑖�̃�⟩ , (B.4)

so the integration yields

1
𝑇

∫
𝑡+𝑇

𝑡
𝜇𝑅1

𝑖𝑗𝜎 (𝑡ave) d𝑡ave =𝑡0
𝑖𝑗 − 𝛿𝑖𝑗𝜇0

𝑖 𝛿𝑖𝑗 ∑
𝑚

𝑈𝑚
𝑖 ⟨𝑛𝑖�̄�⟩−𝑚 .

The second moment sum rule is given by

𝜇𝑅2
𝑖𝑗𝜎 (𝑡ave) = ∑

𝑘

̃𝑡𝑖𝑘 ̃𝑡𝑘𝑗 + ̃𝑡𝑖𝑗 ̃𝜇𝑖 + ̃𝑡𝑖𝑗 ̃𝜇𝑗 − ̃𝑡𝑖𝑗
̃𝑈𝑖 ⟨�̃�𝑖�̄�⟩ − ̃𝑡𝑖𝑗

̃𝑈𝑗 ⟨�̃�𝑗�̄�⟩ (B.5)

+𝛿𝑖𝑗 ( ̃𝜇2
𝑖 + ̃𝑈2

𝑖 ⟨�̃�𝑖�̄�⟩2 − 2 ̃𝜇𝑖
̃𝑈𝑖 ⟨�̃�𝑖�̄�⟩) + 𝛿𝑖𝑗 ( ̃𝑈2

𝑖 ⟨�̃�𝑖�̄�⟩ − ̃𝑈2
𝑖 ⟨�̃�𝑖�̄�⟩2)
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which, when integrated over one period becomes

1
𝑇

∫
𝑥+𝑇

𝑥
𝜇𝑅2

𝑖𝑗𝜎 (𝑡ave) d𝑡ave = ∑
𝑘,𝑛

𝑡𝑛
𝑖𝑘𝑡−𝑛

𝑘𝑗 + ∑
𝑛

(𝑡𝑛
𝑖𝑗𝜇−𝑛

𝑖 + 𝑡𝑛
𝑖𝑗𝜇−𝑛

𝑗 ) (B.6)

− ∑
𝑛𝑚

(𝑡𝑛+𝑚
𝑖𝑗 𝑈−𝑛

𝑖 ⟨𝑛𝑖�̄�⟩−𝑚 + 𝑡𝑛+𝑚
𝑖𝑗 𝑈−𝑛

𝑗 ⟨𝑛𝑗�̄�⟩−𝑚) + 𝛿𝑖𝑗 ∑
𝑛

|𝜇𝑛
𝑖 |2

−2𝛿𝑖𝑗 ∑
𝑚𝑛

𝜇𝑛+𝑚
𝑖 𝑈−𝑛

𝑖 ⟨𝑛𝑖�̄�⟩−𝑚 + 𝛿𝑖𝑗 ∑
𝑚𝑛

𝑈𝑛+𝑚
𝑖 𝑈−𝑛

𝑖 ⟨𝑛𝑖�̄�⟩−𝑚 .

It is obvious that the mixing of Floquet coefficients increases as we go to higher moments.

Finally we would like to discuss the zeroth moment of the self energy, given by

𝐶𝑅0
𝑖𝑗𝜎 (𝑡ave) = 𝛿𝑖𝑗 ( ̃𝑈2

𝑖 ⟨�̃�𝑖�̄�⟩ − ̃𝑈2
𝑖 ⟨�̃�𝑖�̄�⟩2) . (B.7)

Here the integration over one period yields

1
𝑇

∫
𝑥+𝑇

𝑥
𝐶𝑅0

𝑖𝑗𝜎 (𝑡ave) d𝑡ave = 𝛿𝑖𝑗 ∑
𝑚𝑛

𝑈𝑛+𝑚
𝑖 𝑈−𝑛

𝑖 ⟨𝑛𝑖�̄�⟩−𝑚 − 𝛿𝑖𝑗 ∑
𝑙𝑚𝑛

𝑈 𝑙+𝑚+𝑛
𝑖 𝑈−𝑙

𝑖 ⟨𝑛𝑖�̄�⟩−𝑚 ⟨𝑛𝑖�̄�⟩−𝑙 ,

so even for the lowest moment of the self energy, the Fourier coefficients of ̃𝑈𝑖 and �̃�𝑖 mix.
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