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Abstract

This thesis primarily consists of developing an approach, based on the Born approximation
for the central spin model, to describe the dynamics of a central electron spin coupling to a
nuclear spin bath due to the hyperfine interaction. Mainly the limit of a vanishing or small
external magnetic field, coupling to the central spin, is discussed. Such calculations are hard
to deal with, but they are relevant for spin noise measurements in semiconductor quantum
dots.

As a starting point, the first quantum mechanical corrections to the classical equations
of motion are derived using the Born approximation. The classical equations of motion
only describe the precession of the spins. An error analysis proofs the correctness of these
corrections up to second order in the hyperfine couplings. However, an improvement over the
classical equations of motion is only visible on a small timescale. Afterwards, the corrections
are used in different approaches of improving the full simulation of the classical equivalent
for Gaussian bath ensembles. It appears that the contribution of the corrections is either
too large, shows a bad scaling for larger bath sizes, or leads to an unpredictable behavior of
the central spin dynamics. This renders the general approach useless in the low field limit.
Lastly, an approach to calculate estimates for persisting spin correlations in the central spin
model is developed. It uses the generalized Gibbs ensemble as a basis to approximately
describe the equilibrium state at infinite times. This leads to improvements of recently
calculated rigorous lower bounds for small bath sizes. The full persisting part is still not
captured, though. It remains unclear if this changes significantly for the physically relevant
large spin baths.

Kurzfassung

Das zentrale Thema dieser Arbeit ist die Entwicklung einer Methode, basierend auf der
Born-Näherung für des Zentralspinmodell, zur Beschreibung der Dynamik eines zentralen
Elektronenspins, der an ein Bad aus Kernspins über die Hyperfeinwechselwirkung koppelt.
Hierbei wird hauptsächlich der Limes verschwindender und kleiner Feldstärken eines magne-
tischen Feldes, welches an den Zentralspin koppelt, diskutiert. Berechnungen hierzu sind
schwierig durchzuführen, jedoch relevant für Messungen von Spinrauschen in Halbleiterquan-
tenpunkten.

Zu Beginn wird die erste quantenmechanische Korrektur zu den klassischen Bewegungsglei-
chungen, welche lediglich die Präzessionsbewegung der einzelnen Spins beschreiben, mittels
der Born-Näherung hergeleitet. Fehleranalysen bestätigen die Richtigkeit der Korrekturen bis
zur zweiten Ordnung in den Kopplungskonstanten. Eine Verbesserung gegenüber den klassi-
schen Bewegungsgleichungen ist jedoch nur auf kurzen Zeitskalen ersichtbar. Die Korrekturen
werden in verschiedenen Ansätzen verwendet, um eine Verbesserung der vollen Simulation
des klassischen Analogons für ein Ensemble gaußverteilter Spinbäder zu erzielen. Es stellt sich
heraus, dass der Beitrag der hergeleiteten Korrekturen entweder zu groß ist, ein schlechtes
Skalierungsverhalten für große Spinbäder zeigt oder zu einem unvorhersehbaren Verhalten
der Zentralspindynamik für lange Zeiten führt. Deshalb muss der Ansatz, zumindest zur
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Beschreibung des Limes kleiner Felder, als unbrauchbar deklariert werden. Zuletzt wird eine
Methode zur Berechnung von Abschätzungen für persistente Spinkorrelationen entwickelt.
Sie basiert auf dem verallgemeinerten Gibbs Ensemble, um den den Gleichgewichtszustand
im Limes unendlicher Zeiten approximativ zu beschreiben. Für den Fall kleiner Badgrößen
liefert diese Methode eine Verbesserungen gegenüber kürzlich berechneten rigorosen unteren
Schranken, wobei der exakte persistente Anteil weiterhin nicht vollständig erfasst wird. Es
bleibt unklar, ob sich dieses Verhalten für die physikalisch relevanten großen Spinbäder
signifikant ändert.
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1 Introduction

Throughout the last two decades, quantum information processing has emerged to be one of
the most active research fields in physics. By exploiting the quantum mechanical features of
superposition and entanglement, it is possible to develop quantum algorithms which can
deal with specific problems much more efficiently than a classical computer.

The probably most famous example is the Shor algorithm [1, 2], allowing to find the prime
decomposition of a given number in polynomial time. In contrast, classical algorithms
require a non-polynomial runtime for this task. Nowadays within cryptography, finding
such prime decompositions is the main task to decipher an encrypted message. Another
famous example is the Grover algorithm [3] which enables a faster search in an unstructured
database. Classical computers have to search through all entries so that the runtime scales
linearly with this number. On a quantum computer, this effort scales with the square root
of the number of entries, meaning very large databases can be searched on a much shorter
timescale.

While many different approaches exist for the physical realization of a qubit (quantum bit),
it is not clear if all of the well-known DiVincenzo criteria [4] for an implementation of a
quantum computer can be fulfilled. Different approaches satisfy various but not all criteria
and therefore, each possible candidate has its own advantages and disadvantages.

An electron or a hole in a quantum dot is a very promising system for the realization of a
qubit [5, 6]. Realizations are not only studied theoretically [5, 7] but also experimentally
[8–10]. The electron or the hole is confined in all three spatial dimensions within this low-
dimensional semiconducting nanostructure. For example, the spin of an electron confined in
a quantum dot defines a two level system which can be exploited as a qubit for quantum
computation. Another example is given by nitrogen vacancy centers in diamond which can
be described by an effective two-level system [11, 12].

In both physical systems, the qubit is confined in some environment. For a quantum dot,
this environment consists of the nuclear spins of the semiconductor substrate, for example
GaAs [6, 10, 13]. The nitrogen vacancy center in diamond couples to the surrounding 13C
nuclear spins [11, 12, 14]. This coupling of the qubit to an environment leads to decoherence,
meaning the qubit loses its initially prepared state within the coherence time. In order to
be able to perform a certain number of logical operations, the coherence time has to be long
enough. If the mechanisms of decoherence were understood, strategies could be developed
and applied to suppress it and therefore extend the eventual computation times. This is
possible by, e. g., using optimized pulse sequences [15] which extend the coherence time.

The most important coupling to consider theoretically is the relativistic hyperfine interaction
between a central spin (the qubit) and the nuclear spin bath. The description of such a
two-level system, coupling to a spin bath, can be based on the central spin model (CSM) [6, 7,
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1 Introduction

16–18]. Many different approaches have been developed to analyze the CSM theoretically. Its
classical simulation [16, 19, 20] allows dealing with an easy set of differential equations. This
renders calculations for a very large number of nuclear spins, even in the thermodynamical
limit [20], and for long times possible. Mean-field-based [21] and semiclassical approaches [18,
19] have been subject of research as well. The amount of relevant nuclear spins in quantum
dot is given by the number of nuclear spins within the localization volume of the electronic
wave function. Typically, 104 − 106 spins have to be considered, corresponding to a very
huge Hilbert space, so that exact quantum mechanical calculations for the relevant large
bath sizes are out of reach. It is possible, though, to calculate rigorous lower bounds but
also estimates for persisting correlations in the central spin model in the thermodynamical
limit of infinite bath sizes [22, 23]. By employing heavy numerical approaches, a bath of
about 20 spins can be simulated for long times based on a Chebychev polynomial expansion
[24–27]. Calculations based on the time dependent density matrix renormalization group
(DMRG) can be performed for up to 1000 bath spins but only for limited times [28, 29].
Analytical exact solutions are available for the unphysical uniform coupling distribution
by using the algebraic Bethe ansatz [29, 30]. Moreover, by resorting to the Bethe ansatz
for inhomogeneous couplings [31], calculations for up to 48 bath spins are feasible through
statistical evaluation using Monte Carlo sampling [32, 33]. Other approaches are based on
master equations with systematically controlled approximations [7, 34–41], exact equations
of motion [42], or diagrammatic [43, 44] and cluster techniques [45, 46].

In principle, analytical results as those based on master equations are not limited in system
size or time. Yet, approximations or expansions are usually justified by, e. g., a small
parameter such as the ratio 𝐽𝑖/𝐵 of the hyperfine coupling 𝐽𝑖 over the magnetic field
strength 𝐵 which is applied to the central spin externally. This ratio is small if a strong
external magnetic field is applied, which is the case in many typical experimental setups
[8–10]. However, for small or even vanishing magnetic fields, such calculations are no
longer systematically controllable. Though, the description and understanding of this region
is experimentally relevant for spin noise measurements in semiconductor quantum dots
[47–50].

Therefore, the intention of the present thesis consists of trying to develop a method which
allows for the description of the central spin model in the limit of a vanishing magnetic
field while maintaining its advantages for finite field strengths. The present approach is
based on the Born approximation [51], which is used to derive the first quantum mechanical
corrections to the classical equations of motion for a central spin coupling to a nuclear spin
bath. Since the simulation of the classical central spin model as discussed by Stanek et al.
[19] and improved by Hüdepohl [20] leads to good but not exact results, the derived quantum
mechanical corrections shall function as a small adjustment to this simulation for large bath
sizes.

The thesis is set up as follows. First of all, in chapter 2, the central spin model is introduced.
In chapter 3, the Born approximation is used to derive a differential equation system for the
expectation value of the central spin. It includes the classical equations of motion but also the
first quantum mechanical corrections in second order of the hyperfine couplings. A numerical
analysis is performed in chapter 4 to proof the correctness of the derived differential equation
system through various error analyses. First results are presented which are compared
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to exact and DMRG calculations. The case of a vanishing and a finite external magnetic
field, which couples to the central spin, is also studied. In chapter 5, an introduction to
the classical simulation is given. It is used as a basis for various simulations including the
derived quantum mechanical corrections. They are all performed by calculating an Gaussian
ensemble average for a large number of individual simulations, but differ in the way the
Gaussian distributed bath is sampled. Their accuracy is determined by comparing the results
to the classical simulation and DMRG calculations. This concludes the discussion of the Born
approximation for the central spin model. In chapter 6, an approach to calculate estimates
for persisting spin correlations in the central spin model is developed. This approach is
based on the generalized Gibbs ensemble [52] to approximately describe an equilibrium state
at infinite times. Lastly, the thesis concludes in chapter 7 with a summary of the results
and an outlook for potential further research.
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2 The central spin model

The central spin model (CSM) is used to describe a qubit which is confined in a nuclear spin
environment, for example in a quantum dot [6, 7, 16–18]. The electron spin 𝑆 = 1/2, which
is a two-level system, can be used for the physical realization of such a qubit.
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SN

Figure 2.1: Sketch of the central spin model (2.1) and its star topology. The central spin
⃗𝑆0 is coupled to the 𝑁 surrounding bath spins ⃗𝑆𝑖 through the hyperfine interaction 𝐽𝑖.

The Hamiltonian of the central spin model, also known as Gaudin model [53, 54], is given
by

𝐻 =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 . (2.1)

It describes the interaction of a central spin ⃗𝑆0 with the 𝑁 surrounding nuclear bath spins
⃗𝑆𝑖 through the relativistic hyperfine couplings 𝐽𝑖. Its star topology is sketched in Figure 2.1.

Representing the nuclear spin bath by the Overhauser field operator

⃗𝐴 =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆𝑖 (2.2)

is going to be convenient later in this thesis. It can be considered as an effective magnetic
field which couples to the central spin ⃗𝑆0. Throughout this thesis, the CSM is be studied
only for spins 𝑆 = 1/2 for simplicity while establishing the main approach.
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The application of an external magnetic field �⃗� can be studied by using the extended
Hamiltonian

𝐻 =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 − �⃗� ⋅ ⃗𝑆0 . (2.3)

Here, the external field acts only on the central spin operator ⃗𝑆0. Note that in principle,
the magnetic field can be time dependent, too. The coupling to the nuclear bath spins ⃗𝑆𝑖 is
neglected because their magnetic moments are very small, leading to a very small Zeemann
splitting. This becomes clear when looking at their nuclear magneton, which is proportional
to the inverse mass of the nucleus. In contrast, the Bohr magneton of the electron is about
three orders of magnitude larger, leading to a much larger Zeemann splitting. Note that the
interaction of the external magnetic field with the nuclear spins could be included easily in
the following approach. It is refrained from including this extension for further simplicity
while developing the approach.

The CSM is a very simplistic but useful model to describe the electron spin decoherence
in a quantum dot, only considering the most important hyperfine interaction with the
surrounding nuclear spins. Typically, the hyperfine couplings 𝐽𝑖 are in the range of 𝜇eV [16,
55, 56]. In the real physical system, other kind of interactions occur, too. Their influence
usually appears on a longer timescale which is beyond the scope of this thesis. Therefore,
they are neglected for further simplicity. One additional interaction is the dipole-dipole
exchange coupling between the nuclear spins [6]. It only affects the decoherence of the central
electron spin on a timescale which is approximately one to two orders of magnitude larger
than the timescale induced by the hyperfine interaction, which is in the order of 1 ns [57].
Another interaction which can be considered is the nuclear electric quadrupolar interaction
[58]. Its influence on the coherence time of hole and electron spins in semiconductor quantum
dots is studied by Hackmann et al. [59].

In a quantum dot, the hyperfine interaction is inhomogeneous. In general, the coupling
constants 𝐽𝑖 are defined through the probability

𝐽𝑖 ∝ |𝛹 ( ⃗𝑟𝑖) |2 ∝ exp [− (𝑟𝑖
𝑅

)
𝑘
] , (2.4)

This definition is based on the isotropic envelope wave function of a localized electron in
its orbital ground state [18, 35]. The radius 𝑅 determines the number of strongly coupled
nuclear spins which are relevant for the central spin dynamics. The amount of relevant
nuclear spins is in the order of 104 − 106. The parameter 𝑘 = 1 leads to an exponential wave
function while 𝑘 = 2 corresponds to a Gaussian one.

Throughout this thesis, mainly the case of exponentially distributed couplings

𝐽𝑖 = 𝒩 exp [−𝑖 𝑥
𝑁

] , 𝑖 ∈ {1, … , 𝑁} , (2.5)

is studied (see Figure 2.2). The parameter 𝑥 ∶= 𝑁/𝑁0 indicates the ratio of the total number
of bath spins 𝑁 compared to the number of bath spins 𝑁0 within the localization radius
of the wave function [23]. Choosing a larger value for 𝑥 increases the amount of weakly
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2 The central spin model
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Figure 2.2: Illustration of the exponential and uniform coupling distributions defined
in equations (2.5) and (2.7) for 𝑁 = 80 bath spins. The distributions are normalized
numerically so that 𝐽2

Q = 1 holds. The parameter 𝑥 is responsible for the amount bath
spins with a small coupling constant.

coupling bath spins, which have been identified to be responsible for the long-time behavior
of the central spin dynamics [18, 23]. The distribution is normalized so that 𝒩, which has
the unit of an energy, is chosen such that

𝐽2
Q ∶=

𝑁
∑
𝑖=1

𝐽2
𝑖 = 1 (2.6)

holds numerically. This is simply performed by normalizing the vector of coupling constants
⃗𝐽 = (𝐽1, 𝐽2, … , 𝐽𝑁)𝑇. Note that in this thesis, natural units (ℏ = 1) are used. Therefore,

𝐽Q defines an energy scale which determines the timescale for the short time dynamics of
the central spin [16].

This is because mainly completely disordered initial bath states are studied throughout
this thesis so that the first moment of the coupling distribution does not contribute [57].
Consequently, the time 𝑡 is specified in units of 𝐽−1

Q in this thesis.

Additionally, the unphysical uniform coupling distribution

𝐽𝑖 =
𝐽Q√

𝑁
, 𝑖 ∈ {1, … , 𝑁} , (2.7)

is studied (see Figure 2.2) because exact solutions for large bath sizes exist for this particular
case [29, 30]. The exact results can function as a testbed for the new approach. Note
that this distribution is also obtained from the exponential one (2.5) by simply inserting
𝑥 = 0.
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3 Born approximation for the central spin model

Due to the nature of the exponential growing Hilbert space in the central spin model for
each additional bath spin, appropriate approximations have to be identified in order to deal
with large bath sizes.

In this chapter, the general concept of the Born approximation [51] is introduced at first.
Afterwards, it is shown that assuming the total density operator 𝜌(𝑡) of the whole system to
be in a product state for all times leads to the classical equations of motion for the central
spin model. These classical precession terms shall be included in the new approach as well.
It is achieved by splitting the CSM Hamiltonian (2.3) into a free and an interacting part.
In the interaction picture, the free part is solved exactly using the Heisenberg equation of
motion. This leads to the classical equations of motion. The Born approximation is used to
deal with the interacting part up to second order in the coupling constants. As a starting
point, the easy case 𝑁 = 1 is studied to establish the main approach. After checking the
obtained differential equation system for its correctness by error analyses, a generalization
to an arbitrary number of bath spins 𝑁 is performed.

3.1 Born approximation

The present approach shall be based on the Born approximation as discussed in Reference
[51]. The Hamiltonian of a general total system is assumed to have the form

𝐻 = 𝐻S + 𝐻B + 𝐻I . (3.1)

The free Hamiltonians of the system 𝐻S and the bath 𝐻B can be treated exactly in the
interaction picture by shifting their contribution using the Heisenberg equation of motion
into the system and bath operators, respectively. The interacting part 𝐻I is the problematic
one. The starting point for its description is the interaction picture von Neumann equation

d
d𝑡

𝜌(𝑡) = −𝑖 [𝐻I, 𝜌(𝑡)] (3.2)

for the total density matrix 𝜌(𝑡). Note that natural units (ℏ = 1) are used throughout this
thesis. Mathematically, it can be rewritten in its integral form

𝜌(𝑡) = 𝜌(0) − 𝑖 ∫
𝑡

0
d𝑠 [𝐻I(𝑠), 𝜌(𝑠)] . (3.3)

Reinserting into equation (3.2) leads to the expression

d
d𝑡

𝜌(𝑡) = −𝑖 [𝐻I(𝑡), 𝜌(0)] − ∫
𝑡

0
d𝑠 [𝐻I(𝑡), [𝐻I(𝑠), 𝜌(𝑠)]] , (3.4)

7



3 Born approximation for the central spin model

which is a second order expansion in the differential equation for the total density matrix
𝜌(𝑡).

By calculating the trace over the bath, a differential equation for the reduced density
matrix 𝜌S(𝑡) can be obtained. It would still include the total density matrix 𝜌(𝑡) on the
right-hand side, though. Therefore, a weak-coupling approximation is performed. It assumes
the interacting part 𝐻I of the Hamiltonian 𝐻 to be small compared to the contribution of
the free Hamiltonians 𝐻S and 𝐻B, meaning the influence of the system on the bath is small.
This means that its influence on the reduced density matrix of the bath 𝜌B can be neglected.
Then, the state of the total system can be described approximately by a tensor product

𝜌(𝑡) ≈ 𝜌S(𝑡) ⊗ 𝜌B(𝑡) (3.5)

for all times 𝑡. Note that in this thesis and in contrast to Reference [51], it is refrained from
neglecting the complete time dependency of the bath density matrix 𝜌B because the slow
intrinsic bath dynamics are responsible for the long-time dynamics of the central spin in the
CSM. This ansatz leads to the so called Born approximation

d
d𝑡

𝜌(𝑡) = −𝑖 [𝐻I(𝑡), 𝜌S(0) ⊗ 𝜌B(0)] − ∫
𝑡

0
d𝑠 [𝐻I(𝑡), [𝐻I(𝑠), 𝜌S(𝑠) ⊗ 𝜌B(𝑠)]] (3.6)

= −𝑖 [𝐻I(𝑡), 𝜌S(0) ⊗ 𝜌B(0)] − [𝐻I(𝑡), ∫
𝑡

0
d𝑠 [𝐻I(𝑠), 𝜌S(𝑠) ⊗ 𝜌B(𝑠)]] (3.7)

which is an integro-differential equation. Now, the differential equation for the reduced
density matrix 𝜌S(𝑡) of the system can be simply obtained by calculating the partial trace
over the full bath on both sides of equation (3.7).

For the central spin model, the free Hamiltonians 𝐻S and 𝐻B will lead to classical precession
terms. When using natural units (ℏ = 1), the inverse coupling constants 𝐽−1

𝑖 define the
timescale of the classical precession. This is the fast part of the dynamics in the system. The
second order corrections obtained through the Born approximation will be of second order
in the couplings 𝐽𝑖. Assuming uniformly distributed couplings 𝐽𝑖 ∝ 1/√

𝑁, this corresponds
to 𝐽2

𝑖 ∝ 1/𝑁, meaning these quantum mechanical corrections introduce much slower and
suppressed dynamics for large baths. Therefore, the weak-coupling approximation (3.5) is
valid for the central spin model in the limit of large bath sizes 𝑁, even without a strong
external magnetic field.

The application of an magnetic field to the central spin can only enhance this approach
because its interaction can be considered as a part of the free Hamiltonian 𝐻S, which is
dealt with exactly. Now for very large field strengths |�⃗�|, the weak-coupling approximation
(3.5) which is used in the Born approximation (3.7) should work even better because then,
the magnetic field strength determines the fast central spin dynamic.

A further Markovian approximation [51] should not be applied to the central spin model
because it shows a non-Markovian behavior as discussed by Breuer et al. [60] and Coish and
Loss [35].
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3.2 Classical equations of motion

3.2 Classical equations of motion

As a first step, the weak-coupling approximation (3.5) is applied to the von Neumann
equation in order to show that this leads to the classical equations of motion with no
quantum mechanical effects remaining.

The time evolution of the density operator in the Schrödinger picture is described by the
von Neumann equation (ℏ = 1)

d
d𝑡

𝜌(𝑡) = −𝑖 [𝐻, 𝜌(𝑡)] . (3.8)

The Hamiltonian of the central spin model reads

𝐻 =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 − �⃗� ⋅ ⃗𝑆0 . (3.9)

It describes a central spin ⃗𝑆0 coupling to 𝑁 bath spins with coupling constants 𝐽𝑖. Addi-
tionally, an external magnetic field �⃗� is applied to the central spin ⃗𝑆0.

Applying the weak-coupling approximation (3.5) requires parameterizing the density operator
𝜌(𝑡) ≈ 𝜌0(𝑡) ⊗ 𝜌B(𝑡). Since no direct interactions between the different nuclear spins ⃗𝑆𝑖 exist,
the density operator of the spin bath 𝜌B(𝑡) is also assumed to be in a product state

𝜌B(𝑡) ≈
𝑁

⨂
𝑖=1

𝜌𝑖(𝑡) (3.10)

for all times 𝑡. Each reduced density operator 𝜌𝑖(𝑡) belongs to the individual bath spin 𝑖.
This is an extension of the weak-coupling approximation (3.5) for the non-interacting bath
of the central spin model. The total density operator of the whole system in weak-coupling
approximation is therefore assumed to be

𝜌(𝑡) ≈
𝑁

⨂
𝑖=0

𝜌𝑖(𝑡) . (3.11)

Each density operator 𝜌𝑖(𝑡) can be represented by a 2 × 2-matrix using the Pauli matrices
𝜎𝛼, with 𝛼 ∈ {𝑥, 𝑦, 𝑧}. A possible parameterization is given by

𝜌𝑖(𝑡) = 1
2

𝟙 + ⃗𝑣𝑖(𝑡) ⋅ �⃗� . (3.12)

with | ⃗𝑣𝑖(0)| ≤ 1/2 to ensure that 𝜌𝑖(𝑡) is positive semidefinite. This means that 2 ⃗𝑣𝑖(0) is
the Bloch vector. The central spin is in a pure state for | ⃗𝑣𝑖(0)| = 1/2, corresponding to the
surface of the Bloch sphere.

Using this parameterization leads to the rather complicated expression for the total density
matrix

𝜌(𝑡) =
𝑁

∑
𝑗=0

1
2𝑁−1 ⃗𝑣𝑗(𝑡) ⋅ ⃗𝑆𝑗 +

𝑁
∑
𝑘=1

1
2𝑁−3 ( ⃗𝑣0(𝑡) ⋅ ⃗𝑆0) ( ⃗𝑣𝑘(𝑡) ⋅ ⃗𝑆𝑘) + … , (3.13)
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3 Born approximation for the central spin model

with the spin operators
⃗𝑆𝑖 = 𝟙 ⊗ ⋯ ⊗ �⃗�/2⏟

𝑖th place

⊗ ⋯ ⊗ 𝟙 . (3.14)

However, not all terms are relevant as explained below.

In the extended weak-coupling approximation (3.11), 𝜌(𝑡) is fully described by the 𝑁 reduced
density operators 𝜌𝑖(𝑡) which are again fully described by the three-dimensional vectors
⃗𝑣𝑖(𝑡). It is therefore sufficient to rewrite the whole differential equation system (3.8) as a

3 × 𝑁-system of the vectors ⃗𝑣𝑖(𝑡).

As a first step, the differential equation for 𝜌0(𝑡) is derived using the partial trace over the
spin bath, denoted as TrB. This leads to

d
d𝑡

𝜌0(𝑡) = −𝑖 TrB [𝐻,
𝑁

⨂
𝑖=0

𝜌𝑖(𝑡)] (3.15a)

= −𝑖 TrB [𝐻,
𝑁

∑
𝑗=0

1
2𝑁−1 ⃗𝑣𝑗(𝑡) ⋅ ⃗𝑆𝑗 +

𝑁
∑
𝑘=1

1
2𝑁−3 ( ⃗𝑣0(𝑡) ⋅ ⃗𝑆0) ( ⃗𝑣𝑘(𝑡) ⋅ ⃗𝑆𝑘)] . (3.15b)

Since the trace of a Pauli matrix is zero, many terms within the commutator vanish and
have been therefore omitted a priori. The strategy calculating the expression above consists
of using the well known spin algebra to identify those terms that vanish anyway after tracing
due to remaining spin operators. A useful compilation of spin and vector algebra used
throughout this thesis can be found in Appendix A. Note that the time dependence of
the vectors ⃗𝑣𝑖 is omitted as well for a better readability. Sums over Greek indices run over
{𝑥, 𝑦, 𝑧}.

As the next step, the commutator in equation (3.15b) has to be evaluated. Note that when
tracing over the full bath, denoted by TrB, any term proportional to a single bath spin
operator ⃗𝑆𝑖 vanishes. This renders the calculations much easier a priori.

TrB { 1
2𝑁−1 [

𝑁
∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 − ⃗𝑆0 ⋅ �⃗�,

𝑁
∑
𝑗=0

⃗𝑣𝑗 ⋅ ⃗𝑆𝑗]

+ 1
2𝑁−3 [

𝑁
∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 − ⃗𝑆0 ⋅ �⃗�,

𝑁
∑
𝑘=1

( ⃗𝑣0 ⋅ ⃗𝑆0) ( ⃗𝑣𝑘 ⋅ ⃗𝑆𝑘)]} (3.16a)

= 𝑖 TrB

⎧{{{
⎨{{{⎩

− 1
2𝑁−1 ∑

𝛼𝛽𝛾
𝐵𝛼𝑣𝛽

0 𝑆𝛾
0 𝜖𝛼𝛽𝛾

⏟⏟⏟⏟⏟⏟⏟
=(�⃗�× ⃗𝑣0)⋅ ⃗𝑆0

+ 1
2𝑁−1

𝑁
∑
𝑖=1

∑
𝛼𝛽𝛿

𝐽𝑖𝑣𝛼
𝑖 𝑣𝛽

0 𝑆𝛿
0𝜖𝛼𝛽𝛿

⏟⏟⏟⏟⏟⏟⏟
=𝐽𝑖( ⃗𝑣𝑖× ⃗𝑣0)⋅ ⃗𝑆0

⎫}}}
⎬}}}⎭

(3.16b)

Evaluating the trace TrB yields the differential equation for the partial density matrix
𝜌0(𝑡),

d
d𝑡

𝜌0(𝑡) = (−�⃗� × ⃗𝑣0(𝑡) +
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣𝑖(𝑡) × ⃗𝑣0(𝑡)) ⋅ �⃗� (3.17)

= (�⃗�eff(𝑡) × ⃗𝑣0(𝑡)) ⋅ �⃗� . (3.18)
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3.2 Classical equations of motion

In the latter step, the effective time dependent magnetic field

�⃗�eff(𝑡) ∶= −�⃗� +
𝑁

∑
𝑖=1

𝐽𝑖⟨ ⃗𝑆𝑖⟩(𝑡) (3.19)

is introduced, consisting of the external magnetic field and the Overhauser field.

Equation (3.18) can be rewritten in terms of the expectation values ⟨ ⃗𝑆𝑖⟩(t). In the following,
the trace over the whole Hilbert space is denoted by Tr while Tr𝑖 denotes the partial
trace over the degrees of freedom of the 𝑖th bath spin. The vector ⃗𝑒𝛼 is the unit vector in
𝛼-direction. Then, the following relation holds for the weak-coupling approximation (3.11).

⟨ ⃗𝑆𝑖⟩(𝑡) = Tr { ⃗𝑆𝑖𝜌(𝑡)} = Tr𝑖 {1
2

�⃗�𝜌𝑖(𝑡)} = Tr𝑖 {1
2

�⃗� (1
2

𝟙 + ⃗𝑣𝑖(𝑡) ⋅ �⃗�)} (3.20a)

= Tr𝑖 {∑
𝛼𝛽

1
2

⃗𝑒𝛼𝜎𝛼𝜎𝛽𝑣𝛽
𝑖 (𝑡)} = Tr𝑖 {∑

𝛼𝛽

1
2

𝛿𝛼𝛽𝑣𝛽
𝑖 (𝑡)} = ⃗𝑣𝑖(𝑡) (3.20b)

This allows for the direct replacement of the vectors ⃗𝑣𝑖(𝑡) with the expectation values ⟨ ⃗𝑆𝑖⟩(𝑡)
in equation (3.18). Obviously, the same relation holds for ⃗𝑣0(𝑡).

It is now easy to derive the differential equation for ⟨ ⃗𝑆0⟩(𝑡).

d
d𝑡

⟨ ⃗𝑆0⟩(𝑡) = d
d𝑡

Tr0 {1
2

�⃗�𝜌0(𝑡)} = Tr0

⎧{
⎨{⎩

1
2

�⃗� d
d𝑡

𝜌0(𝑡)
⏟

(3.18)

⎫}
⎬}⎭

(3.21a)

= �⃗�eff(𝑡) × ⟨ ⃗𝑆0⟩(𝑡) . (3.21b)

The differential equation for the expectation value of each bath spin ⟨ ⃗𝑆𝑖⟩(𝑡) is derived in
an analogous way, but with more vanishing terms. For example, the terms including the
magnetic field �⃗� vanish because it couples only to the central spin operator ⃗𝑆0. This leads
to the full set of differential equations

d
d𝑡

⟨ ⃗𝑆0⟩(𝑡) = �⃗�eff(𝑡) × ⟨ ⃗𝑆0⟩(𝑡) (3.22a)

d
d𝑡

⟨ ⃗𝑆𝑖⟩(𝑡) = 𝐽𝑖⟨ ⃗𝑆0⟩(𝑡) × ⟨ ⃗𝑆𝑖⟩(𝑡) ∀ 𝑖 ∈ {1, … , 𝑁} . (3.22b)

It describes the classical precession of the central spin around the effective magnetic field
�⃗�eff(𝑡) while each bath spin precesses around the central spin. Therefore, this calculation
can be considered as a simple mean-field approach. The precession frequencies of the bath
spins are determined by their individual coupling constants 𝐽𝑖.

Throughout this thesis, the differential equation system (3.22) is referred to as the classical
equations of motion. It can also be derived by simply treating the spin operators as classical
vectors using the Heisenberg equation of motion. This mean-field approach does not describe
the real quantum mechanics in the CSM, though. Hence, the Born approximation (3.7) is
used in the following sections to include the quantum mechanical corrections to the classical
equations of motion in second order of the couplings 𝒪 (𝐽2

𝑖 ).
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3 Born approximation for the central spin model

3.3 Born approximation applied to the central spin model

In this section, the Born approximation as introduced in section 3.1 is applied to the central
spin model. At first, an appropriate way to split the CSM Hamiltonian

𝐻 =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 − �⃗� ⋅ ⃗𝑆0 . (3.23)

into a part 𝐻0 which leads to the classical precession terms, and an interacting part 𝐻I
which is dealt with using the Born approximation, has to be found.

Interpreting spin operators as classical vectors leads to the classical equations of motion.
Since this is very similar to replacing the spin operators ⃗𝑆0/𝑖(𝑡) by their expectation values
⟨ ⃗𝑆0/𝑖(𝑡)⟩ =∶ ⃗𝑣0/𝑖(𝑡), it is convenient to introduce the splitting

𝐻(𝑡) = (
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣𝑖(𝑡) − �⃗�) ⋅ ⃗𝑆0(𝑡) +
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣0(𝑡) ⋅ ⃗𝑆𝑖(𝑡) +
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣0(𝑡) ⋅ ⃗𝑣𝑖(𝑡)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐻0(𝑡)

+
𝑁

∑
𝑖=1

𝐽𝑖 ( ⃗𝑆0(𝑡) − ⃗𝑣0(𝑡)) ⋅ ( ⃗𝑆𝑖(𝑡) − ⃗𝑣𝑖(𝑡))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐻I(𝑡)

. (3.24)

The solvable part 𝐻0(𝑡) leads to the classical precession of the central spin around the
effective magnetic field �⃗�eff(𝑡) ∶= ∑𝑁

𝑖=1 𝐽𝑖 ⃗𝑣𝑖(𝑡) − �⃗� while the bath spins precess around the
central spin expectation value ⃗𝑣0(𝑡). This classical behavior is shifted into the the operators

⃗𝑆0(𝑡) and ⃗𝑆𝑖(𝑡) using the Heisenberg equations of motion.

The interacting part 𝐻I(𝑡) can be interpreted as the interaction between the fluctuations from
the expectation values ⃗𝑣0(𝑡) and ⃗𝑣𝑖(𝑡). This term is dealt with using the Born approximation
(3.7).

In the following subsection and as a starting point, the Hamiltonian (3.24) is discussed using
this approach for the easier case 𝑁 = 1. After checking the obtained differential equation
system for correctness and completeness through an extensive error analysis, an extension
to the full central spin model with arbitrary amount of bath spins 𝑁 is performed.

3.3.1 Derivation for one bath spin

As a starting point, the split Hamiltonian (3.24) is discussed for the easier case 𝑁 = 1 using
the Born approximation.
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3.3 Born approximation applied to the central spin model

As a first step, the dynamics provided by 𝐻0(𝑡) is shifted into ⃗𝑆0(𝑡) and ⃗𝑆𝑖(𝑡) by solving
the corresponding Heisenberg equation of motion.

d
d𝑡

⃗𝑆0(𝑡) = 𝑖 [𝐻0(𝑡), ⃗𝑆0(𝑡)] = 𝑖 [�⃗�eff(𝑡) ⋅ ⃗𝑆0(𝑡), ⃗𝑆0(𝑡)] (3.25a)

= �⃗�eff(𝑡) × ⃗𝑆0(𝑡) = 𝑉eff(𝑡) ⃗𝑆0(𝑡) (3.25b)
d
d𝑡

⃗𝑆𝑖(𝑡) = 𝑖 [𝐻0(𝑡), ⃗𝑆𝑖(𝑡)] (3.25c)

= 𝐽𝑖 ⃗𝑣0(𝑡) × ⃗𝑆𝑖(𝑡) = 𝐽𝑖𝑉0(𝑡) ⃗𝑆𝑖(𝑡) (3.25d)

In each latter step, the cross product is rewritten as a matrix-vector multiplication with the
skew-symmetric matrices 𝑉eff(𝑡) and 𝑉0(𝑡), respectively. As an illustration, the matrix 𝑉0(𝑡)
takes the form

𝑉0(𝑡) = ⎛⎜
⎝

0 −𝑣𝑧
0(𝑡) 𝑣𝑦

0(𝑡)
𝑣𝑧

0(𝑡) 0 −𝑣𝑥
0 (𝑡)

−𝑣𝑦
0(𝑡) 𝑣𝑥

0 (𝑡) 0
⎞⎟
⎠

. (3.26)

Note that a skew-symmetric matrix 𝑉 fulfills the useful relation 𝑉 = −𝑉 𝑇.

In order to solve the differential equations (3.25b) and (3.25d), the ansatz
⃗𝑆0/𝑖(𝑡) = 𝐷0/𝑖(𝑡) ⃗𝑆0,𝑖 (3.27)

is used. Inserting this ansatz into (3.25b) and (3.25d) yields differential equations for the
matrices 𝐷0/𝑖(𝑡),

d
d𝑡

𝐷0(𝑡) = 𝑉eff(𝑡)𝐷0(𝑡) (3.28a)

d
d𝑡

𝐷𝑖(𝑡) = 𝐽𝑖𝑉0(𝑡)𝐷𝑖(𝑡) . (3.28b)

These matrices describe orthogonal rotations of the initial operator ⃗𝑆0/𝑖(0) = ⃗𝑆0/𝑖. In
particular, these rotations are equal to the classical precession of the spins. The initial
conditions are obviously given by an identity operation, meaning 𝐷0/𝑖(𝑡 = 0) = 𝟙. Therefore,
if 𝐷0/𝑖(𝑡) is an orthogonal matrix, the relation det 𝐷0/𝑖(𝑡) = 1 has to hold. This is one of
the two properties of a rotation matrix. The second one is the orthogonality which can be
proven easily. The property to show is 𝐷𝑇

0/𝑖(𝑡)𝐷0/𝑖(𝑡) = 𝟙 which is equal to the requirement
𝐷𝑇

0/𝑖(𝑡) = 𝐷−1
0/𝑖(𝑡). Since both differential equations (3.28a) and (3.28b) have the same

structure, it is sufficient to proof this relation only for 𝐷𝑖(𝑡).

When assuming 𝐷𝑖(𝑡) to be orthogonal, the derivative
d
d𝑡

(𝐷𝑇
𝑖 (𝑡)𝐷𝑖(𝑡)) = 0 (3.29)

is known. Using the product rule and then inserting equation (3.28b) leads to

( d
d𝑡

𝐷𝑇
𝑖 (𝑡))

⏟⏟⏟⏟⏟
=𝐽𝑖𝐷𝑇

𝑖 (𝑡)𝑉 𝑇
0 (𝑡)=−𝐽𝑖𝐷𝑇

𝑖 (𝑡)𝑉0(𝑡)

𝐷𝑖(𝑡) + 𝐷𝑇
𝑖 (𝑡) ( d

d𝑡
𝐷𝑖(𝑡))⏟⏟⏟⏟⏟

=𝐽𝑖𝑉0(𝑡)𝐷𝑖(𝑡)

= 0 (3.30a)

⇔ − 𝐽𝑖𝐷𝑇
𝑖 (𝑡)𝑉0(𝑡)𝐷𝑖(𝑡) + 𝐽𝑖𝐷𝑇

𝑖 (𝑡)𝑉0(𝑡)𝐷𝑖(𝑡) = 0 . (3.30b)
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3 Born approximation for the central spin model

This proofs the orthogonality of 𝐷𝑖(𝑡) and therefore also of 𝐷0(𝑡).

The parameterizations of the reduced density operators use a slightly different notation
compared to section 3.2. The weak-coupling approximation (3.11) is still used, though.

𝜌0(𝑡) = 1
2

𝟙 + ⃗𝑐(𝑡) ⋅ �⃗� (3.31a)

𝜌𝑖(𝑡) = 1
2

𝟙 + ⃗𝑏𝑖(𝑡) ⋅ �⃗� (3.31b)

⇒ 𝜌(𝑡) = 𝜌0(𝑡) ⊗ 𝜌𝑖(𝑡) = 1
4

𝟙 + ⃗𝑐(𝑡) ⋅ ⃗𝑆0 + ⃗𝑏𝑖(𝑡) ⋅ ⃗𝑆𝑖 + 4 ( ⃗𝑐(𝑡) ⋅ ⃗𝑆0) ( ⃗𝑏𝑖(𝑡) ⋅ ⃗𝑆𝑖) (3.31c)

Once again, the initial conditions | ⃗𝑐(0)| ≤ 1/2 and | ⃗𝑏𝑖(0)| ≤ 1/2 have to be fulfilled to ensure
that the density matrices are positive semidefinite.

Calculating the expectation values ⟨ ⃗𝑆0/𝑖(𝑡)⟩ =∶ ⃗𝑣0/𝑖(𝑡) yields the useful relations

⃗𝑣0(𝑡) = ⟨ ⃗𝑆0(𝑡)⟩ = Tr [𝐷0(𝑡) ⃗𝑆0𝜌(𝑡)] (3.32a)

= Tr [∑
𝛼𝛽

𝐷𝛼𝛽
0 𝑆𝛽

0 ⃗𝑒𝛼 (1
4

𝟙 + ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖 + ⃗𝑐 ⋅ ⃗𝑆0) + 4 ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖) ( ⃗𝑐 ⋅ ⃗𝑆0))]

(3.32b)

= Tr [∑
𝛼𝛽

𝐷𝛼𝛽
0 𝑆𝛽

0 ⃗𝑒𝛼 ( ⃗𝑐 ⋅ ⃗𝑆0)] = 1
2

Tr [∑
𝛼𝛽𝛾

𝐷𝛼𝛽
0 𝑆𝛽

0 ⃗𝑒𝛼𝑐𝛾𝑆𝛾
0 ] (3.32c)

= 𝐷0(𝑡) ⃗𝑐(𝑡) (3.32d)
⃗𝑣𝑖(𝑡) = ⟨ ⃗𝑆𝑖(𝑡)⟩ = 𝐷𝑖(𝑡) ⃗𝑏𝑖(𝑡) . (3.32e)

These relations allow for the parameterization of 𝜌(𝑡) by making use of these expectation
values if the rotation matrices 𝐷0/𝑖(𝑡) are known. As of now, the notation ⃗𝑣0/𝑖 = ⟨ ⃗𝑆0/𝑖⟩ is
used throughout this thesis to describe the expectation value of spin operators.

The remaining task consists of deriving a system of differential equations for either ⃗𝑐(𝑡) and
⃗𝑏𝑖(𝑡) or for ⃗𝑣0(𝑡) and ⃗𝑣𝑖(𝑡). In this thesis, the latter case is chosen because it allows for a

direct calculation of the expectation values later on.

Despite the additional coupling of the central spin to the external field which is shifted into
𝐷0(𝑡), the dynamics provided by interacting part 𝐻𝐼(𝑡) for ⃗𝑣0(𝑡) only differs from ⃗𝑣𝑖(𝑡) by
switching some indices due to the symmetric structure of the Hamiltonian. Therefore, the
differential equation for ⃗𝑣𝑖(𝑡) is derived at first.

In the interaction picture, the derivative of the expectation value ⃗𝑣𝑖(𝑡) can be written as

d
d𝑡

⃗𝑣𝑖(𝑡) = d
d𝑡

Tr [ ⃗𝑆𝑖(𝑡)𝜌(𝑡)] = d
d𝑡

Tr𝑖 [ ⃗𝑠𝑖(𝑡)𝜌𝑖(𝑡)] (3.33a)

= Tr𝑖
⎡
⎢⎢
⎣

( d
d𝑡

⃗𝑠𝑖(𝑡))⏟⏟⏟⏟⏟
=𝐽𝑖𝑉0(𝑡) ⃗𝑠𝑖(𝑡)

𝜌𝑖(𝑡) + ⃗𝑠𝑖(𝑡) ( d
d𝑡

𝜌𝑖(𝑡))⏟⏟⏟⏟⏟
Bornapproximation

⎤
⎥⎥
⎦

. (3.33b)
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3.3 Born approximation applied to the central spin model

The vector ⃗𝑠𝑖(𝑡) = 𝐷𝑖(𝑡) ⃗𝑠𝑖 is the time dependent vector of the 2×2 spin operators 𝑠𝛼
𝑖 = 𝜎𝛼/2.

The first term on the right-hand side will describe the classical precession around ⃗𝑣0(𝑡) while
the second term will include the second order 𝒪 (𝐽2

𝑖 ) quantum mechanical corrections to the
classical dynamics which are derived in the following.

The Born approximation (3.7) for the reduced density operator of the bath spin reads

d
d𝑡

𝜌𝑖(𝑡) = −𝑖 Tr0 [𝐻I(𝑡), 𝜌0(0) ⊗ 𝜌𝑖(0)] − Tr0 [𝐻I(𝑡), ∫
𝑡

0
d𝑠 [𝐻I(𝑠), 𝜌0(𝑠) ⊗ 𝜌𝑖(𝑠)]] .

(3.34)

Despite the different time dependencies, the first commutator is almost equal to the inner
commutator of the second term, [𝐻I(𝑠), 𝜌0(𝑠) ⊗ 𝜌𝑖(𝑠)]. Hence, the first commutator can be
calculated by evaluating the correct terms of the inner commutator at 𝑠 = 0, namely ⃗𝑐(𝑠 = 0)
and ⃗𝑏𝑖(𝑠 = 0) which have their origin in the parameterization of 𝜌(0) = 𝜌0(0) ⊗ 𝜌𝑖(0). For a
better readability throughout the following calculation, the time dependencies are omitted.

[𝐻I(𝑠), 𝜌0(𝑠) ⊗ 𝜌𝑖(𝑠)] = [𝐽𝑖 ( ⃗𝑆0(𝑠) − ⃗𝑣0(𝑠)) ⋅ ( ⃗𝑆𝑖(𝑠) − ⃗𝑣𝑖(𝑠)) , 𝜌0(𝑠) ⊗ 𝜌𝑖(𝑠)] (3.35a)

= 𝐽𝑖 [(𝐷0
⃗𝑆0) ⋅ (𝐷𝑖

⃗𝑆𝑖) − (𝐷0
⃗𝑆0) ⋅ ⃗𝑣𝑖 − (𝐷𝑖

⃗𝑆𝑖) ⋅ ⃗𝑣0, ⃗𝑐 ⋅ ⃗𝑆0 + ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖 + 4 ( ⃗𝑐 ⋅ ⃗𝑆0) ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖)]
(3.35b)

Due to the linearity of commutators, this commutator splits into nine distinct commutators
𝒞𝑖 where most of them are very similar, though. It is therefore refrained from giving the
detailed calculation for each individual commutator. Only the two most important ones,
𝒞1 and 𝒞3, are discussed in detail. Mainly some vector algebra, the orthogonality of the
rotation matrices 𝐷0/𝑖(𝑡), and the relations (3.32d) and (3.32e) are required to write the
other commutators in the appropriate form.

The intention is to write the evaluated inner commutator of equation (3.34) in the form

[𝐻𝑖(𝑠), 𝜌0(𝑠) ⊗ 𝜌𝑖(𝑠)] = 𝑖𝐽𝑖 [ ⃗𝑝𝑖(𝑡) ⋅ ⃗𝑆𝑖 + ⃗𝑞𝑖(𝑠) ⋅ ⃗𝑆0 + (𝑚𝑖(𝑠) ⃗𝑆𝑖) ⋅ ⃗𝑆0] . (3.36)

This notation allows for replacing the integral of the integro-differential equation (3.34)
by additional differential equations later on. Note that a compilation of the required spin
and vector algebra for the following evaluation of the commutators 𝒞𝑖 can be found in
Appendix A.

𝒞1 ∶= [(𝐷0
⃗𝑆0) ⋅ (𝐷𝑖

⃗𝑆𝑖), ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖] = ∑
𝛼𝛽𝛾𝛿

𝐷𝛼𝛽
0 𝑆𝛽

0 𝐷𝛼𝛾
𝑖 𝑏𝛿

𝑖 [𝑆𝛾
𝑖 , 𝑆𝛿

𝑖 ] (3.37a)

= 𝑖 ∑
𝛼𝛾𝛿𝜖

(𝐷0
⃗𝑆0)

𝛼
𝐷𝛼𝛾

𝑖 𝑏𝛿
𝑖 𝑆𝜖

𝑖 𝜖𝛾𝛿𝜖 = 𝑖 ∑
𝛼

(𝐷0
⃗𝑆0)

𝛼
[𝐷𝑖 ( ⃗𝑏𝑖 × ⃗𝑆𝑖)]

𝛼
(3.37b)

= 𝑖 (𝐷0
⃗𝑆0) ⋅ [𝐷𝑖 ( ⃗𝑏𝑖 × ⃗𝑆𝑖)] = 𝑖

⎡
⎢⎢
⎣

𝐷𝑇
0 𝐷𝑖 ( ⃗𝑏𝑖 × ⃗𝑆𝑖)⏟⏟⏟⏟⏟

= ⃗𝑣𝑖×(𝐷𝑖 ⃗𝑆𝑖)=𝑉𝑖𝐷𝑖 ⃗𝑆𝑖

⎤
⎥⎥
⎦

⋅ ⃗𝑆0 (3.37c)

= 𝑖 (𝐷𝑇
0 𝑉𝑖𝐷𝑖

⃗𝑆𝑖) ⋅ ⃗𝑆0 (3.37d)
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3 Born approximation for the central spin model

𝒞2 ∶= [(𝐷0
⃗𝑆0) ⋅ (𝐷𝑖

⃗𝑆𝑖), ⃗𝑐 ⋅ ⃗𝑆0] = −𝑖 (𝐷𝑇
0 𝑉0𝐷𝑖

⃗𝑆𝑖) ⋅ ⃗𝑆0 (3.38)

𝒞3 ∶= [(𝐷0
⃗𝑆0) ⋅ (𝐷𝑖

⃗𝑆𝑖), 4 ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖) ( ⃗𝑐 ⋅ ⃗𝑆0)] (3.39a)

= 4 ∑
𝛼𝛽𝛾𝛿𝜖

𝐷𝛼𝛽
0 𝐷𝛼𝛾

𝑖 𝑏𝛿
𝑖 𝑐𝜖 [𝑆𝛽

0 𝑆𝛾
𝑖 , 𝑆𝛿

𝑖 𝑆𝜖
0]⏟⏟⏟⏟⏟⏟⏟

=𝑆𝛽
0 [𝑆𝛾

𝑖 , 𝑆𝛿
𝑖 ]𝑆𝜖

0+𝑆𝛿
𝑖 [𝑆𝛽

0 , 𝑆𝜖
0]𝑆𝛾

𝑖

(3.39b)

= 4𝑖 ∑
𝛽𝛾𝛿𝜖𝜅

(𝐷𝑇
0 𝐷𝑖)

𝛽𝛾 𝑏𝛿
𝑖 𝑐𝜖 (1

4
𝛿𝛽𝜖𝑆𝜅

𝑖 𝜖𝛾𝛿𝜅 + 1
4

𝛿𝛿𝛾𝑆𝜅
0 𝜖𝛽𝜖𝜅) (3.39c)

+ 4𝑖 ∑
𝛽𝛾𝛿𝜖𝜅𝜏

(𝐷𝑇
0 𝐷𝑖)

𝛽𝛾 𝑏𝛿
𝑖 𝑐𝜖 ⎛⎜

⎝
𝑆𝜏

0𝑆𝜅
𝑖 𝜖𝛾𝛿𝜅𝜖𝛽𝜖𝜏 − 𝑆𝜅

0 𝑆𝜏
𝑖 𝜖𝛾𝛿𝜏𝜖𝛽𝜖𝜅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0 , rename 𝜅↔𝜏 in 2nd term

⎞⎟
⎠

(3.39d)

= 𝑖 ∑
𝛽𝛾𝛿𝜅

(𝐷𝑇
0 𝐷𝑖)

𝛽𝛾 𝑏𝛿
𝑖 𝑐𝛽𝑆𝜅

𝑖 𝜖𝛾𝛿𝜅 + 𝑖 ∑
𝛽𝛾𝜖𝜅

(𝐷𝑇
0 𝐷𝑖)

𝛽𝛾 𝑏𝛾
𝑖 𝑐𝜖𝑆𝜅

0 𝜖𝛽𝜖𝜅 (3.39e)

= 𝑖 [(𝐷𝑇
𝑖 𝐷0 ⃗𝑐) × ⃗𝑏𝑖] ⋅ ⃗𝑆𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝒞3.1

+ 𝑖 [(𝐷𝑇
0 𝐷𝑖 ⃗𝑏𝑖) × ⃗𝑐] ⋅ ⃗𝑆0⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝒞3.2

(3.39f)

𝒞4 ∶= [−(𝐷0
⃗𝑆0) ⋅ ⃗𝑣𝑖, ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖] = 0 (3.40)

𝒞5 ∶= [−(𝐷0
⃗𝑆0) ⋅ ⃗𝑣𝑖, ⃗𝑐 ⋅ ⃗𝑆0] = −𝑖 [(𝐷𝑇

0 ⃗𝑣𝑖) × ⃗𝑐] ⋅ ⃗𝑆0 = −𝑖 [(𝐷𝑇
0 𝐷𝑖 ⃗𝑏) × ⃗𝑐] ⋅ ⃗𝑆0 (3.41)

𝒞6 ∶= [−(𝐷0
⃗𝑆0) ⋅ ⃗𝑣𝑖, 4 ( ⃗𝑐 ⋅ ⃗𝑆0) ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖)] (3.42a)

=
(3.41)

−4𝑖 ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖) [(𝐷𝑇
0 ⃗𝑣𝑖) × ⃗𝑐] ⋅ ⃗𝑆0 = 4𝑖 (𝐷𝑇

0 𝑉0 ⃗𝑣𝑖 ⃗𝑣𝑇
𝑖 𝐷𝑖

⃗𝑆𝑖) ⋅ ⃗𝑆0 (3.42b)

𝒞7 ∶= [− (𝐷𝑖
⃗𝑆𝑖) ⋅ ⃗𝑣0, ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖] = −𝑖 [(𝐷𝑇

𝑖 𝐷0 ⃗𝑐) × ⃗𝑏𝑖] ⋅ ⃗𝑆𝑖 (3.43)

𝒞8 ∶= [− (𝐷𝑖
⃗𝑆𝑖) ⋅ ⃗𝑣0, ⃗𝑐 ⋅ ⃗𝑆0] = 0 (3.44)

𝒞9 ∶= [−(𝐷𝑖
⃗𝑆𝑖) ⋅ ⃗𝑣0, 4 ( ⃗𝑏𝑖 ⋅ ⃗𝑆𝑖) ( ⃗𝑐 ⋅ ⃗𝑆0)] = −4𝑖 (𝐷𝑇

0 ⃗𝑣0 ⃗𝑣𝑇
0 𝑉𝑖𝐷𝑖

⃗𝑆𝑖) ⋅ ⃗𝑆0 (3.45)

The first term of the right-hand side of the Born approximation (3.34) is evaluated using
these nine commutators 𝒞𝑖. It requires the calculation of the partial trace Tr0 so that every
term ∝ ⃗𝑆0 vanishes. Thus, the only contributing terms are 𝒞3.1 and 𝒞7. Note that the
correct time dependencies are included again at this point.

− 𝑖 Tr0 [𝐻I(𝑡), 𝜌0(0) ⊗ 𝜌𝑖(0)] = −𝑖2𝐽𝑖 Tr0 {𝒞3.1 + 𝒞7} (3.46a)

= −𝑖2𝐽𝑖 Tr0

⎧{
⎨{⎩

[(𝐷𝑇
𝑖 (𝑡)𝐷0(𝑡) ⃗𝑐(0)) × ⃗𝑏𝑖(0)] ⋅ ⃗𝑆𝑖 − ⎡⎢

⎣

⎛⎜
⎝

𝐷𝑇
𝑖 (𝑡) 𝐷0(𝑡) ⃗𝑐(𝑡)⏟⏟⏟⏟⏟

= ⃗𝑣0(𝑡)

⎞⎟
⎠

× ⃗𝑏𝑖(0)⎤⎥
⎦

⋅ ⃗𝑆𝑖

⎫}
⎬}⎭

(3.46b)

= 𝐽𝑖 [(𝐷𝑇
𝑖 (𝑡)𝐷0(𝑡) ⃗𝑐(0) − 𝐷𝑇

𝑖 (𝑡) ⃗𝑣0(𝑡)) × ⃗𝑏𝑖(0)] ⋅ �⃗� (3.46c)
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3.3 Born approximation applied to the central spin model

Next, in order to write the inner commutator which appears in the Born approximation
(3.34) in terms of equation (3.36), the commutators 𝒞𝑖 have to be sorted in this regard.
This leads to the following expressions for the coefficients ⃗𝑝(𝑠), ⃗𝑞(𝑠) and 𝑚(𝑠), defined in
equation (3.36).

⃗𝑝𝑖(𝑠) = (𝒞3.1 + 𝒞7) /𝑖 = 0 (3.47a)
⃗𝑞𝑖(𝑠) = (𝒞3.2 + 𝒞5) /𝑖 = 0 (3.47b)

𝑚𝑖(𝑠) = (𝒞1 + 𝒞2 + 𝒞6 + 𝒞9) /𝑖 (3.47c)
= 𝐷𝑇

0 (𝑠) [𝑉𝑖(𝑠) − 𝑉0(𝑠)] 𝐷𝑖(𝑠)
+ 4𝐷𝑇

0 (𝑠) [𝑉0(𝑠) ⃗𝑣𝑖(𝑠) ⃗𝑣𝑇
𝑖 (𝑠) − ⃗𝑣0(𝑠) ⃗𝑣𝑇

0 (𝑠)𝑉𝑖(𝑠)] 𝐷𝑖(𝑠) . (3.47d)

Thus, the inner commutator of the Born approximation (3.34) simply takes the form

[𝐻I(𝑠), 𝜌0(𝑠) ⊗ 𝜌𝑖(𝑠)] = 𝑖𝐽𝑖 (𝑚𝑖(𝑠) ⃗𝑆𝑖) ⋅ ⃗𝑆0 . (3.48)

As already mentioned, this notation helps dealing with the integral in the integro-differential
equation (3.34), but it leads to an additional differential equation due to

∫
𝑡

0
d𝑠 [𝐻I(𝑠), 𝜌𝑖(𝑠) ⊗ 𝜌0(𝑠)] = 𝑖𝐽𝑖 ∫

𝑡

0
d𝑠 (𝑚𝑖(𝑠) ⃗𝑆𝑖) ⋅ ⃗𝑆0 = 𝑖𝐽𝑖 (𝑀𝑖(𝑡) ⃗𝑆𝑖) ⋅ ⃗𝑆0 . (3.49)

The additional differential equation to solve is given by

d
d𝑡

𝑀𝑖(𝑡) = 𝑚𝑖(𝑡) , (3.50)

with the arbitrary chosen initial condition 𝑀𝑖(0) = 0.

The remaining task is to calculate the outer commutator which appears in the Born
approximation (3.34). According to the previous calculation, the commutator to evaluate
is given by [𝐻I(𝑡), 𝑖𝐽𝑖 (𝑀𝑖(𝑡) ⃗𝑆𝑖) ⋅ ⃗𝑆0]. By directly including the partial trace Tr0, every
term ∝ ⃗𝑆0 vanishes. This helps to handle the size of the following expressions. Note that
the time dependencies are once again omitted for a better readability.

Tr0 [𝐻I(𝑡), 𝑖𝐽𝑖 (𝑀𝑖(𝑡) ⃗𝑆𝑖) ⋅ ⃗𝑆0] (3.51a)

= 𝑖𝐽2
𝑖 Tr0 [(𝐷0

⃗𝑆0) ⋅ (𝐷𝑖
⃗𝑆𝑖) − (𝐷0

⃗𝑆0) ⋅ ⃗𝑣𝑖 − (𝐷𝑖
⃗𝑆𝑖) ⋅ ⃗𝑣0, (𝑀𝑖

⃗𝑆𝑖) ⋅ ⃗𝑆0] (3.51b)

= 𝑖𝐽2
𝑖 Tr0 [(𝐷0

⃗𝑆0) ⋅ (𝐷𝑖
⃗𝑆𝑖) , (𝑀𝑖

⃗𝑆𝑖) ⋅ ⃗𝑆0] (3.51c)

= 𝑖𝐽2
𝑖 Tr0 { ∑

𝛼𝛽𝛾𝛿𝜖
𝐷𝛼𝛽

0 𝐷𝛼𝛾
𝑖 𝑀𝛿𝜖

𝑖 [𝑆𝛽
0 𝑆𝛾

𝑖 , 𝑆𝜖
𝑖 𝑆𝛿

0]} (3.51d)

= −𝐽2
𝑖
4

Tr0 { ∑
𝛼𝛽𝛾𝜖𝜏

𝐷𝛼𝛽
0 𝐷𝛼𝛾

𝑖 𝑀𝛽𝜖
𝑖 𝑆𝜏

𝑖 𝜖𝛾𝜖𝜏} (3.51e)

= −𝐽2
𝑖
4

∑
𝛾𝜖𝜏

(𝐷𝑇
𝑖 𝐷0𝑀𝑖)

𝛾𝜖 𝜖𝛾𝜖𝜏𝜎𝜏 (3.51f)
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3 Born approximation for the central spin model

By using this expression, the whole differential equation (3.34) for 𝜌𝑖(𝑡) takes the form

d
d𝑡

𝜌𝑖(𝑡) = 𝐽𝑖 [(𝐷𝑇
𝑖 (𝑡)𝐷0(𝑡) ⃗𝑐(0) − 𝐷𝑇

𝑖 (𝑡) ⃗𝑣0(𝑡)) × ⃗𝑏𝑖(0)] ⋅ �⃗�

+ 𝐽2
𝑖
4

∑
𝛾𝜖𝜏

(𝐷𝑇
𝑖 (𝑡)𝐷0(𝑡)𝑀𝑖(𝑡))

𝛾𝜖 𝜖𝛾𝜖𝜏𝜎𝜏 . (3.52)

In order to obtain the equation of motion for the expectation value ⃗𝑣𝑖(𝑡), equation (3.33b)
is used, which reads

d
d𝑡

⃗𝑣𝑖(𝑡) = Tr𝑖
⎡
⎢⎢
⎣

( d
d𝑡

⃗𝑠𝑖(𝑡))⏟⏟⏟⏟⏟
=𝐽𝑖𝑉0(𝑡) ⃗𝑠𝑖(𝑡)

𝜌𝑖(𝑡) + ⃗𝑠𝑖(𝑡) ( d
d𝑡

𝜌𝑖(𝑡))⏟⏟⏟⏟⏟
Born approximation

⎤
⎥⎥
⎦

. (3.53)

It consists of two parts with both being known now. The first term is the classical precession
term, given as

Tr𝑖 [𝐽𝑖𝑉0(𝑡) ⃗𝑠𝑖(𝑡)𝜌𝑖(𝑡)] = 𝐽𝑖 Tr𝑖 [1
2

𝑉0(𝑡)𝐷𝑖(𝑡)�⃗� (1
2

𝟙 + ⃗𝑏𝑖(𝑡) ⋅ �⃗�)] (3.54a)

= 𝐽𝑖𝑉0(𝑡)𝐷𝑖(𝑡) ⃗𝑏𝑖(𝑡) = 𝐽𝑖𝑉0(𝑡) ⃗𝑣𝑖(𝑡) (3.54b)
= 𝐽𝑖 ⃗𝑣0(𝑡) × ⃗𝑣𝑖(𝑡) . (3.54c)

The second term, which describes the second order quantum mechanical correction in Born
approximation, reads

Tr𝑖 [ ⃗𝑠𝑖(𝑡) ( d
d𝑡

𝜌𝑖(𝑡))] (3.55a)

= Tr𝑖 [∑
𝛼𝛽

1
2

𝐷𝛼𝛽
𝑖 (𝑡)𝜎𝛽 ⃗𝑒𝛼 (𝐽𝑖 [(𝐷𝑇

𝑖 (𝑡)𝐷0(𝑡) ⃗𝑐(0) − 𝐷𝑇
𝑖 (𝑡) ⃗𝑣0(𝑡)) × ⃗𝑏𝑖(0)] ⋅ �⃗�

+𝐽2
𝑖
4

∑
𝛾𝜖𝜏

(𝐷𝑇
𝑖 (𝑡)𝐷0(𝑡)𝑀𝑖(𝑡))

𝛾𝜖 𝜎𝜏𝜖𝛾𝜖𝜏)] (3.55b)

= 𝐽𝑖 (𝐷0(𝑡) ⃗𝑐(0) − ⃗𝑣0(𝑡)) × (𝐷𝑖(𝑡) ⃗𝑏𝑖(0))

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
𝑖 (𝑡) (𝐷𝑇

𝑖 (𝑡)𝐷0(𝑡)𝑀𝑖(𝑡))
𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 . (3.55c)

In principle, it is possible to further rewrite the second order term. Since it will not be really
beneficial, it is refrained from doing this, meaning the current form is kept.

Inserting the expressions (3.54c) and (3.55c) into (3.53) yields the final equation of motion
for the expectation value ⃗𝑣𝑖(𝑡),

d
d𝑡

⃗𝑣𝑖(𝑡) = 𝐽𝑖 [ ⃗𝑣0(𝑡) × ⃗𝑣𝑖(𝑡) + (𝐷0(𝑡) ⃗𝑐(0) − ⃗𝑣0(𝑡)) × (𝐷𝑖(𝑡) ⃗𝑏𝑖(0))]

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
𝑖 (𝑡) (𝐷𝑇

𝑖 (𝑡)𝐷0(𝑡)𝑀(𝑡))𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 . (3.56)
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3.3 Born approximation applied to the central spin model

Now due to symmetry, it is easy to derive the appropriate equation of motion for ⃗𝑣0(𝑡),

d
d𝑡

⃗𝑣0(𝑡) = Tr0
⎡
⎢⎢
⎣

( d
d𝑡

⃗𝑠0(𝑡))
⏟⏟⏟⏟⏟
=𝑉eff(𝑡) ⃗𝑠0(𝑡)

𝜌0(𝑡) + ⃗𝑠0(𝑡) ( d
d𝑡

𝜌0(𝑡))
⏟⏟⏟⏟⏟

Bornapproximation

⎤
⎥⎥
⎦

. (3.57)

Just as before, the first term of equation (3.57) reads

Tr0 [𝑉eff(𝑡) ⃗𝑠0(𝑡)𝜌0(𝑡)] = �⃗�eff(𝑡) × ⃗𝑣0(𝑡) . (3.58a)

The second term of equation (3.57) requires deriving the Born approximation for 𝜌0(𝑡),
which is again a very similar procedure.

Starting with the outer commutator (3.51a), but now with Tr𝑖 instead of Tr0, yields

Tr𝑖 [𝐻I(𝑡), 𝑖𝐽𝑖 (𝑀𝑇
𝑖 (𝑡) ⃗𝑆0) ⋅ ⃗𝑆𝑖] = 𝑖𝐽2

𝑖 Tr𝑖 [(𝐷0
⃗𝑆0) ⋅ (𝐷𝑖

⃗𝑆𝑖) , (𝑀𝑇
𝑖

⃗𝑆0) ⋅ ⃗𝑆𝑖] (3.59a)

= −𝐽2
𝑖
4

∑
𝛾𝜖𝜏

(𝐷𝑇
0 𝐷𝑖𝑀𝑇

𝑖 )𝛾𝜖 𝜖𝛾𝜖𝜏𝜎𝜏 . (3.59b)

Comparing this expression to equation (3.51f), only the indices of the rotation matrices
𝐷0/𝑖(𝑡) have switched and 𝑀𝑖(𝑡) has been replaced by its transpose 𝑀𝑇

𝑖 (𝑡). Hence, the
differential equation for 𝑀𝑖(𝑡) has to be solved only once.

As a result, the Born approximation for 𝜌0(𝑡) takes the form

d
d𝑡

𝜌0(𝑡) = 𝐽𝑖 [(𝐷𝑇
0 (𝑡)𝐷𝑖(𝑡) ⃗𝑏𝑖(0) − 𝐷𝑇

0 (𝑡) ⃗𝑣𝑖(𝑡)) × ⃗𝑐(0)] ⋅ �⃗�(𝑡)

+ 𝐽2
𝑖
4

∑
𝛾𝜖𝜏

(𝐷𝑇
0 (𝑡)𝐷𝑖(𝑡)𝑀𝑇

𝑖 (𝑡))𝛾𝜖 𝜖𝛾𝜖𝜏𝜎𝜏 . (3.60)

Thus, the second term of equation (3.57) reads

Tr0 [ ⃗𝑠0(𝑡) ( d
d𝑡

𝜌0(𝑡))] = 𝐽𝑖 (𝐷𝑖(𝑡) ⃗𝑏𝑖(0) − ⃗𝑣𝑖(𝑡)) × (𝐷0(𝑡) ⃗𝑐(0)) (3.61)

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
0 (𝑡) (𝐷𝑇

0 (𝑡)𝐷𝑖(𝑡)𝑀𝑇
𝑖 (𝑡))𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 .

As a result, the final equation of motion for the central spin expectation value ⃗𝑣0(𝑡) is given
by

d
d𝑡

⃗𝑣0(𝑡) = �⃗�eff(𝑡) × ⃗𝑣0(𝑡) + 𝐽𝑖 (𝐷𝑖(𝑡) ⃗𝑏𝑖(0) − ⃗𝑣𝑖(𝑡)) × (𝐷0(𝑡) ⃗𝑐(0))

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
0 (𝑡) (𝐷𝑇

0 (𝑡)𝐷𝑖(𝑡)𝑀𝑇
𝑖 (𝑡))𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 , (3.62)

with the effective magnetic field �⃗�eff(𝑡) = −�⃗� + 𝐽𝑖 ⃗𝑣𝑖(𝑡).
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3 Born approximation for the central spin model

In the following, a summary of the whole differential equation (DEQ) system is compiled.

d
d𝑡

𝐷0(𝑡) = 𝑉eff(𝑡)𝐷0(𝑡) (3.63a)

d
d𝑡

𝐷𝑖(𝑡) = 𝐽𝑖𝑉0(𝑡)𝐷𝑖(𝑡) (3.63b)

d
d𝑡

⃗𝑣0(𝑡) = �⃗�eff(𝑡) × ⃗𝑣0(𝑡) + 𝐽𝑖 (𝐷𝑖(𝑡) ⃗𝑣𝑖(0) − ⃗𝑣𝑖(𝑡)) × (𝐷0(𝑡) ⃗𝑣0(0))

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
0 (𝑡) (𝐷𝑇

0 (𝑡)𝐷𝑖(𝑡)𝑀𝑇(𝑡))𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 (3.63c)

d
d𝑡

⃗𝑣𝑖(𝑡) = 𝐽𝑖 ⃗𝑣0(𝑡) × ⃗𝑣𝑖(𝑡) + 𝐽𝑖 (𝐷0(𝑡) ⃗𝑣0(0) − ⃗𝑣0(𝑡)) × (𝐷𝑖(𝑡) ⃗𝑣𝑖(0))

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
𝑖 (𝑡) (𝐷𝑇

𝑖 (𝑡)𝐷0(𝑡)𝑀(𝑡))𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 (3.63d)

d
d𝑡

𝑀𝑖(𝑡) = 𝐷𝑇
0 (𝑡) [𝑉𝑖(𝑡) − 𝑉0(𝑡)] 𝐷𝑖(𝑡)

+ 4𝐷𝑇
0 (𝑡) [𝑉0(𝑡) ⃗𝑣𝑖(𝑡) ⃗𝑣𝑇

𝑖 (𝑡) − ⃗𝑣0(𝑡) ⃗𝑣𝑇
0 (𝑡)𝑉𝑖(𝑡)] 𝐷𝑖(𝑡) (3.63e)

Just as planned, the classical precession terms (3.22) appear directly in the equations (3.63c)
and (3.63d) . The classical precession of the central spin around the effective magnetic field
�⃗�eff(𝑡) = −�⃗� + 𝐽𝑖 ⃗𝑣𝑖(𝑡) is described by the first cross product which appears in equation
(3.63c). The precession of the bath spin around the central spin is given through the
first cross product in equation (3.63d). The remaining parts are required to calculate the
second order quantum mechanical correction. It is not easy to give a meaningful physical
interpretation for these terms. They mainly consist of various combinations of rotations.

The initial conditions are given by

𝐷0/𝑖(0) = 𝟙 , (3.64a)
⃗𝑣0(0) = 𝐷0(0) ⃗𝑐(0) = ⃗𝑐(0) , (3.64b)
⃗𝑣𝑖(0) = 𝐷𝑖(0) ⃗𝑏𝑖(0) = ⃗𝑏𝑖(0) , (3.64c)

𝑀𝑖(0) = 0 . (3.64d)

The initial spin polarizations ⃗𝑣0/𝑖(0) can be chosen almost freely. It only has to be ensured
that the related density matrices are positive semidefinite. This is accomplished by the
constraint | ⃗𝑣0/𝑖(0)| ≤ 1/2.

In principle, it is possible to drastically simplify the DEQ system (3.63) for some special
initial polarizations, for example if some components of the vectors ⃗𝑣0/𝑖(0) are chosen to
be zero. In such cases, many terms vanish so that they can be neglected a priori, which
improves computation times.

Note that even third order terms occur in the DEQ system (3.63). They are not as
obvious, though. This does not mean that the corrections are exact in third order of the
coupling constant 𝐽𝑖. For example, the expression 𝐽𝑖 (𝐷𝑖(𝑡) ⃗𝑣𝑖(0) − ⃗𝑣𝑖(𝑡)) × (𝐷0(𝑡) ⃗𝑣0(0)),
appearing in equation (3.63c), is of third order in the coupling constant 𝐽𝑖 because the term
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3.3 Born approximation applied to the central spin model

(𝐷𝑖(𝑡) ⃗𝑣𝑖(0) − ⃗𝑣𝑖(𝑡)) is of second order itself. This is due to 𝐷𝑖(𝑡) ⃗𝑣𝑖(0) being exact in first
order, since 𝐷𝑖(𝑡) only describes the classical precession of the bath spin around the central
spin, while ⃗𝑣0(𝑡) is being exact in second order. Physically, this third order term can be
interpreted as a precession of the deviation from the classical bath spin expectation value
around the classical central spin expectation value. Of course, the same argument is also
valid for equation (3.63d).

3.3.2 Error analysis and first results

The Born approximation should yield a DEQ system which is correct up to second order
in the coupling constant 𝐽𝑖. In order to study and confirm the correct error dependencies
of the expectation values ⃗𝑣0/𝑖 in Born approximation, exact calculations are required as
well. These are performed by solving the exact von Neumann equation in the Schrödinger
picture

d
d𝑡

𝜌(𝑡) = −𝑖 [𝐻, 𝜌(𝑡)] (3.65)

numerically. Since the CSM Hamiltonian 𝐻 (2.3) describes a two spin system for 𝑁 = 1,
corresponding to a four dimensional Hilbert space, this differential equation is easily solved
numerically using the classical Runge-Kutta method (RK4). The DEQ system (3.63) is
solved using the same algorithm.

The orthogonality of 𝐷0/𝑖(𝑡) functions as an additional but very trivial check. This requires
the calculation of 𝐷𝑇

0/𝑖(𝑡)𝐷0/𝑖(𝑡) = 𝟙, which can be easily executed throughout the simulation.
As a first result, this relation is fulfilled throughout all following calculations.

The initial spin polarizations are arbitrary chosen to be

⃗𝑣𝑖(0) = ⎛⎜
⎝

0.240525
−0.144902
0.413704

⎞⎟
⎠

, ⃗𝑣0(0) = ⎛⎜
⎝

−0.393780
−0.290984
0.101283

⎞⎟
⎠

, (3.66)

with | ⃗𝑣0/𝑖(0)| = 1/2.

For the case of a finite external magnetic field, the field is taken as

�⃗� =
⎛⎜⎜
⎝

√1 − cos2 ( 40
180𝜋)

0
cos ( 40

180𝜋)

⎞⎟⎟
⎠

= ⎛⎜
⎝

0.642788
0

0.766044
⎞⎟
⎠

, (3.67)

with |�⃗�| = 1 and ∡ (�⃗�, ⃗𝑒𝑧) = 40 ∘.

The main error of interest is given by the deviation from the exact expectation value at a
fixed time 𝑡,

|𝛥𝑣𝛼
0/𝑖(𝐽𝑖)| = | ⃗𝑣0/𝑖(𝐽𝑖) − ⃗𝑣0/𝑖,exact(𝐽𝑖)| . (3.68)
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3 Born approximation for the central spin model

This error is expected to be at least of third order 𝒪 (𝐽3
𝑖 ) because in the Born approximation,

all second order corrections are taken into account. If the derived DEQ system (3.63) showed
an error of, e. g., 𝒪 (𝐽2

𝑖 ), this system would have to be considered as flawed. Note that
for very small times 𝑡 or coupling constant 𝐽𝑖, a possible power law is suppressed by the
numerical accuracy. Additionally, once the error is in the order of the initial values, it cannot
be described by a power law anymore.

Throughout this subsection, the energy 𝐽U is defined to define the unit of the coupling 𝐽𝑖
and the external magnetic field �⃗�. Since natural units (ℏ = 1) are used, the inverse 𝐽−1

U
determines the unit of the time 𝑡. Explicitly, 𝐽U = 1 is used for the numerical calculations.

In the case of a vanishing magnetic field |�⃗�| = 0, no other energy scale but the coupling
constant 𝐽𝑖 appears. Therefore, a dimensional analysis shows that the time depending error
|𝛥 ⃗𝑣0/𝑖(𝑡)| has to follow the same power law as |𝛥 ⃗𝑣0/𝑖(𝐽𝑖)|, meaning 𝒪 (𝑡3). As shown in
Figure 3.1a, this is clearly the case. Both errors follow the correct third order power law.
Note that the calculated errors are plotted in a double logarithmic way. In this case, the
power law 𝑣𝛼

0 ∝ 𝐽𝑚
𝑖 is reduced to a linear function with gradient 𝑚, which renders it easy

to obtain the correct gradient from the plots without a fit.

As an additional check, the time 𝑡tol, at which the observed error is equal to some tolerated
error |𝛥 ⃗𝑣0/𝑖 (𝑡tol) | =∶ 𝛥tol, is introduced. This tolerated error is chosen as 𝛥tol = 10−4.
Since natural units (ℏ = 1) are used, |𝛥 ⃗𝑣0/𝑖| has to be dimensionless. This means that the
relation

|𝛥 ⃗𝑣0/𝑖| ∝ 𝐽3
𝑖 𝑡3 (3.69)

has to hold because 𝑡 has the unit of an inverse energy. As a consequence, the time 𝑡tol has
to follow the power law

𝑡tol ∝ 𝐽−3/3
𝑖 = 𝐽−1

𝑖 . (3.70)

This behavior is confirmed in Figure 3.1a.

In contrast, the case of a finite magnetic field |�⃗�| = 𝐽U is a little bit more complicated due
to an additional timescale introduced through �⃗�. This leads to additional oscillations in
the solution and therefore to crossings in the error of each component. By studying the
absolute value of the error-vector |𝛥 ⃗𝑣0/𝑖|, this effect is somewhat suppressed. Some artifacts
will remain, though. While |𝛥 ⃗𝑣0/𝑖(𝐽𝑖)| is still expected to be at least of order 𝒪 (𝐽3

𝑖 ), this
must not be necessarily the case for |𝛥 ⃗𝑣0/𝑖(𝑡)| anymore. As shown in Figure 3.1b, the error
𝛥 ⃗𝑣0/𝑖(𝐽) is proportional to 𝐽3

𝑖 . This is the expected power law.

As mentioned before, the error dependency on the time 𝑡 is not as obvious due to an
additional energy scale introduced by the external field �⃗�. However, Figure 3.1b suggests
that |𝛥 ⃗𝑣0/𝑖(𝑡)| ∝ 𝑡3 is the adequate power law to describe this error. Then once again due
to dimensional reasons, the time tol has to follow the power law

𝑡tol ∝ 𝐽−1
𝑖 . (3.71)

This is also confirmed in Figure 3.1b.
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Figure 3.1: Various error analyses for the case of (a) a vanishing and (b) a finite external
magnetic field �⃗�. Depending on the studied error, the parameters 𝑡, 𝐽𝑖, and 𝛥tol have to
be kept constant. The constant values are given above each plot. The appropriate power
laws are plotted as black dashed lines.
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3 Born approximation for the central spin model

As a conclusion, the error |𝛥 ⃗𝑣0/𝑖(𝐽𝑖)| ∝ 𝐽3
𝑖 follows the correct power law for (a) a vanishing

and (b) a finite external field. This is confirmed by a dimensional analysis, which is very
precise for the vanishing external field and within the expected accuracy for the finite
external field. A check for each individual component has been performed as well. It leads
to the same observations as before. As a result, the derived DEQ system (3.63) has to be
considered as correct so that no term is wrong or missing.
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Figure 3.2: Comparison between the exact and the approximated dynamics of ⃗𝑣0/𝑖(𝑡)
for the case of (a) a vanishing and (b) a finite external magnetic field |�⃗�|. The coupling
constant is chosen as 𝐽𝑖 = 0.05𝐽U.

Examples for the explicit dynamics of ⃗𝑣0/𝑖(𝑡) for the above studied cases are given in
Figure 3.2. The coupling constant is chosen as 𝐽𝑖 = 0.05𝐽U. In case (a), meaning no
external magnetic field is applied to the central spin, the only timescale is given trough
the coupling between both spins, determined by the inverse coupling constant 𝐽−1

𝑖 . While
it can be argued that qualitative behavior of ⃗𝑣0/𝑖(𝑡) is similar to the exact solution, the
quantitative deviation is clearly visible at 𝑡 ≈ 25𝐽−1

U . This is much earlier than the classical
precession period 𝑇 = 2𝜋/𝐽𝑖 ≈ 125.7𝐽−1

U promotes, meaning quantum mechanical effects
play an important role already for short times.
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3.3 Born approximation applied to the central spin model

In case (b), the dynamics are mostly driven by the oscillations induced through the finite
external magnetic field |�⃗�| = 𝐽U. This classical precession corresponds to the period
𝑇B = 2𝜋/𝐽U ≈ 6.3𝐽−1

U . It is included exactly in the Born approach and clearly visible in
Figure 3.2b. First deviations appear at 𝑡 ≈ 40𝐽−1

U . They seem to increase slower in time
compared to the case with vanishing external field. This is due to 𝐽𝑖 being 20 times smaller
than |�⃗�, meaning the exact classical precession dominates the short time dynamics while
quantum mechanical effects are mainly important for longer times 𝑡 ≫ 𝑇B.

Note that if the bath consists of only one bath spin, the used weak-coupling approximation
(3.11) is only valid for 𝐽𝑖 ≪ |�⃗�|. Otherwise, the argument of separated timescales for the
classical and the interacting part is invalid. Remember that the weak-coupling approximation
is valid for large bath sizes 𝑁 when dealing with a vanishing or small external magnetic field.
This leads to overall larger errors for the case of a vanishing magnetic field compared to the
finite case with 𝐽𝑖 being 20 times smaller than |�⃗�|. Additionally, it is interesting to see that
for 𝑁 = 1, despite using the invalid weak-coupling approximation (3.11) for the case of a
vanishing field, the discussed errors obey the correct power laws.

Later for the whole central spin model with large bath sizes and without an external field, the
classical precession leads to much faster dynamics compared to the second order corrections.
Thus, the present approach should yield better results for larger bath sizes 𝑁.

3.3.3 Extension to the full central spin model

Extending the previous results (3.63) for the simple two spin system to the whole central
spin model mainly requires taking the additional sum over all 𝑁 bath spins for the dynamics
of ⃗𝑣0(𝑡) and 𝐷0(𝑡) into account.

The split Hamiltonian (3.24) is now studied for an arbitrary number of bath spins 𝑁. It is
once again given by

𝐻(𝑡) =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0(𝑡) ⋅ ⃗𝑆𝑖(𝑡) − �⃗� ⋅ ⃗𝑆0(𝑡) (3.72a)

=
𝑁

∑
𝑖=1

𝐽𝑖 ( ⃗𝑆0(𝑡) − ⃗𝑣0(𝑡)) ⋅ ( ⃗𝑆𝑖(𝑡) − ⃗𝑣𝑖(𝑡))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐻I(𝑡)

+ (
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣𝑖(𝑡) − �⃗�) ⋅ ⃗𝑆0(𝑡) +
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣0(𝑡) ⋅ ⃗𝑆𝑖(𝑡) −
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣0(𝑡) ⋅ ⃗𝑣𝑖(𝑡)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶𝐻0(𝑡)

. (3.72b)

Shifting the dynamics given through 𝐻0(𝑡) into the spin operators ⃗𝑆0/𝑖(𝑡) is easy and works
just as in subsection 3.3.1 for the case 𝑁 = 1. Because all new terms in the Hamiltonian
𝐻0(𝑡) commute within the Heisenberg equation of motion, the differential equation (3.63b)
for 𝐷𝑖(𝑡) remains the same. A differential equation for each 𝑖 ∈ {1, … , 𝑁} has to be solved
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3 Born approximation for the central spin model

now, though. For 𝐷0(𝑡), an additional sum over all bath spins 𝑖 with couplings 𝐽𝑖 has to be
included, meaning the effective magnetic field now takes the form

�⃗�eff = −�⃗� +
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣𝑖(𝑡) . (3.73)

The central spin precesses around this effective field, consisting of the external magnetic
field (if applied) and the Overhauser field.

In second order, new terms that indirectly couple two different bath spins to each other
could contribute to the dynamics of the expectation values ⃗𝑣0/𝑖(𝑡). Therefore, new features
that might occur in Born approximation have to be identified.

Due to the larger Hilbert space for 𝑁 + 1 spins, the total density matrix in weak-coupling
approximation (3.11) has the more complicated structure

𝜌(𝑡) = (1
2

𝟙 + ⃗𝑐(𝑡) ⋅ �⃗�) ⊗ (1
2

𝟙 + ⃗𝑏1(𝑡) ⋅ �⃗�) ⊗ ⋯ ⊗ (1
2

𝟙 + ⃗𝑏𝑁(𝑡) ⋅ �⃗�𝑁) . (3.74a)

However, only combinations of a maximal number of three spin operators can contribute to
the dynamics in second order because a maximum of two commutators has to be evaluated
for the Born approximation (3.7). Hence, most terms in equation (3.74a) will not yield a
contribution and can therefore be neglected a priori.

The relevant part of 𝜌(𝑡) is represented by

𝜌(𝑡) = 1
2𝑁+1 𝟙 + 1

2𝑁−1 ⃗𝑐(𝑡) ⋅ ⃗𝑆0 + 1
2𝑁−1

𝑁
∑
𝑖=1

⃗𝑏𝑖(𝑡) ⋅ ⃗𝑆𝑖 + 1
2𝑁−3

𝑁
∑
𝑖=1

( ⃗𝑐(𝑡) ⋅ ⃗𝑆0) ( ⃗𝑏𝑖(𝑡) ⋅ ⃗𝑆𝑖)

+ 1
2𝑁−5

𝑁−1
∑
𝑖=1

∑
𝑗>𝑖

( ⃗𝑐(𝑡) ⋅ ⃗𝑆0) ( ⃗𝑏𝑖(𝑡) ⋅ ⃗𝑆𝑖) ( ⃗𝑏𝑗(𝑡) ⋅ ⃗𝑆𝑗) + … . (3.75)

While calculating the whole nested commutator which appears in the Born approximation
(3.7), only terms of the inner commutator that can be written as a part of

[𝐻I(𝑠), 𝜌(𝑠)] = 𝑖
2𝑁−1

𝑁
∑
𝑖=1

𝐽𝑖 [ ⃗𝑝𝑖(𝑠) ⋅ ⃗𝑆𝑖 + ⃗𝑞𝑖(𝑠) ⋅ ⃗𝑆0 + (𝑚𝑖(𝑠) ⃗𝑆𝑖] ⋅ ⃗𝑆0) (3.76)

will contribute later after calculating the trace. The prefactor 1
2𝑁−1 is included in order to

obtain the same prefactors as in the final equations of motion as for the two spin system
(𝑁 = 1) discussed in subsection 3.3.1.

It is obvious that a sum over all bath spins 𝑖 occurs for the differential equations describing
𝐷0(𝑡) and ⃗𝑣0(𝑡). Now, due to the more complex structure of the total density matrix 𝜌(𝑡)
and the possibility of combining different bath spins, new terms which yield a non-vanishing
contribution according to equation (3.76) have to be identified. The only new terms to
consider are

[−𝐽𝑗 (𝐷0(𝑠) ⃗𝑆0) ⋅ ⃗𝑣𝑗(𝑠), 1
2𝑁−3 ( ⃗𝑐(𝑠) ⋅ ⃗𝑆0) ( ⃗𝑏𝑖(𝑠) ⋅ ⃗𝑆𝑖)]

= 𝑖
2𝑁−3 𝐽𝑗 [𝐷𝑇

0 (𝑠)𝑉0(𝑠) ⃗𝑣𝑗(𝑠) ⃗𝑣𝑇
𝑖 (𝑠)𝐷𝑖(𝑠) ⃗𝑆𝑖] ⋅ ⃗𝑆0 (3.77)
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3.3 Born approximation applied to the central spin model

and (for 𝑖 ≠ 𝑗)

[𝐽𝑗
⃗𝑆0(𝑠) ⋅ ⃗𝑆𝑗(𝑠), 1

2𝑁−5 ( ⃗𝑐(𝑠) ⋅ ⃗𝑆0) ( ⃗𝑏𝑖(𝑠) ⋅ ⃗𝑆𝑖) ( ⃗𝑏𝑗(𝑠) ⋅ ⃗𝑆𝑗)] (3.78)

= − 𝑖
2𝑁−3 𝐽𝑗 [(𝐷𝑇

0 (𝑠)𝑉0(𝑠) ⃗𝑣𝑗(𝑠) ⃗𝑣𝑇
𝑖 (𝑠)𝐷𝑖(𝑠) ⃗𝑆𝑖) ⋅ ⃗𝑆0 + (𝐷𝑇

𝑗 (𝑠)𝑉𝑗(𝑠) ⃗𝑣0(𝑠) ⃗𝑣𝑇
𝑖 (𝑠)𝐷𝑖(𝑠) ⃗𝑆𝑖) ⋅ ⃗𝑆𝑗] .

It is refrained from giving the detailed calculation because both commutators are very similar
to the commutators 𝒞𝑖 that are calculated in subsection 3.3.1. Note that the second term
of the second commutator (3.78) is ∝ 𝑆𝑖𝑆𝑗, with 𝑖 ≠ 𝑗. Therefore, it is not contributing to
the dynamics as it cannot be written in terms of equation (3.76) and thus, it would vanish
anyway later while calculating the trace.

Interestingly, the remaining terms cancel out each other for all 𝑖 ≠ 𝑗. Therefore, no
contributions of second order 𝒪 (𝐽𝑖𝐽𝑗), coupling different bath spins to each other, occur
within Born approximation. It is best to convince oneself that this is really true, for
instance for 𝑁 = 3. In this case, the first commutator (3.77) contributes with six dif-
ferent combinations of 𝑖 and 𝑗. The same amount of combinations appear for the second
commutator (3.78). Hence, both cancel out each other for 𝑖 ≠ 𝑗. Moreover, for 𝑖 = 𝑗, the
second commutator (3.78) does not exist while the first commutator (3.77) remains because
it already appears for 𝑁 = 1 as discussed in subsection 3.3.1 (see equation (3.42)).

These thoughts combined lead to the final set of differential equations for the central spin
model within Born approximation. Overall, not much has changed compared to the case
𝑁 = 1. The main difference is an additional sum which runs over all bath spins for d

d𝑡 ⃗𝑣0(𝑡).
This sum also appears in the effective magnetic field �⃗�eff(𝑡) (3.73) which appears in the
DEQ for 𝐷0(𝑡) as the skew-symmetric matrix 𝑉eff(𝑡). See equation (3.25b) for how 𝑉eff(𝑡)
has been introduced. Additionally, differential equations have to be solved for all bath spins
𝑖 ∈ {1, … , 𝑁} for 𝐷𝑖(𝑡), 𝑀𝑖(𝑡) and ⃗𝑣𝑖(𝑡). No other new features appear.

A summary of the full differential equation system is given below.

d
d𝑡

𝐷0(𝑡) = 𝑉eff(𝑡)𝐷0(𝑡) (3.79a)

d
d𝑡

𝐷𝑖(𝑡) = 𝐽𝑖𝑉0(𝑡)𝐷𝑖(𝑡) (3.79b)

d
d𝑡

⃗𝑣0(𝑡) = �⃗�eff(𝑡) × ⃗𝑣0(𝑡) +
𝑁

∑
𝑖=1

𝐽𝑖 (𝐷𝑖(𝑡) ⃗𝑣𝑖(0) − ⃗𝑣𝑖(𝑡)) × (𝐷0(𝑡) ⃗𝑣0(0))

+
𝑁

∑
𝑖=1

𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
0 (𝑡) (𝐷𝑇

0 (𝑡)𝐷𝑖(𝑡)𝑀𝑇
𝑖 (𝑡))𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 (3.79c)

d
d𝑡

⃗𝑣𝑖(𝑡) = 𝐽𝑖 ⃗𝑣0(𝑡) × ⃗𝑣𝑖(𝑡) + 𝐽𝑖 (𝐷0(𝑡) ⃗𝑣0(0) − ⃗𝑣0(𝑡)) × (𝐷𝑖(𝑡) ⃗𝑣𝑖(0))

+ 𝐽2
𝑖
4

∑
𝛼𝛽𝛾𝜖

𝐷𝛼𝛽
𝑖 (𝑡) (𝐷𝑇

𝑖 (𝑡)𝐷0(𝑡)𝑀𝑖(𝑡))
𝛾𝜖 ⃗𝑒𝛼𝜖𝛾𝜖𝛽 (3.79d)

d
d𝑡

𝑀𝑖(𝑡) = 𝐷𝑇
0 (𝑡) [𝑉𝑖(𝑡) − 𝑉0(𝑡)] 𝐷𝑖(𝑡)

+ 4𝐷𝑇
0 (𝑡) [𝑉0(𝑡) ⃗𝑣𝑖(𝑡) ⃗𝑣𝑇

𝑖 (𝑡) − ⃗𝑣0(𝑡) ⃗𝑣𝑇
0 (𝑡)𝑉𝑖(𝑡)] 𝐷𝑖(𝑡) (3.79e)
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3 Born approximation for the central spin model

Note that the differential equations (3.79b) (3.79d) and (3.79e) have to be solved for
𝑖 ∈ {1, … , 𝑁}, meaning for each individual bath spin. This also means that the size of the
DEQ system scales linearly with the bath size 𝑁, which allows to deal with the physical
relevant large baths. The initial conditions are the same as for 𝑁 = 1. They are listed in
equation (3.64), now just with a larger number of bath spins. Solving this DEQ system
(3.79) numerically to calculate the expectation values ⃗𝑣0/𝑖(𝑡) will be referred to as the Born
approach.

The interpretation of the DEQ system (3.79) is almost the same as for the the case 𝑁 = 1,
which is discussed in subsection 3.3.1. Most importantly, the classical precession terms (3.22)
are directly included. This was the reason to use the split Hamiltonian (3.24) in the first
place. The difference is that the central spin precesses around the effective magnetic field
�⃗�eff, which now consists of the external magnetic field and the whole classical Overhauser
field ⃗𝐴 = ∑𝑁

𝑖=1 𝐽𝑖 ⃗𝑣𝑖(𝑡). This is the classical part which describes the fast dynamics in the
system (see equation (3.22)). Now for the second order correction, each bath spin yields a
contribution to the central spin dynamic. However, no terms of order 𝒪 (𝐽𝑖𝐽𝑗), coupling
different bath spins to each other, appear.

In principle, it is also possible to calculate the expectation value of other observables. This
is due to the chosen parameterization, allowing the total density matrix of the system 𝜌(𝑡)
in weak-coupling approximation (3.11) to be calculated if the matrices 𝐷0/𝑖(𝑡) and the
expectation values ⃗𝑣0/𝑖(𝑡) were known. An example for an interesting alternative observable
is the autocorrelation function ⟨ ⃗𝑆0(𝑡) ⃗𝑆0(0)⟩, which is often studied in other works [19, 20,
22, 23, 28]. In this thesis, though, the focus lies on the time evolution of the expectation
values ⃗𝑣0/𝑖(𝑡).
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4 Numerical analysis

In this chapter, a numerical analysis of the derived DEQ system (3.79) for the spin expectation
values ⃗𝑣0/𝑖(𝑡) is performed in order to verify its correctness and completeness. This is
performed by analyzing the power law of the time-dependent errors 𝛥 ⃗𝑣0/𝑖(𝑡) for the case of
a vanishing external field. Additionally, first results for the dynamics of ⃗𝑣0/𝑖(𝑡) are studied
and compared to exact or alternative approaches. Diverse coupling distributions and initial
polarizations are considered, with and without an external field coupling to the central
spin.

The numerical solution of the DEQ system (3.79) is calculated by the usage of the classical
Runge-Kutta method (RK4), implemented in C++. No adaptive stepsize is used because
the calculations can still be executed fast and accurate with the sufficiently small constant
stepsize of ℎ = 0.001.

4.1 Error analysis and results for a small bath

In order to verify the correctness and completeness of the DEQ system (3.79), an error
analysis similar to subsection 3.3.2 is performed. Since the correct inclusion of the external
magnetic field �⃗� is already confirmed there, it is sufficient to only study the case of a
vanishing external field |�⃗�| = 0. Due to the exponentially growing Hilbert space, the exact
dynamics can be calculated numerically by solving the von Neumann equation only for a
limited bath size of about 𝑁 = 8. However, this size is sufficient to verify that all possible
new terms have been taken into account in the correct manner.

In contrast to the case 𝑁 = 1, different coupling distributions 𝐽𝑖 can be studied here. For
the test of correctness, it is convenient to discuss a uniform coupling distribution (also known
as box model)

𝐽𝑖 =
𝐽Q√

𝑁
∀ 𝑖 ∈ {1, … , 𝑁} . (4.1)

It is normalized such that 𝐽2
Q = 1 holds numerically. This way, the error is still expected to

be of third order, meaning 𝒪 (𝐽3
𝑖 ). Because of the missing external field, the only energy

scale is given through the coupling constants 𝐽𝑖. Hence, it is sufficient to study the time-
dependent error 𝛥𝑣𝛼

0/𝑖(𝑡) which requires less calculations. Due to dimensional reasons, this
dimensionless error has to follow the same power law as 𝛥𝑣𝛼

0/𝑖(𝑡), meaning 𝛥𝑣𝛼
0/𝑖(𝑡) ∝ 𝑡3 if

𝛥𝑣𝛼
0/𝑖(𝐽) ∝ 𝐽3

𝑖 .
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4 Numerical analysis
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Figure 4.1: Realtime dynamics of the expectation values ⃗𝑣0/𝑖(𝑡) and time-dependent
errors 𝛥 ⃗𝑣0/𝑖(𝑡) for a system of 𝑁 = 8 bath spins and uniform coupling constants. No
external magnetic field is applied. The central spin ⃗𝑣0(0) is fully polarized in +𝑧 direction
so that it is initially in a pure state. The dashed lines in the error plots indicate the
appropriate third and fourth order power laws.

The initial polarization of the central spin is chosen as

⃗𝑣0(0) = ⎛⎜
⎝

0
0
1
2

⎞⎟
⎠

(4.2)

so that it is fully polarized in +𝑧 direction. This is a pure state. The term fully +z polarized
is used to describe the central spin being initially in its up-state |↑⟩, corresponding to the
density operator 𝜌0 = |↑⟩ ⟨↑|, which is the projector on the up-state.

Note that solving the classical equations of motion (3.22) for these initial polarizations would
lead to no dynamics emerging at all because all cross products would simply vanish. This
means that the Born approximation at least leads to an obvious improvement of the classical
solution.
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4.1 Error analysis and results for a small bath

Each bath spin is chosen with | ⃗𝑣𝑖(0)| ≤ 1/2 to ensure that the corresponding density matrix
is positive semidefinite. The resulting errors 𝛥𝑣𝛼

0/𝑖(𝑡) and the related dynamics for the
central spin and for one arbitrary bath spin 𝑖 are shown in Figure 4.1. Obviously, the error
shows the correct power law. For the 𝑥 and 𝑦 components of ⃗𝑣0/𝑖(𝑡), it is of third order
𝒪 (𝑡3). For the 𝑧 component, the error is even of fourth order 𝒪 (𝑡4), meaning no third
order corrections exist. This is due to the special initial polarization of the central spin with
vanishing 𝑥 and 𝑦 component. Unfortunately, a noticeable difference of the Born from the
exact solution is visible already at 𝑡 ≈ 𝐽−1

Q . The main characteristics of the exact solution
are the almost constant values of 𝑣𝛼

0/𝑖(𝑡) for longer times 𝑡. This feature is not captured
when using the Born approach.

An identical analysis is performed for the same initial polarizations of the bath spins but for
an arbitrary chosen initial polarization of the central spin

⃗𝑣0(0) = ⎛⎜
⎝

0.2
−0.4
−0.1

⎞⎟
⎠

. (4.3)

This corresponds to a mixed state due to | ⃗𝑣0(0)| < 1/2. The resulting errors and the related
dynamics are shown in Figure 4.2. The errors still obey the correct power law. However,
in contrast to the fully +𝑧 polarized central spin in the previous analysis, the error of the
𝑧 component is now of third instead of fourth order, meaning 𝒪 (𝑡3). Additionally, the
dynamics show a similar unfortunate behavior as in the previous case.

For further convenience, the physically relevant exponential coupling distribution

𝐽𝑖 = 𝒩 exp [−𝑖 𝑥
𝑁

] , 𝑖 ∈ {1, … , 𝑁} , (4.4)

with 𝑥 = 1 and normalized by choosing 𝒩 such that 𝐽2
Q = 1 holds numerically, is studied.

Note that for 𝑥 = 0, this distribution is equal to the uniform case (2.7). Now in contrast to
this case of uniformly distributed couplings, each bath spin evolves on a different timescale
given by its individual coupling constant 𝐽𝑖. As an example, the first bath spin will have the
strongest coupling to the central spin given by 𝐽1, hence it will show the fastest dynamic.
The last bath spin has the smallest coupling constant 𝐽𝑁 and therefore shows the slowest
dynamic. Now an interesting aspect arises from the conceptional possibility of two bath spins
coupling to each other in second order indirectly, meaning terms that are proportional to
𝐽𝑖𝐽𝑗 with 𝑖 ≠ 𝑗. No such terms appear in the DEQ system (3.79) for the central spin model
because these terms cancel out each other during its derivation. In the case of uniformly
distributed couplings, this is easier to confirm because all second order terms are proportional
to the same 𝐽2

𝑖 = 𝐽Q/𝑁. But for exponentially distributed couplings, errors during the
derivation can occur easier due to the non-identical couplings 𝐽𝑖, leading to more complicated
features that might have been overlooked. However, analyzing the time-dependent error
𝛥 ⃗𝑣0/𝑖(𝑡) for this coupling distribution leads to the same observation as before, meaning the
error obeys the correct power law so that no additional features are missing in the DEQ
system (3.79). Due to the lack of important differences in the error for this alternative
coupling distribution, no additional plots are included.
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(b) ⃗𝑣𝑖(𝑡)

Figure 4.2: Realtime dynamics of the expectation values ⃗𝑣0/𝑖(𝑡) and time-dependent
errors 𝛥 ⃗𝑣0/𝑖(𝑡) for a system of 𝑁 = 8 bath spins and uniformly distributed couplings.
No external magnetic field is applied. The central spin ⃗𝑣0(0) is polarized in an arbitrary
direction with length | ⃗𝑣0(0)| < 1/2 so that it is initially in a mixed state. The dashed lines
in the error plots indicates the appropriate third order power law.

As a conclusion, the extension (3.79) of the DEQ system to the central spin model is
considered as correct. All second order corrections are included correctly. There is no hint
which might lead to a different conclusion. An interesting observation is the fact that for
some specific initial conditions, for example a central spin being initially in its up-state |↑⟩,
no third order corrections 𝒪 (𝐽3

𝑖 ) appear for the 𝑧 components of the expectation values.
However, even for this special case, the observed dynamics do not show the expected and
anticipated accuracy. At least for a small bath size of 𝑁 = 8, with uniformly or exponentially
distributed couplings and a vanishing external field, this approach does not yield results
that can be considered as a good approximation for the interesting physical phenomena.
The timescale on which the approximate and exact solutions match is way too short.
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4.2 Comparison between the exact, the Born, and the classical
solution

Until now, it is not clear whether solving the DEQ system (3.79) leads to a better solution
than solving the simple classical equations of motion (3.22). Therefore, a comparison between
the exact solution, the Born approach and the classical solution for the expectation value
⃗𝑣0(𝑡) is presented. The system parameters are same as used in Figure 4.1, meaning 𝑁 = 8

bath spins with uniformly distributed couplings (2.7) and the central spin being initially in
its up-state |↑⟩.

The solution of the classical equations of motion has an overall larger deviation from
the exact solution than the Born result. This is already visible in the left plot showing
the time evolution of ⃗𝑣0(𝑡), but also by comparing the absolute errors in the right plot.
The errors of the classical solution obey the power law | ⃗𝑣0,exact − ⃗𝑣0,classical| ∝ 𝑡2 and
| ⃗𝑣0,classical − ⃗𝑣0,Born| ∝ 𝑡2. Due to dimensional reasons, this corresponds to an error ∝ 𝐽2

𝑖 .
This is the expected power law for the errors of the classical solution because no second
order corrections are included here. In contrast, the error of the Born approach is at least of
order 𝒪 (𝐽3

𝑖 ), just as discussed in the previous section 4.1.

Even though the Born result shows a qualitative different behavior already on a short
timescale, it leads to a slightly longer agreement with the exact solution than the classical
result. Hence, the Born approach yields an improvement over the classical equations of
motion.
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Figure 4.3: Left: Comparison between the exact solution (solid), the Born approximation
(dashed), and the classical equations of motion (dots) for ⃗𝑣0(𝑡). The system parameters
are the same as used in Figure 4.1. Right: Various absolute errors (solid) with their
appropriate power laws (dashed).
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4.3 Comparison for large bath sizes with uniformly distributed
couplings

For the unphysical uniform coupling distribution (2.7), analytically exact results based on
the algebraic Bethe ansatz are available [29–31], even for very large bath sizes. The exact
results used throughout this section have been provided by Lars Gravert [61].

The Born approach leads to a DEQ system with a dimension scaling linearly with the bath
size 𝑁. This means that calculations for bath sizes of 𝒪 (1000) spins are mostly limited by
the computation time, independently of the coupling distribution. In principle, this is a
very nice feature because many alternative approaches can only deal with a small number of
bath spins while the real physical systems consist of 104 − 106 spins.

As seen in the previous section, especially the results for a vanishing external magnetic
field are not promising. But note that the Born approximation is only justified if the
contribution of the interaction Hamiltonian is small compared to the classical precession.
With absent external field, the central spin precesses only around the Overhauser field.
Now assuming uniformly distributed couplings 𝐽𝑖 =∝ 1/√

𝑁, the classical part of equation
(3.79c) is proportional to ∑𝑁

𝑖=1 𝐽𝑖 =
√

𝑁 while the second order correction is proportional
to ∑𝑁

𝑖=1 𝐽2
𝑖 = 1. Therefore, the system should show a classical behavior for large bath sizes

while the second order correction should lead to an overall slower dynamic. Hence, the Born
approximation should yield better results for larger bath sizes 𝑁. This has been the main
argument to introduce the weak-coupling approximation (3.5) in the first place.

The comparison to the exact data for uniform couplings is performed for the experimentally
motivated initial condition of a fully +𝑧 polarized central spin, meaning it is initially in its
up-state |↑⟩, and a completely disordered bath. This corresponds to the initial polarizations

⃗𝑣0(0) = ⎛⎜
⎝

0
0
1
2

⎞⎟
⎠

, ⃗𝑣𝑖(0) = ⎛⎜
⎝

0
0
0
⎞⎟
⎠

∀ 𝑖 ∈ {1, … , 𝑁} . (4.5)

The time-dependent error 𝛥𝑣𝑧
0(𝑡) is shown in Figure 4.4 for a vanishing external magnetic

field. Additionally, a comparison of the central spin dynamics ⃗𝑣0(𝑡) is given in Figure 4.5a for
𝑁 = 640 bath spins. The 𝑥 and 𝑦 components are omitted because they show no dynamics
at all. The time-dependent error is of fourth order 𝒪 (𝑡4), just as observed in the previous
section for the same initial polarization ⃗𝑣0(0). This confirms the correctness of the DEQ
system (3.79) once again. Unfortunately, the exact time evolution of ⃗𝑣0(𝑡) is only captured
well for a very small timescale again. The Born solution only shows periodic oscillations but
lacks dephasing. Varying the bath size significantly does not change this behavior either.

The inclusion of an external magnetic field

�⃗� = ⎛⎜
⎝

0
0

−10𝐽Q

⎞⎟
⎠

(4.6)
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Figure 4.4: Realtime error 𝛥𝑣𝑧
0(𝑡) = |𝑣𝑧

0,exact(𝑡) − 𝑣𝑧
0,Born(𝑡)| and its suitable power

law 𝒪 (𝑡4) (black dashed line) for the case of a vanishing external magnetic field, 𝑁 = 640
bath spins, uniformly distributed couplings, and an initially unpolarized bath. The central
spin ⃗𝑣0(0) is initially in its up-state |↑⟩.

leads to an improvement which is shown in Figure 4.5b. Note that the scale of the ordinate
is completely different compared to the scale used in Figure 4.5a because otherwise, almost
nothing would be visible. The most part of the initial central spin polarization persists for
both the exact and the approximate (Born) calculation. This is due to the strong magnetic
field coupling to the central spin. While the absolute error decreases significantly, the major
feature of dephasing is still not captured at all. The amplitude stays constant for all time
while the oscillation frequency seems to be captured correctly. Only the time-average of
both solutions for 𝑣𝑧

0(𝑡) seems to match approximately.

All these observations do not change significantly when varying the bath size to 𝑁 = 320,
160 or 80. This shows that the accuracy of the Born approach is almost independent of
the bath size for the here studied initial polarizations, which is in contrast to the previous
belief.
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Figure 4.5: Comparison between the exact and the Born solution for the central spin
dynamics 𝑣𝑧

0(𝑡) with (a) vanishing external magnetic field and (b) �⃗� = (0, 0, −10𝐽Q)𝑇,
𝑁 = 640 bath spins, uniformly distributed couplings, and an initially unpolarized bath.
The central spin ⃗𝑣0(0) is initially in its up-state |↑⟩.
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4.4 Comparison to DMRG for exponentially distributed couplings

For the physically motivated exponential coupling distribution (2.5), time dependent DMRG
calculations were performed by Stanek et al. [28] and Gravert et al. [29] and have been
provided by Lars Gravert [61]. This data is used to compare it to the Born approach. In
contrast to the exact results for the uniform couplings in the previous section, this method is
limited due to its truncation error which grows in time. This truncation error is smaller for
larger external fields so that longer simulation times are feasible. Additionally, this approach
is limited to intermediate bath sizes because it requires quite heavy numerical calculations.

The initial conditions are chosen as in the previous section, meaning a fully unpolarized
bath and the central spin being in its up-state |↑⟩. The coupling distribution is given as

𝐽𝑖 = 𝒩 exp [−𝑖 𝑥
𝑁

] , 𝑖 ∈ {1, … , 𝑁} , (4.7)

with 𝑥 = 4 and normalized by choosing 𝒩 such that 𝐽2
𝑄 = 1 holds numerically. The bath is

chosen to consist of 𝑁 = 80 spins.
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Figure 4.6: Realtime deviation 𝛥𝑣𝑧
0(𝑡) = |𝑣𝑧

0,DMRG(𝑡) − 𝑣𝑧
0,Born(𝑡)| and its suitable

power law 𝒪 (𝑡4) (black dashed line) for the case of a vanishing external field, 𝑁 = 80
bath spins, exponentially distributed couplings with 𝑥 = 4, and an initially unpolarized
bath. The central spin ⃗𝑣0(0) is initially in its up-state |↑⟩.

In the case of a vanishing external magnetic field, the time-dependent deviation 𝛥𝑣𝑧
0(𝑡)

shown in Figure 4.6 shows the correct power law 𝒪 (𝑡4). Note that the data obtained by
DMRG calculations are considered as almost exact for the shown times 𝑡 < 25𝐽−1

Q . Once
again, this proofs the correctness of the Born corrections in the DEQ system (3.79). The
dynamics of 𝑣𝑧

0(𝑡) for both a vanishing and a finite external field are shown in Figure 4.7. For
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a vanishing external field as shown in Figure 4.7a, only a very short timescale is captured.
This behavior has been already observed during the error analysis for 𝑁 = 8 in section 4.1
The feature of dephasing is still missing. Interestingly, a very small decay of the amplitude
can be observed. In contrast for uniform couplings, it stays constant for all times. This
behavior is more dominant for a finite external field as shown in Figure 4.7b. Again, the scale
of the ordinate is chosen differently compared to Figure 4.7a. The decay of the amplitude is
much faster as observed for no external field. Unfortunately, it cannot catch up with the
accurate DMRG results, though. Only the oscillation frequency is captured almost correctly,
just as in the uniform case.

As a conclusion, the Born approach seems to yield better but still not reliable results for
large external magnetic fields. This is expected since the weak-coupling approximation is
especially valid in this particular case because the classical precession around the external
magnetic field leads to the fastest dynamics in the system. Additionally, this approach yields
slightly better results for the more physical exponential coupling distribution because the
amplitude does not stay constant for all times. This change of the amplitude occurs on a too
long timescale, though. In general, the Born solution differs so much from the exact results
that they cannot even function as an approximation of the quantum mechanical behavior of
the central spin for the relevant long timescales.
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Figure 4.7: Comparison between the exact and Born solution for the central spin dynamics
𝑣𝑧

0(𝑡) with (a) absent external field and (b) �⃗� = (0, 0, −10𝐽Q)𝑇, 𝑁 = 80 bath spins,
exponentially distributed couplings with 𝑥 = 4, and an initially unpolarized bath. The
central spin ⃗𝑣0(0) is initially in its up-state |↑⟩.
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The numerical analysis in the previous chapter shows the correctness and completeness of
the derived DEQ system (3.79) for the expectation values ⃗𝑣0/𝑖(𝑡). The lack of dephasing
is the main missing feature of the calculated dynamics. Throughout classical simulations
for the central spin model [19, 20], dephasing is induced by calculating the average for an
ensemble of Gaussian distributed baths. This requires solving classical equations of motion
for each individual initial bath configuration.

The intention of this chapter is to enhance this idea by including the first quantum mechanical
corrections to the classical equations of motion derived in chapter 3 by using the Born
approximation. Remember that the classical equations of motion are directly included in the
DEQ system (3.79) and thus, a straight comparison between classical and Born simulation
is possible and desirable.

Because the classical simulation as introduced in the following section 5.1 already yields
promising results without the inclusion of an external magnetic field and this is the harder
case, no field is applied to the central spin in the approach of improving the classical
simulation by using the Born corrections either.

In order to reduce the required computation time for the simulations, the adaptive Runge-
Kutta-Fehlberg method (RKF45) is used to solve the DEQ systems numerically. It also
enables to maintain a similar accuracy for both the classical simulations and the simulations
including the Born corrections by using the same error tolerance for the stepsize adjustment.
Additionally, the DEQ systems are solved on a finite grid to be able to calculate the ensemble
average at the gridpoints. The grid spacing, which mainly determines the resolution of the
plots, is typically much larger than the stepsize used in the RKF45 algorithm.

5.1 Classical simulations

In this section, different approaches for a classical simulation of the central spin model
are presented. They all have their own advantages but also problems that have to be
identified and understood to choose the right basis to build on for the inclusion of the Born
corrections in section 5.2. A comparison and discussion of the different results is given in
subsection 5.1.4.

In the classical simulation, the spin operators ⃗𝑆0/𝑖 are considered as classical vectors. In
quantum mechanics, these vectors are represented by the expectation values ⃗𝑣0/𝑖(𝑡). In
the following, this notation is kept to describe the classical vectors. After calculating the
ensemble average, the resulting quantity is denoted as ⟨ ⃗𝑣0⟩(𝑡) to distinguish from quantum
mechanical expectation values ⃗𝑣0(𝑡).

40



5.1 Classical simulations

5.1.1 Full classical simulation

Within the full classical simulation, the classical equations of motion

d
d𝑡

⃗𝑣0(𝑡) =
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣𝑖(𝑡) × ⃗𝑣0(𝑡) (5.1a)

d
d𝑡

⃗𝑣𝑖(𝑡) = 𝐽𝑖 ⃗𝑣0(𝑡) × ⃗𝑣𝑖(𝑡) ∀ 𝑖 ∈ {1, … , 𝑁} (5.1b)

are solved numerically for various initial conditions. The central spin is always chosen such
that it is fully polarized in +𝑧 direction, meaning

⃗𝑣0(0) = ⎛⎜
⎝

0
0
1
2

⎞⎟
⎠

(5.2)

so that it is initially in its up-state |↑⟩. The initial bath spin polarization ⃗𝑣𝑖(0) is taken from
a Gaussian distribution with mean value 𝜇𝑖 = 0, meaning the bath is completely disordered.
This is a valid assumption since the hyperfine couplings 𝐽𝑖 in the central spin model are in
the range of 𝜇eV[16, 55, 56]. This corresponds to temperatures of about 10 mK which is
small compared to the experimentally relevant temperature [13]. The choice of the variance
is quantum mechanically motivated. For spin 𝑆 = 1/2, it is initially given by

𝜎2
𝑖 ∶= ⟨𝑆𝛼

𝑖 (0)𝑆𝛼
𝑖 (0)⟩ = 1

4
. (5.3)

As a consequence, the whole spin bath forms a Gaussian distribution with mean 𝜇𝐴 = 0
and variance 𝜎2

𝐴 = 𝐽2
Q/4.

The standard deviation of the simulation at a finite time 𝑡 is proportional to 1/√
𝑛, with

𝑛 being the number of individual simulations. At least 𝑛 = 105 is required to be able to
neglect error bars. The solution obtained by calculating the average of 𝑛 = 106 individual
simulations for the initial central spin polarization ⃗𝑣0(0) = (0, 0, 1/2)𝑇 is shown in Figure 5.2
(see subsection 5.1.4) for a system of 𝑁 = 80 bath spins As of now, it is denoted as the
full classical simulation (FCS). The couplings are chosen to be exponentially distributed
according to

𝐽𝑖 = 𝒩 exp [−𝑖 𝑥
𝑁

] , 𝑖 ∈ {1, … , 𝑁} , (5.4)

with 𝑥 = 1 and normalized by choosing 𝒩 such that 𝐽2
Q = 1 holds numerically. A discussion

and comparison to the other approaches can be found in subsection 5.1.4.

A more detailed discussion of this classical approach and its efficient simulation can be
found in Reference [20]. The FCS is included here because the the intention of the present
chapter consists of enhancing the results of this simulation by including the first quantum
mechanical corrections, obtained by using the Born approximation, in section 5.2.
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5.1.2 Frozen Overhauser field

In a work by Merkulov et al. [16], the bath is assumed to form the effective Overhauser field
⃗𝐴 = ∑𝑁

𝑖=1 𝐽𝑖 ⃗𝑣𝑖 which is assumed to be frozen in time, meaning no dynamics is included
for each individual bath spin. This approximation is justified for small times because for a
large bath size, the central spin precesses around Overhauser field much faster than each
bath spin around the central spin. Hence, the central spin is coupled to bath spins that are
constant in a first zeroth-order approximation. This behavior is described by the differential
equation

d
d𝑡

⃗𝑣0(𝑡) = ⃗𝐴 × ⃗𝑣0(𝑡) . (5.5)

A general solution is given by

⃗𝑣0(𝑡) = ( ⃗𝑣0(0) ⋅ �⃗�) �⃗� + (�⃗� × ⃗𝑣0(0)) sin (| ⃗𝐴|𝑡) + [ ⃗𝑣0(0) − (�⃗� ⋅ ⃗𝑣0(0)) �⃗�] cos (| ⃗𝐴|𝑡) , (5.6)

with �⃗� = ⃗𝐴/| ⃗𝐴|. The polarization of the frozen Overhauser field is taken from a Gaussian
distribution with mean 𝜇𝐴 = 0 and variance 𝜎2

𝐴 = 𝐽2
Q/4. Now averaging the solution (5.6)

over this distribution yields the well known analytical expression

⟨ ⃗𝑣0⟩(𝑡) = ⃗𝑣0(0)
3

[1 + 2 (1 −
𝐽2

Q
4

𝑡2) exp (−
𝐽2

Q
8

𝑡2)] . (5.7)

As of now, this solution is referred to as the Merkulov-solution (MS). [16] It is shown in figure
Figure 5.2 (see subsection 5.1.4) for the initial central spin polarization ⃗𝑣0(0) = (0, 0, 1/2)𝑇.
The calculation is independent of the amount of bath spins and the distribution of their
couplings 𝐽𝑖. It only depends on the parameter 𝐽2

Q which determines the short time
dynamics of the central spin. A discussion and comparison to the other approaches is given
in subsection 5.1.4.

5.1.3 Quantum mechanical sampling

In general, the Overhauser field ⃗𝐴 is not frozen but shows fluctuations due to the dynamics
of the bath spins that have been neglected in the Merkulov-solution. As a next step, the
precession of each bath spin around the central spin is included. Basically, the DEQ system
to solve is the same as in subsection 5.1.1, namely the classical equations of motion (5.1).
The difference is given through the choice of the initial bath polarization.

In this approach, the Overhauser field ⃗𝐴 is sampled directly from a Gaussian distribution
with mean 𝜇𝐴 = 0 and variance 𝜎2

𝐴 = 𝐽2
Q/4, just as for the Merkulov-solution (5.7). The

question is how this translates to the initial polarization of each individual bath spin. This
approach is quantum mechanically motivated because the length of each bath spin should
be treated in a quantum mechanical manner. Obviously, this is not the case if each initial
bath spin polarization is sampled from a Gaussian distribution with mean value 𝜇𝑖 = 0 and
variance 𝜎2

𝑖 = 1/4. Note that this constraint limits the maximal length ⃗𝐴 of the Overhauser
field due to the limited length of each bath spin.
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The approach starts with parameterizing the initial density operator 𝜌B of the full bath as

𝜌B = 1
𝑍B (�⃗�)

exp (−�⃗� ⋅ ⃗𝐴) , (5.8)

with the partition function 𝑍B (�⃗�) = Tr [exp (−�⃗� ⋅ ⃗𝐴)], the Overhauser field ⃗𝐴 = ∑𝑁
𝑖=1 𝐽𝑖

⃗𝑆𝑖,
and the Lagrange multiplier �⃗�. This is the likeliest initial state of the bath because it max-
imizes the entropy when only the initial Overhauser field ⃗𝐴 is fixed. It is also a product
state. Hence, the term exp (−�⃗� ⋅ ⃗𝐴) factorizes into

exp (−�⃗� ⋅ ⃗𝐴) =
𝑁

⨂
𝑖=1

exp (−𝐽𝑖
2

�⃗� ⋅ �⃗�) (5.9)

and thus, it is possible to derive a relation between the parameter �⃗� and the initial expectation
values ⃗𝑣𝑖(0) which are used to parameterize the bath in weak-coupling approximation (see
subsection 3.3.1).

The term exp (𝐽𝑖
2 𝜆 ⋅ �⃗�) can be rewritten as a series expansion which splits into even and

uneven powers. Note that the notation �⃗� = �⃗�/|�⃗�| is used to describe the normal vector of
the parameter �⃗�.

exp (𝐽𝑖
2

𝜆 ⋅ �⃗�) =
∞

∑
𝑘=0

1
(2𝑘 + 1) !

(𝐽𝑖
2

|�⃗�|)
2𝑘+1

(�⃗� ⋅ �⃗�)2𝑘+1 +
∞

∑
𝑘=0

1
(2𝑘) !

(𝐽𝑖
2

|�⃗�|)
2𝑘

(�⃗� ⋅ �⃗�)2𝑘

(5.10a)

This expression can be evaluated by making use of the following relations.

(�⃗� ⋅ �⃗�)2𝑘 = ⎡⎢
⎣

(�⃗� ⋅ �⃗�)2
⏟
=|�⃗�|2=1

⎤⎥
⎦

𝑘

= 𝟙 (5.11a)

(�⃗� ⋅ �⃗�)2𝑘+1 = (�⃗� ⋅ �⃗�)2𝑘
⏟

=𝟙

(�⃗� ⋅ �⃗�) = �⃗� ⋅ �⃗� (5.11b)

Inserting into equation (5.10a) yields

exp (𝐽𝑖
2

𝜆 ⋅ �⃗�) =
∞

∑
𝑘=0

1
(2𝑘 + 1) !

(𝐽𝑖
2

|�⃗�|)
2𝑘+1

(�⃗� ⋅ �⃗�) +
∞

∑
𝑘=0

1
(2𝑘) !

(𝐽𝑖
2

|�⃗�|)
2𝑘

𝟙 (5.12a)

= sinh (−𝐽𝑖
2

|�⃗�|) (�⃗� ⋅ �⃗�) + cosh (−𝐽𝑖
2

|�⃗�|) 𝟙 (5.12b)

= cosh (𝐽𝑖
2

|�⃗�|) 𝟙 − sinh (𝐽𝑖
2

|�⃗�|) (�⃗� ⋅ �⃗�) . (5.12c)
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5 Simulations using Gaussian bath ensembles

This expression also enables to calculate the partition function 𝑍(�⃗�).

𝑍(�⃗�) = Tr [exp (−
𝑁

∑
𝑖=1

𝐽𝑖
2

�⃗� ⋅ �⃗�)] (5.13a)

= Tr [
𝑁

⨂
𝑖=1

{cosh (𝐽𝑖
2

|�⃗�|) 𝟙 − sinh (𝐽𝑖
2

|�⃗�|) (�⃗� ⋅ �⃗�)}] (5.13b)

= 2𝑁
𝑁

∏
𝑖=1

cosh (𝐽𝑖
2

|�⃗�|) (5.13c)

Now, the density operator of the bath 𝜌B takes the final form

𝜌B =
⨂𝑁

𝑖=1 [cosh (𝐽𝑖
2 |�⃗�|) 𝟙 − sinh (𝐽𝑖

2 |�⃗�|) (�⃗� ⋅ �⃗�)]

2𝑁 ∏𝑁
𝑖=1 cosh (𝐽𝑖

2 |�⃗�|)
(5.14a)

=
𝑁

⨂
𝑖=1

[1
2

𝟙 − 1
2

tanh (𝐽𝑖
2

|�⃗�|) (�⃗� ⋅ �⃗�)] . (5.14b)

A direct comparison of the coefficients to the original parameterization of the bath spin
density operators in subsection 3.3.3, chosen as

𝜌𝑖(0) = 1
2

𝟙 + ⃗𝑏𝑖(0) ⋅ �⃗� = 1
2

𝟙 + ⃗𝑣𝑖(0) ⋅ �⃗� , (5.15)

shows that the initial polarization ⃗𝑣𝑖(0) is determined by the choice of the parameter �⃗�
through the relation

⃗𝑣𝑖(0) = −1
2

tanh (𝐽𝑖
2

|�⃗�|) �⃗�
|�⃗�|

. (5.16)

It only depends on the individual coupling constant 𝐽𝑖 and the Lagrange multiplier �⃗�. Note
that this relation limits the length | ⃗𝑣𝑖(0)| to the interval [−1/2, 1/2], meaning the length of
each bath spin is treated in a quantum mechanical manner.

The parameter �⃗� has to be calculated from the relation

∂
∂𝜆𝛼 ln 𝑍 (�⃗�) = 1

𝑍 (�⃗�)
∂

∂𝜆𝛼 𝑍 (�⃗�) (5.17a)

= 1
𝑍 (�⃗�)

∂
∂𝜆𝛼 Tr [exp (−�⃗� ⋅ ⃗𝐴)] (5.17b)

= −𝐴𝛼 . (5.17c)

This expression is evaluated by using the derivative of 𝑍 (�⃗�) = 2𝑁 ∏𝑁
𝑖=1 cosh (𝐽𝑖

2 |�⃗�|). Cal-
culating this derivative requires using the product rule

𝑓(𝑥) =
𝑁

∏
𝑖=1

𝑓𝑖(𝑥) ⇒ 𝑓 ′(𝑥) =
𝑁

∑
𝑖=1

𝑓 ′
𝑖 (𝑥)

𝑁
∏

𝑘=1, 𝑘≠𝑖
𝑓𝑘(𝑥) . (5.18)
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Its application leads to

∂
∂𝜆𝛼 𝑍 (�⃗�) = ∂

∂𝜆𝛼

𝑁
∏
𝑖=1

cosh (𝐽𝑖
2

|�⃗�|) (5.19a)

=
𝑁

∑
𝑖=1

𝐽𝑖
2

𝜆𝛼

|�⃗�|
sinh (𝐽𝑖

2
|�⃗�|)

𝑁
∏

𝑘=1, 𝑘≠𝑖
cosh (𝐽𝑘

2
|�⃗�|) . (5.19b)

Inserting the derivative into (5.17a) yields

1
𝑍 (�⃗�)

∂
∂𝜆𝛼 𝑍 (�⃗�) = 𝜆𝛼

|�⃗�|

∑𝑁
𝑖=1

𝐽𝑖
2 sinh (𝐽𝑖

2 |�⃗�|) ∏𝑁
𝑘=1, 𝑘≠𝑖 cosh (𝐽𝑘

2 |�⃗�|)

∏𝑁
𝑗=1 cosh (𝐽𝑖

2 |�⃗�|)
(5.20a)

= 𝜆𝛼

|�⃗�|

𝑁
∑
𝑖=1

𝐽𝑖
2

tanh (𝐽𝑖
2

|�⃗�|) . (5.20b)

Hence, the equation to solve with respect to �⃗� takes the form

𝜆𝛼

|�⃗�|

𝑁
∑
𝑖=1

𝐽𝑖
2

tanh (𝐽𝑖
2

|�⃗�|) = −𝐴𝛼 . (5.21)

This is a three-dimensional system of equations since it has to be solved for each component
𝛼 ∈ {𝑥, 𝑦, 𝑧}.

Actually, an easier derivation is given by making use of equation (5.16). For a classically
chosen Overhauser field component 𝐴𝛼 ∶= 𝐴𝛼(0), the relation

𝐴𝛼 = 𝐴𝛼(0) =
𝑁

∑
𝑖=1

𝐽𝑖𝑣𝛼
𝑖 (0) (5.22)

has to hold. This relation is obtained by replacing the quantum mechanical bath spin
operators ⃗𝑆𝑖 in the Overhauser field operator by their expectation values ⃗𝑣𝑖. Now inserting
𝑣𝛼

𝑖 (0) as given through equation (5.16) leads to the same system of equations as given in
equation (5.21).

It is difficult to solve such multi-dimensional systems numerically. However, it is possible
to reduce it to a one-dimensional one. The left-hand side of equation (5.21) in the slightly
rearranged form

𝑁
∑
𝑖=1

𝐽𝑖
2

tanh (𝐽𝑖
2

|�⃗�|) = −𝐴𝛼 |�⃗�|
𝜆𝛼 (5.23)

is independent of 𝛼 and therefore the same for all three equations. This means that the
right-hand sides have to be equal, too. Therefore, the following useful relations emerge.

𝐴𝑥

𝜆𝑥 = 𝐴𝑦

𝜆𝑦 = 𝐴𝑧

𝜆𝑧 (5.24a)

⇒𝜆𝑦 = 𝐴𝑦

𝐴𝑥 𝜆𝑥 , 𝜆𝑧 = 𝐴𝑧

𝐴𝑥 𝜆𝑥 (5.24b)

⇒|�⃗�| = √(𝜆𝑥)2 + (𝜆𝑦)2 + (𝜆𝑧)2 = 𝜆𝑥√1 + (𝐴𝑦

𝐴𝑥 )
2

+ ( 𝐴𝑧

𝐴𝑥 )
2

= 𝜆𝑥 | ⃗𝐴|
𝐴𝑥 (5.24c)
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5 Simulations using Gaussian bath ensembles

As a consequence, the final equation is obtained by replacing 𝜆𝑦 and 𝜆𝑧 through their
relations (5.24b) with 𝜆𝑥.

𝑁
∑
𝑖=1

𝐽𝑖
2

tanh (𝐽𝑖
2

| ⃗𝐴|
𝐴𝑥 𝜆𝑥) + | ⃗𝐴| = 0 (5.25)

It has to be solved numerically with respect to the Lagrange multiplier 𝜆𝑥. In practice, this
task is executed by interval bisection quite easily. The remaining Lagrange multipliers are
then obtained by resorting to the relations (5.24b).

Note that the Overhauser field ⃗𝐴 is sampled from a Gaussian distribution with mean value
𝜇𝐴 = 0 and variance 𝜎2

𝐴 = 𝐽2
Q/4. Therefore, a solution does not necessarily exist for every

sampled ⃗𝐴 because tanh(𝑥) is limited to the interval [−1, 1]. As a consequence, a solution
exists only for

| ⃗𝐴| ≤ 1
2

𝑁
∑
𝑖=1

𝐽𝑖 . (5.26)

In practice, this condition is almost always fulfilled. If no solution is found, a new ⃗𝐴 is
sampled from the Gaussian distribution. This leads to a negligibly small cutoff in the
resulting distribution.

In principle, the present approach also allows to discuss an initially polarized bath by chosing
the mean value 𝜇𝐴 of the Gaussian distribution to be nonzero. This case is not studied in
this thesis, though.

Resorting to equation (5.16) to calculate the
initial bath spin expectation values ⃗𝑣𝑖(0) re-
sults in all bath spins being polarized in the
exact same direction �⃗�. This is also the di-
rection of the Overhauser field ⃗𝐴. It can be
argued that it is not really physical that all
bath spins point in the same direction, but
this approach solves the problem of dealing
with bath spins with too long length | ⃗𝑣𝑖(0)|,
which appear during the full classical simu-
lation. Note that for a specific bath spin 𝑖,
the initial length | ⃗𝑣𝑖(0)| scales with the bath
size 𝑁 according to

| ⃗𝑣𝑖(0)| ∝ 1√
𝑁

. (5.27)
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Figure 5.1: Quantum mechanical sampling:
Scaling of the first bath spin | ⃗𝑣1(0)| for a given
Overhauser field ⃗𝐴(0), depending on the bath
size 𝑁. The power law | ⃗𝑣1(0)| ∝ 𝑁− 1

2 is iden-
tical for the exponential and uniform coupling
distribution.

An illustration for the scaling of the first bath spin | ⃗𝑣1(0)| is given in Figure 5.1 for an
exponential but also an uniform coupling distribution. The scaling behavior is going to
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5.1 Classical simulations

be an important argument in the next section while studying the influence of the Born
corrections. This approach of sampling the initial Overhauser field will be referred to as
quantum mechanical sampling (QMS). The result of averaging the solution of the classical
equations of motion (5.1) for 𝑛 = 106 is given in Figure 5.2 (see subsection 5.1.4) for a system
of 𝑁 = 80 bath spins with exponentially distributed couplings (𝑥 = 1). A detailed discussion
and comparison to the other approaches is given in the following subsection 5.1.4.

5.1.4 Results and comparison

The solutions ⟨𝑣𝑧
0⟩(𝑡) for the three different approaches discussed in the previous subsections

are compiled in Figure 5.2. The 𝑥 and 𝑦 components vanish anyway for 𝑛 → ∞ and are
therefore omitted. They only show small statistical fluctuations due to calculating the
average of a finite ensemble.
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Figure 5.2: Three different approaches for a classical simulation of the central spin
dynamics ⟨𝑣𝑧

0⟩(𝑡) (full classical simulation (FCS), Merkulov-solution (MS), quantum me-
chanical sampling (QMS)). The quantum mechanical expectation value ⟨ ⃗𝑆0⟩(𝑡) calculated
by DMRG is included for 𝑡 ≤ 25𝐽−1

Q . Despite small statistical fluctuations which result
from calculating an average for a finite ensemble, the 𝑥 and 𝑦 components vanish and are
therefore neglected. The calculations are performed for a system of 𝑁 = 80 bath spins
with exponential distributed couplings (𝑥 = 1) and averaging over 𝑛 = 106 individual
simulations.
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5 Simulations using Gaussian bath ensembles

The calculations are performed for 𝑁 = 80 bath spins with exponential distributed couplings
(𝑥 = 1) given through equation (5.4) while the parameter 𝐽2

Q = 1 determines the timescale.
The average is calculated for 𝑛 = 106 ensembles so that error bars can be neglected. The
initial central spin polarization is chosen to be ⃗𝑣0 = (0, 0, 1/2)𝑇. A DMRG calculation for
the quantum mechanical expectation value ⟨ ⃗𝑆0(𝑡)⟩ = ⃗𝑣0(𝑡) is included which is considered
to be accurate for 𝑡 < 25𝐽−1

Q .

The characteristic minimum at 𝑡 ≈ 3.5𝐽−1
Q is captured well by all approaches (see inset

of Figure 5.2). It is not really possible to tell which one describes the real quantum
mechanical solution the best. Apparently, this minimum is mainly described by the central
spin precessing around a frozen Overhauser field since even the Merkulov-solution describes
the exact solution quite well on this timescale.

The full classical simulation (FCS) seems to be the best approach to describe the dephasing
of the central spin after the characteristic minimum for 𝑡 > 9𝐽−1

Q . Since the DMRG
results are only accurate for small times 𝑡 < 25𝐽−1

Q , it is not possible to give a detailed
analysis for larger times. The analytical Merkulov-solution (MS) converges against the
value lim𝑡→∞ ⟨𝑣0⟩(𝑡) = 1/6. The same behavior occurs for the approach using the quantum
mechanical sampling (QMS). Despite the small remaining statistical fluctuations, the results
from QMS seem to match the Merkulov-solution.

Both the Merkulov and the QMS solution lack the dephasing of the central spin for 𝑡 ≳ 10𝐽−1
Q .

However, since the characteristic minimum is described well, the hope is to obtain this
missing feature by including the Born corrections during the QMS calculation in the following
section 5.2. Since the FCS does not exactly match the DMRG results, it might be possible
to enhance this directly simulation by including the Born corrections.
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5.2 Simulations including the Born approximation

5.2 Simulations including the Born approximation

In the previous sections, the advantages of the full classical simulation (FCS) and the
quantum mechanical sampling (QMS) have been discussed. All classical approaches capture
the characteristic minimum at 𝑡 ≈ 3.5𝐽−1

Q . The main difference is that the FCS includes the
dephasing for 𝑡 ≳ 10𝐽−1

Q while the QMS solution converges against the constant value 1/6.
The FCS is not completely accurate, though. Therefore, trying to enhance the FCS directly
by including the Born corrections is the first approach to follow.

However, problems may arise when sampling the initial bath spin polarizations ⃗𝑣𝑖(0) from
the Gaussian distribution with mean value 𝜇𝑖 = 0 and variance 𝜎2

𝑖 = 14, just as in the FCS.
This is due to the parameterization of the reduced density operator of the bath spins 𝜌𝑖(0)
which is chosen to be

𝜌𝑖(0) = 1
2

𝟙 + ⃗𝑣𝑖(0) ⋅ �⃗� . (5.28)

Now in quantum mechanics, it has to be ensured that such an operator has non-negative
eigenvalues, meaning it is positive semidefinite. This is achieved by the constraint | ⃗𝑣𝑖(0)| ≤
1/2 which is not necessarily fulfilled in the FCS. Otherwise, exponentially growing terms
may occur in the solution. In contrast, the QMS obeys this condition which is its main
advantage over the FCS.

Until now, it is not clear if breaking this constraint leads to problems when adding the Born
corrections to the FCS, for example due to exponential growing terms. For the classical
equations of motion (5.1), no problems occur because the corresponding dynamics only
consist of a spin precession which preserves the spin length. However, if such exponentially
growing terms appear, attempting to the FCS by the inclusion of the Born corrections is
pointless. Therefore, the DEQ system (3.79) is studied in the following subsection for invalid
density operators due to | ⃗𝑣𝑖(0)| > 1/2 .

5.2.1 Born approximation for invalid density operators

In general, a density operator

𝜌𝑖(0) = 1
2

𝟙 + ⃗𝑣𝑖(0) ⋅ �⃗� (5.29)

with | ⃗𝑣𝑖(0)| > 1/2 is not positive semidefinite, meaning it is an invalid density operator. In
quantum mechanics, this usually results in exponentially growing terms over time. Until
now, it is not clear if solving the Born DEQ system (3.79) really requires fulfilling this
constraint, though. Additionally, it is not clear a priori at what time 𝑡 a divergent behavior
emerges.

At least for the FCS, breaking this constraint leads to no problems because the classical
equations of motion only describe a spin precession which preserves the spin length. If no
problems emerged, the FCS could be used as a basis for including the Born approximation.
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5 Simulations using Gaussian bath ensembles

Unfortunately, Figure 5.3 gives an example in which the solver fails due to a divergent
behavior. These exponentially growing terms would also become dominant while trying to
improve the FCS with the Born approximation. Hence, this is definitely the wrong route to
follow. It is not discussed any further.
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Figure 5.3: Example for the divergent behavior of the central spin expectation value
⃗𝑣0(𝑡) when using the Born approximation (3.79) while allowing initial bath polarizations

| ⃗𝑣𝑖(0)| > 1/2 which are not in agreement with quantum mechanics. This calculation is
performed for 𝑁 = 20 bath spins with exponentially distributed couplings (𝑥 = 1).

5.2.2 Quantum mechanical sampling including the Born approximation

In contrast to the FCS, the approach of quantum mechanical sampling as introduced in
subsection 5.1.3 obeys the constraint | ⃗𝑣𝑖(0)| ≤ 1/2. As a result, the simulation can be
performed using the same algorithm by additionally including the Born corrections. The
only difference in practice is solving the DEQ system (3.79) instead of (5.1). This approach
is denoted as the Born QMS simulation.

The structure of this DEQ system is much more complicated and the dimension is larger
due to the additional differential equations for the matrices 𝐷0/𝑖(𝑡) and 𝑀𝑖(𝑡). To maintain
the same error tolerance as for the classical simulation, the advaptive RKF45 algorithm has
to reduce its stepsize to an smaller value. This is mainly due to the more complex structure
of the DEQ system (3.79) which requires the calculation of many matrix multiplications.

50



5.2 Simulations including the Born approximation

This means that additional computation time is required which results in calculations for an
overall smaller number of individual simulations 𝑛 = 105. This amount is still sufficiently
large to neglect error bars and to study the qualitative behavior of this approach in order to
judge whether it is reasonable to invest more work into it or not.

In order to compare this calculation to the previous classical simulations as well as the
DMRG results, the same parameters as in subsection 5.1.4 are used. The resulting dynamics
for ⟨𝑣𝑧

0⟩(𝑡) are shown in Figure 5.4. Obviously, it does not match the previous results at
all. Not even the characteristic minimum at 𝑡 ≈ 3.5𝐽−1

Q is captured correctly anymore. It
appears that the contribution of the Born approximation is too large for all times 𝑡. Note
that the remaining statistical fluctuations are too small to explain this deviation.
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Figure 5.4: Quantum mechanical sampling (QMS) with (Born) and without (classical)
Born corrections compared to the full classical simulation (FCS, 𝑛 = 106) and DMRG
results. The system parameters are the same as used for Figure 5.2, meaning 𝑁 = 80 and
𝑥 = 1. For the Born QMS calculation, the average ⟨𝑣𝑧

0⟩(𝑡) is obtained by averaging over
𝑛 = 105 individual simulations.

There is still hope to obtain better results by increasing the bath size 𝑁. For larger bath
sizes, the quantum mechanical corrections should be suppressed. Now imagine uniformly
distributed couplings 𝐽𝑖 ∝ 1/√

𝑁. The classical precession term in the differential equation
for ⃗𝑣0(𝑡) is proportional to ∑𝑁

𝑖=1 𝐽𝑖 =
√

𝑁. In contrast, the second order correction is
proportional to ∑𝑁

𝑖=1 𝐽2
𝑖 = 1. This means that the classical precession should dominate the

dynamics of ⃗𝑣0(𝑡) for large bath sizes 𝑁.
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Fortunately, the size of the DEQ system (3.79) increases linearly with the bath size 𝑁.
Therefore, a simulation for 𝑁 = 800 bath spins can be performed by decreasing the number
for individual simulations by approximately a factor of ten or simply by increasing the
computation time by that amount. Of course, the former would lead to larger statistical
fluctuations so that the second option is chosen.

A comparison between the Born QMS simulations for 𝑁 = 80 and 800 bath spins is shown in
Figure 5.5. No improvement is visible. Their deviation is of the same order as the statistical
fluctuations. It appears that this simulation is almost independent of the bath size 𝑁, which
is in contrast to the previous expectation.
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Figure 5.5: Comparison between the Born QMS simulations for 𝑁 = 80 and 800 bath
spins (𝑥 = 1). In both cases, the average ⟨𝑣𝑧

0⟩(𝑡) is calculated by averaging over 𝑛 = 105

individual simulations. The classical QMS simulation for 𝑁 = 80 is included as reference
(𝑛 = 106).

As argued in subsection 5.1.3, the initial length | ⃗𝑣𝑖(0)| is proportional to 1/√
𝑁 (see Figure 5.1).

Therefore, this relation has to be taken into account while studying the dependency on 𝑁 of
the DEQ system (3.79) obtained by using the Born approximation. The matrices 𝐷0/𝑖(𝑡)
describe orthogonal rotations which are of order 𝒪 (1), meaning they can be neglected for
this analysis. The classical precession terms always include a cross product with ⃗𝑣𝑖(𝑡) which
is of order 𝒪 (1/√

𝑁). For the second order correction, the 𝑁-dependency lies in the matrices
𝑀𝑖(𝑡). The differential equations for 𝑀𝑖(𝑡) contain a term that is independent of ⃗𝑣𝑖, namely
−𝐷𝑇

0 (𝑡)𝑉0(𝑡)𝐷𝑖(𝑡), meaning it is of order 𝒪 (1). The other terms are of order 𝒪 (1/√
𝑁) or
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5.2 Simulations including the Born approximation

𝒪 (1/𝑁) so that they are suppressed for large bath sizes 𝑁.

For a qualitative argument, the coupling constants are taken from the uniform coupling
distribution 𝐽𝑖 ∝ 1/√

𝑁 once again. As a result, the classical precession term of ⃗𝑣0(𝑡) is now
of order 𝒪 (1). The second order correction is still of order 𝒪 (1) because the matrix 𝑀𝑖(𝑡)
is also of order 𝒪 (1). Hence, both the classical and the second order correction terms are
of the same order 𝒪 (1). The same argument holds for the differential equation of each
individual bath spin ⃗𝑣𝑖(𝑡). The only difference is the additional sum over all bath spins
which results in an additional factor 𝑁 for the differential equation of ⃗𝑣0(𝑡). Therefore, both
the classical and the second order correction terms are of the same order 𝒪 (1/𝑁) for each
bath spin ⃗𝑣𝑖(𝑡).

As a conclusion, no real improvement can be expected by dealing with larger bath sizes 𝑁
because the classical precession and the second order correction show the same scaling with
𝑁, just as confirmed in Figure 5.5. Unfortunately, this renders the Born QMS approach
rather useless.

5.2.3 Alternative sampling approaches

The emerging challenge consists of treating the spin length quantum mechanically, meaning
| ⃗𝑣𝑖| < 1/2, while also sampling the Overhauser field distribution with the correct variance
𝜎2

𝐴 = 𝐽2
Q/4. Additionally, each bath spin should be sampled independently so that their

initial length | ⃗𝑣𝑖(0)| does not scale with the bath size 𝑁 or at least slower than 1/√
𝑁. These

three constraints have to be fulfilled at the same time.

In a first alternative approach, each individual bath spin ⃗𝑣𝑖(0) is sampled directly from a
Gaussian distribution with mean value 𝜇𝑖 = 0 and variance 𝜎2

𝑖 = 1/4, just as for the full
classical simulation. In contrast, a cutoff at | ⃗𝑣𝑖(0)| = 1/2 is introduced so that the spin length
is treated quantum mechanically while also also remaining independent of the bath size 𝑁.
If a bath spin is sampled with | ⃗𝑣𝑖(0)| > 1/2, it is rescaled to the cutoff length | ⃗𝑣𝑖(0)| = 1/2.
Note that this is an unphysical assumption, though. Obviously, this approach leads to a
wrong effective variance 𝜎2

cutoff < 𝜎2
𝐴 for the Overhauser field distribution which is mainly

responsible for the characteristic minimum in the classical simulations. This can already be
seen when analyzing the Merkulov-solution (5.7) which depends on the variance 𝜎2

𝐴 = 𝐽2
Q/4

of the Gaussian distribution. Reducing the variance would mainly shift the characteristic
minimum at 𝑡 ≈ 3.5𝐽−1

Q in Figure 5.2 to the right. This is also the case when using this
cutoff approach for a classical simulation because it samples an effectively smaller variance
of the Overhauser field.

Another alternative approach samples each individual bath spin ⃗𝑣𝑖(0) on the Bloch sphere
equidistantly. This fixes the spin length at | ⃗𝑣𝑖(0)| = 1/2 so that it is treated in a quantum
mechanical manner while also remaining independent of the bath size 𝑁. Even though this
samples a Gaussian distribution with mean value 𝜇Bloch = 0, it leads to a wrong variance
𝜎2

Bloch ≠ 𝜎2
𝐴.

The results of both sampling approaches are shown in Figure 5.6 for a bath of 𝑁 = 80
spins with exponentially distributed couplings (𝑥 = 1), averaged over 𝑛 = 105 individual
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5 Simulations using Gaussian bath ensembles

simulations. Interestingly, the characteristic minimum is shifted to the left and not to the
right as previously assumed. But note that the argument which leads to this assumption
is based on the classical Merkulov-solution. By including the Born approximation now,
it is not a priori clear what impact it has. The contribution of Born corrections must be
simply too large as already observed in the previous subsection 5.2.2. This behavior does
not noticeably change when dealing with larger baths either, even though the bath spins
are sampled independently of the bath size 𝑁 in both approaches. This is a hint that the
scaling behavior of ⃗𝑣𝑖(0) is not the only reason for the Born QMS approach failing in the
previous subsection 5.2.2
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Figure 5.6: Comparison between the cutoff, the Bloch, and the QMS Born approach. The
DMRG result functions as reference. The calculations are performed for a bath of 𝑁 = 80
spins with exponentially distributed couplings (𝑥 = 1), averaged over 𝑛 = 105 individual
simulations.

So far, no approach fulfilling all three constraints has been found. Hence, the approach
of enhancing the classical simulation by the first quantum mechanical corrections in Born
approximation is considered as unsuccessful. While this does not necessarily mean that no
appropriate solution for this problem exists, the current results rather promote studying the
full classical simulation instead.
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5.3 Semiclassical simulation

5.3 Semiclassical simulation

The main ingredient of all classical simulations is the central spin precession around a
Gaussian distributed Overhauser field with mean value 𝜇𝐴 = 0 and variance 𝜎2

𝐴 = 𝐽2
Q/4.

Even the frozen Overhauser field approach which leads to the Merkulov-solution (5.7) can
describe the characteristic minimum at 𝑡 ≈ 3.5𝐽−1

Q well (see Figure 5.2). Dephasing is
induced within the full classical simulation by sampling each bath spin independently with
variance 𝜎2

𝑖 = 1/4. It looks like the intrinsic bath dynamics are mainly responsible for the
dephasing of the central spin after the first characteristic minimum.

A semiclassical approach consists of considering the Overhauser field as a classical field,
just as in the classical simulation. Then, the central spin precesses around this classical
field according to the classical equations of motion. The sampling of each bath spin is still
performed by the QMS approach as introduced in subsection 5.1.3 so that the spin length is
treated in a quantum mechanical manner. The difference to the classical QMS approach lies
in considering each bath spin as a quantum mechanical object that is treated within Born
approximation. The DEQ system to solve numerically is still given by (3.79), but without
the Born corrections for the central spin ⃗𝑣0(𝑡). In contrast to the DEQ system (3.79), the
differential equation for the central spin expectation value ⃗𝑣0(𝑡) simply reads

d
d𝑡

⃗𝑣0(𝑡) =
𝑁

∑
𝑖=1

𝐽𝑖 ⃗𝑣𝑖(𝑡) × ⃗𝑣0(𝑡) . (5.30)

This is the classical equation of motion for the central spin precessing around a time-dependent
Overhauser field.

The reasoning behind this semiclassical approach is based on the experience gained from
the Born QMS approach as discussed in subsection 5.2.2. At first glance, the individual
bath spin dynamics should not depend on the bath size 𝑁 because the bath spins are only
directly coupled to the central spin. This is clearly the case within Born approximation even
in second order because no terms coupling different bath spins to each other occur. Hence,
the Born corrections for the bath spins are unproblematic. They are included to understand
the real bath dynamics quantum mechanically better by not only treating each bath spin
as a classical vector which precesses around the central spin. In contrast, the central spin
dynamics depend on the bath size to an important degree so that it can be considered as
a classical system for very large bath sizes. Since this behavior does not appear for the
Born QMS simulation, the second order corrections for the central spin are simply neglected
here.

The result for the central spin dynamics ⟨𝑣𝑧
0⟩(𝑡) are shown in Figure 5.7 for a bath of

𝑁 = 80 spins with exponentially distributed couplings (𝑥 = 1). The full classical simulation
and the DMRG results are included for comparison. In contrast to subsection 5.2.2, the
characteristic minimum at 𝑡 ≈ 3.5𝐽−1

Q is captured adequately. This behavior is expected
because on this short timescale, the intrinsic bath spin dynamics do not play an important
role. The semiclassical solution shows a sharp maximum at 𝑡 ≈ 7.5𝐽−1

Q which does not
appear as clearly in the DMRG solution. For 𝑡 > 7.5𝐽−1

Q , a fast decrease of the solution is
visible which could be interpreted as dephasing. Note that this decrease happens way too
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5 Simulations using Gaussian bath ensembles

fast compared to the dephasing appearing in the DMRG and FCS results. Additionally, the
semiclassical results seem to be rather unpredictable because for 𝑡 > 17𝐽−1

Q , the solution
increases notably. For 𝑡 > 31𝐽−1

Q , it decreases again. Since the calculation is performed for
an ensemble of 𝑛 = 105 individual simulations, the statistical fluctuations are by far too
small to explain this behavior.
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Figure 5.7: Semiclassical simulation for a bath of 𝑁 = 80 spins with exponentially
distributed couplings (𝑥 = 1). The ensemble average is calculated for 𝑛 = 105 individual
simulations. The classical QMS approach, the full classical simulation (FCS), and the
DMRG results are included for comparison.

For a larger bath of 𝑁 = 800 spins, the solution is following the Merkulov-solution for
slightly longer times. However, a too fast decrease of the solution appears once again for
𝑡 > 7.5𝐽−1

Q . No plot is included for this case due to the lack of a significant improvement.

Overall, this semiclassical approach leads to a better result compared to the full Born QMS
approach which is discussed in subsection 5.2.2. Nevertheless, the result still cannot function
as a good basis for further discussions and analyses of the interesting physical phenomena
because its behavior is rather unpredictable and does not match the real longtime solution
at all. The only benefit is the quantum mechanically treated spin length. This is not the
case in the full classical simulation. However, the FCS is much closer to the DMRG solution,
especially for long times and thus, it should be the route to follow for further analyses.

56



6 Estimates for persisting spin correlations in the
central spin model

The present chapter does not deal with a further enhancement of simulations using the Born
approximation, but a new approach to calculate estimates for persisting correlations in the
central spin model is established.

In a previous work by Uhrig et al. [22], a method to calculate rigorous lower bounds for
persisting correlations has been established. In particular, this method uses information
provided by the constants of motion 𝑋𝑖 of the central spin model, which allows the calculation
of a rigorous lower bound 𝑆low for the persisting part 𝑆∞ ∶= lim𝑡→∞ 𝑆(𝑡) of the central spin
autocorrelation function 𝑆(𝑡) ∶= ⟨𝑆𝑧

0(𝑡)𝑆𝑧
0(0)⟩ in the long-time limit 𝑡 → ∞.

If this limit does not exist, but
|𝑆(𝑡)| < ∞ holds, for example due
to small remaining oscillations, then
the time-independent part of the au-
tocorrelation function is given by the
long-time average

𝑆∞ ∶= lim
𝑡→∞

1
𝑡

∫
𝑡

0
𝑆(𝑡′) d𝑡′ . (6.1)

In general, 𝑆∞ describes the non-
decaying fraction of 𝑆(𝑡) (see Fig-
ure 6.1).
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Figure 6.1: Exemplary autocorrelation function 𝑆(𝑡)
with well-defined long-time limit 𝑆∞.

The Hamiltonian of the central spin model without external magnetic field is given by

𝐻0 =
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖 . (6.2)

Exploiting the integrability of the central spin model does not yield a tight lower bound.
Therefore, Seifert et al. [23] identified relevant combinations of known constants of motion
to obtain an improvement. Yet again, the calculated lower bounds are still not good enough
to describe the full persisting part 𝑆∞ of the autocorrelation function 𝑆(𝑡).

Since only a lower bound can be calculated by this method, information is lost within
this process. The new approach consists of calculating an estimate for the autocorrelation
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6 Estimates for persisting spin correlations in the central spin model

function, based on an approximation of the generalized Gibbs ensemble [52]. The main idea
is to include information which is lost during the process of calculating a rigorous lower
bound by referring to an appropriate equilibrium state.

6.1 Derivation of estimates for persisting correlations

The autocorrelation function of the operator 𝑆𝑧
0(𝑡) can be written as

𝑆(𝑡) = ⟨𝑆𝑧
0(𝑡)𝑆𝑧

0(0)⟩ = ⟨𝑈†(𝑡)𝑆𝑧
0𝑈(𝑡)𝑆𝑧

0⟩ = Tr (𝑈†(𝑡)𝑆𝑧
0𝑈(𝑡)𝑆𝑧

0𝜌0) , (6.3)

with the unitary time evolution operator 𝑈(𝑡).

The hyperfine couplings 𝐽𝑖 in the central spin model are in the range of 𝜇eV[16, 55,
56], corresponding to temperatures of about 10 mK which is small in comparison to the
experimentally relevant temperature [13]. Therefore, the spin system is assumed to be
completely disordered so that 𝜌0 = 1

2𝑁+1 𝟙 is a valid approximation. [22]

In this case, the autocorrelation function ⟨𝑆𝑧
0(𝑡)𝑆𝑧

0(0)⟩ is equivalent to ⟨𝑆𝑧
0(𝑡)𝑃↑(0)⟩, with

the projector on the up-state |↑⟩ of the central spin 𝑃↑(0) = 𝑃↑ = 𝑆𝑧
0 + 1

2𝟙. Now making use
of the invariance of the trace under cyclic permutation yields

⟨𝑆𝑧
0(𝑡)𝑃↑⟩ = 1

2𝑁+1 Tr (𝑆𝑧
0𝑈(𝑡)𝑃↑𝑈†(𝑡)) . (6.4)

Note that 1
2𝑁 𝑈(𝑡)𝑃↑𝑈†(𝑡) =∶ 𝜌(𝑡) fulfills the criteria of a density matrix. Thus, the autocor-

relation function can be rewritten as

⟨𝑆𝑧
0(𝑡)𝑃↑⟩ = 1

2
Tr (𝑆𝑧

0𝜌(𝑡)) = 1
2

⟨𝑆𝑧
0⟩𝜌(𝑡) . (6.5)

It describes the expectation value of the Schrödinger picture operator 𝑆𝑧
0 with respect to

the density matrix 𝜌(𝑡).

Since it is known that persisting correlations of the central spin operator 𝑆𝑧
0 exist, this

density matrix has to be constant on average for infinite times 𝑡 → ∞. This means that
an equilibrium state exists. It is not clear, though, how this equilibrium state is reached
dynamically. The long-time equilibrium state has to be equal to the time average, meaning

𝜌∞ ∶= lim
𝑡→∞

1
𝑡

∫
𝑡

0
𝜌(𝑡′) d𝑡′ . (6.6)

This state is the maximum entropy state which keeps all conserved quantities 𝑋𝑖 of the
system fixed [52]. Note that if a quantum system is integrable, for example the central spin
model [53, 54], the system should not be expected to fully thermalize. This is because the
constants of motion prohibit thermalization to the canonical ensemble. However, the system
can still be expected to equilibrate to the maximum entropy state, given the constants of
motion 𝑋𝑖. This state is the so-called generalized Gibbs ensemble (GGE)

𝜌∞ = 1
𝑍 (�⃗�)

exp (∑
𝑖

𝜆𝑖𝑋𝑖) , (6.7)
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6.1 Derivation of estimates for persisting correlations

with the partition function 𝑍 (�⃗�) = Tr [exp (∑𝑖 𝜆𝑖𝑋𝑖)] and the real Lagrange multipliers
𝜆𝑖. [52]

In general, the index 𝑖 runs through the full set of constants of motions 𝑋𝑖 of the integrable
system. However, not all conserved quantities of the central spin model can be taken into
account for this approach. Therefore, the index 𝑖 runs through a finite number of considered
constants of motion 𝑋𝑖. By taking the most important 𝑋𝑖 into account, the intention is
to approximately describe the complete GGE (6.7). In the following, this ansatz for the
equilibrium state is denoted as ̃𝜌∞ to distinguish from the complete GGE in equation 6.7.
Note that there are non-integrable systems where the GGE fails to describe the equilibrium
state correctly when using all known constants of motion [52, 62, 63]. Therefore, it is not
clear a priori if this approach allows for calculating the full persisting part of the central spin
autocorrelation function when only a finite number of conserved quantities is considered.

When using this ansatz, the main task consists of obtaining the Lagrange multipliers 𝜆𝑖.
The scalar product (𝐴|𝐵) ∶= ⟨𝐴†𝐵⟩ = Tr (𝐴†𝐵𝜌) used by Uhrig et al. [22] and Seifert et al.
[23] can be rewritten according to

𝑥𝑖 ∶= (𝑋𝑖|𝑃↑) = Tr (𝑋𝑖𝑃↑𝜌0) = Tr (𝑈†(𝑡)𝑋𝑖𝑈(𝑡)𝑃↑𝜌0) (6.8a)

= Tr (𝑋𝑖𝑈(𝑡)𝑃↑𝜌0𝑈†(𝑡)) = 1
2

Tr (𝑋𝑖 ̃𝜌(𝑡)) = 1
2

Tr (𝑋𝑖 ̃𝜌∞) . (6.8b)

Here, the trick is to use the relation 𝑈†(𝑡)𝑋𝑖𝑈(𝑡) = 𝑋𝑖(𝑡) = 𝑋𝑖, which holds for any constant
of motion because they are obviously constant in time. The unitary time evolution operator
is applied to 𝑃↑𝜌0 by making use of the invariance of the trace under cyclic permutation.
Moreover, the scalar product 𝑥𝑖 = (𝑋𝑖|𝑃↑) is constant for all times 𝑡 in this completely
disordered system with 𝜌0 = 1

2𝑁+1 𝟙.

Now calculating the derivative

∂
∂𝜆𝑖

ln 𝑍 (�⃗�) = 1
𝑍 (�⃗�)

Tr [𝑋𝑖 exp (∑
𝑖

𝜆𝑖𝑋𝑖)] = Tr [𝑋𝑖 ̃𝜌∞] = 2𝑥𝑖 (6.9)

leads to the system of equations

1
𝑍 (�⃗�)

Tr [𝑋𝑖 exp (∑
𝑖

𝜆𝑖𝑋𝑖)] − 2 (𝑋𝑖|𝑃↑) = 0 ∀ 𝑖 . (6.10)

This system of equations fixes the Lagrange multipliers 𝜆𝑖 which are required to calculate
̃𝜌∞. The scalar products 𝑥𝑖 = (𝑋𝑖|𝑃↑) can be calculated analytically as shown in Reference

[23]. Then, the system is solved numerically by using the fzero-solver provided by GNU
Octave [64].

The estimate for the persisting part of the autocorrelation function is given by

𝑆est = 1
2

Tr (𝑆𝑧
0 ̃𝜌∞) . (6.11)

Yet, this system of equations requires heavy numerical effort for large bath sizes 𝑁 due to
the exponentially growing Hilbert space, similar to exact diagonalization of the Hamiltonian
𝐻0.
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6 Estimates for persisting spin correlations in the central spin model

6.2 Choice of constants of motion

By taking more conserved quantities 𝑋𝑖 into account, the complete GGE (6.7) is approxi-
mated better, leading to a more precise description of the equilibrium state. Therefore, the
choice and number of constants of motions should increase the value of the estimate 𝑆est,
similar to calculating the rigorous lower bounds. Calculating the lower bounds does not
benefit from using constants of motions that have a vanishing overlap (𝑋𝑖|𝑆𝑧

0). Nevertheless,
they may have an overlap with 𝑃↑, meaning (𝑋𝑖|𝑃↑) ≠ 0. This is due to the fact that
𝑃↑ = 𝑆𝑧

0 + 1
2𝟙 and hence, in case of a vanishing overlap with 𝑆𝑧

0 , an overlap with the unity
operator 𝟙 may exist.

Seifert et al. [23] identified the three constants of motion 𝐼𝑧𝐻0, 𝐼𝑧𝐻3
0 and 𝐼𝑧𝐼2𝐻0 as the

most relevant conserved quantities to calculate the lower bound in the thermodynamical
limit 𝑁 → ∞. In this limit, constants of motion with an odd number of summed spin
operators, for example 𝐼𝑧, yield a vanishing contribution to the lower bound. Here, the
notation 𝐼𝑧 ∶= ∑𝑁

𝑖=0 𝑆𝑧
𝑖 and 𝐼2 ∶= ⃗𝐼2 = (∑𝑁

𝑖=0
⃗𝑆𝑖)

2
is introduced.

An advantage of the new approach can be noticed when looking at the series expansion of
the density matrix

̃𝜌∞ = 1
𝑍 (�⃗�)

exp (∑
𝑖

𝜆𝑖𝑋𝑖) = 1
𝑍 (�⃗�)

∞
∑
𝑘=0

1
𝑘!

(∑
𝑖

𝜆𝑖𝑋𝑖)
𝑘

. (6.12)

Now imagine the case 𝑋1 = 𝐻0 and 𝑋2 = 𝐼𝑧. Even though 𝐼𝑧𝐻0 is not used, this conserved
quantity appears in second order of the series expansion (6.12) This means that a constant
of motion which is not explicitly used might appear in the series expansion and thus, leads
to additional information and therefore a better estimate 𝑆est. This leads to the idea of
using the main ingredients to build most combinations of constants of motions, i. e. 𝐻0, 𝐼𝑧,
𝐼𝑧𝐻0, 𝐻2

0 , (𝐼𝑧)2 and 𝐼2. In addition, 𝐼𝑧𝐻3
0 and 𝐼𝑧𝐼2𝐻0 are used because they lead to an

noticeable improvement of the rigorous lower bound.

For constants of motions 𝑋𝑖 ∝ 𝐼𝑧, the relation

(𝑋𝑖|𝑆𝑧
0) = 1

2
(𝑋𝑖|𝑃↑ − 𝑃↓) = 1

2
(𝑋𝑖|𝑃↑) + 1

2
(𝑋𝑖|𝑃↑) = (𝑃↑|𝑋𝑖) (6.13)

holds. Hence, the required scalar products (𝑋𝑖|𝑆𝑧
0) that were already calculated in the

previous works by Uhrig et al. [22] and Seifert et al. [23] can be used. Note that the notation
𝛴𝑚 ∶= ∑𝑁

𝑖=1 𝐽𝑚
𝑖 is used for the moments of the couplings 𝐽𝑖 which appear in the following

terms.

(𝐼𝑧𝐻0|𝑃↑) = 𝛴1
16

(6.14a)

(𝐼𝑧𝐻3
0 |𝑃↑) = 1

256
(5𝛴1𝛴2 − 4𝛴3) (6.14b)

(𝐼𝑧𝐼2𝐻0|𝑃↑) = 1
64

((5𝑁 + 3) 𝛴1) (6.14c)
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6.3 Results and comparison to exact diagonalization and rigorous lower bounds

The remaining scalar products are calculated by exploiting 𝜌0 = 1
2𝑁+1 𝟙.

(𝐻0|𝑃↑) = Tr (𝐻0𝑃↑𝜌0) = 1
2𝑁+1 Tr (𝐻0 (𝑆𝑧

0 + 1
2

𝟙)) = 0 (6.15a)

(𝐼𝑧|𝑃↑) = 1
2𝑁+1 Tr (𝐼𝑧𝑃↑) = 1

2𝑁+1 Tr (𝐼𝑧 (𝑆𝑧
0 + 1

2
𝟙)) = 1

4
(6.15b)

(𝐻2
0 |𝑃↑) = 1

2𝑁+1 Tr ⎛⎜
⎝

(
𝑁

∑
𝑖=1

𝐽𝑖
⃗𝑆0 ⋅ ⃗𝑆𝑖)

2

(𝑆𝑧
0 + 1

2
𝟙)⎞⎟

⎠
(6.15c)

= 1
2𝑁+1 Tr (1

2

𝑁
∑

𝑖,𝑗=1
∑

𝛼,𝛽=𝑥,𝑦,𝑧
𝐽𝑖𝐽𝑗𝑆𝛼

0 𝑆𝛽
0 𝑆𝛼

𝑖 𝑆𝛽
𝑗 ) = 3

32
𝛴2 (6.15d)

((𝐼𝑧)2 |𝑃↑) = 1
2𝑁+1 Tr (

𝑁
∑

𝑖,𝑗=0
𝑆𝑧

𝑖 𝑆𝑧
𝑗 (𝑆𝑧

0 + 1
2

𝟙)) = 1
8

(𝑁 + 1) (6.15e)

(𝐼2|𝑃↑) = 3 ((𝐼𝑧)2 |𝑃↑) = 3
8

(𝑁 + 1) (6.15f)

6.3 Results and comparison to exact diagonalization and rigorous
lower bounds

For small bath sizes 𝑁, it is feasible to calculate the exact persisting part 𝑆∞ autocorrelation
function ⟨𝑆𝑧

0(𝑡)𝑆𝑧
0(0)⟩. In the case of an completely disordered system, the density operator

𝜌 = 1
2𝑁+1 𝟙 commutes with the CSM Hamiltonian 𝐻0, meaning [𝜌, 𝐻0] = 0, and hence

they have a complete common eigenbasis |𝑗⟩. Their spectra are {𝜌𝑗 = 1
2𝑁+1 } and {𝐸𝑗},

respectively. Then, using the Lehmann representation, the autocorrelation function takes
the form

𝑆(𝑡) = ⟨𝑆𝑧
0(𝑡)𝑆𝑧

0(0)⟩ = Tr (𝑆𝑧
0(𝑡)𝑆𝑧

0𝜌) (6.16a)

=
𝑁+1
∑

𝑗,𝑚=1
𝜌𝑗|⟨𝑗|𝑆𝑧

0 |𝑚⟩|2 exp [𝑖 (𝐸𝑗 − 𝐸𝑚) 𝑡] (6.16b)

= 1
2𝑁+1

𝑁+1
∑

𝑗,𝑚=1
|⟨𝑗|𝑆𝑧

0 |𝑚⟩|2 exp [𝑖 (𝐸𝑗 − 𝐸𝑚) 𝑡] . (6.16c)

In case the limit 𝑆∞ = lim𝑡→∞ 𝑆(𝑡) exists (compare Figure 6.1), it is given by

𝑆∞ = 1
2𝑁+1

𝑁+1
∑

𝑗,𝑚=1
|⟨𝑗|𝑆𝑧

0 |𝑚⟩|2𝛿𝐸𝑗,𝐸𝑚
≥ 0 . (6.17)

This exact calculation of the persisting part 𝑆∞ requires the exact diagonalization of the
Hamiltonian 𝐻0 in order to obtain its spectrum {𝐸𝑗} and eigenstates |𝑗⟩. However, this
also requires exponentially growing computation times and memory space and hence limits
the bath size to around ten spins. Then, testing for the degeneracy of the spectrum {𝐸𝑗}
is required to calculate the exact persisting part 𝑆∞ by resorting to equation (6.17). The
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6 Estimates for persisting spin correlations in the central spin model

exact values 𝑆∞ function as a reference for the estimates 𝑆est. Note that due to small
numerical inaccuracies occurring during the exact diagonalization of the Hamiltonian 𝐻0,
a small tolerance of 10−11 has to be taken into account for the eigenvalues when testing
their degeneracy. It has to be ensured that this tolerance is not too large because otherwise,
a false degeneracy might be detected. This would lead to too large results for the exact
persisting part 𝑆∞. [22]

The rigorous lower bound 𝑆low,3 is calculated by using the constants of motion 𝐼𝑧𝐻0, 𝐼𝑧𝐻3
0

and 𝐼𝑧𝐼2𝐻0. The data is taken from Reference [23]. The estimate 𝑆est,3 is calculated by
using the same three constants of motions as for 𝑆low,3. Resorting to all eight constants of
motions listed in section 6.2 yields the estimate 𝑆est,8. While the rigorous lower bounds are
basically available for large bath sizes of 𝒪(1000) spins, the new approach can be evaluated
only for bath sizes of about nine spins.

The couplings are chosen to be exponentially distributed, meaning

𝐽𝑖 = 𝒩 exp [−𝑖 𝑥
𝑁

] , 𝑖 ∈ {1, … , 𝑁} . (6.18)

This distribution is normalized by choosing 𝒩 such that 𝐽2
𝑄 = 𝛴2 = 1 holds numerically.

The parameter 𝑥 is chosen as 𝑥 = 1 and 𝑥 = 4 so that the influence of weakly coupling
bath spins can be studied as well. The calculations are performed numerically using GNU
Octave.

Seifert et al. [23] calculated the values 𝑆BB and 𝑆BA for the persisting part of the auto-
correlation function in the thermodynamical limit 𝑁 → ∞ by using extrapolations. The
values 𝑆BB(𝑁) are obtained by using an estimate based on the autocorrelation function of
the Overhauser field operator �⃗� ∶= ∑𝑁

𝑖=1 𝐽𝑖
⃗𝑆𝑖. This approach is justified by the separation

of timescales for large bath sizes. Note that here, the notation for the Overhauser field
operator is taken from Reference [23], meaning �⃗� does not represent an external magnetic
field as in the previous chapters. The values 𝑆BA(𝑁) are obtained by evaluating the available
Bethe ansatz equations using Monte Carlo sampling [32, 33] and calculating the long-time
average for different bath sizes 𝑁. Then, these values for finite bath sizes are used for
an extrapolation [23] to infinite baths 𝑁 → ∞ which leads to the here shown values 𝑆BB
and 𝑆BA. Studying the thermodynamical limit 𝑁 → ∞ is reasonable because the physical
relevant bath sizes correspond to 104 −106 bath spins. In this thesis, the interval [𝑆BA, 𝑆BB]
shall indicate the range in which the exact persisting part of the autocorrelation function
is expected for an infinite bath size. It is used to get an idea for the exact solution in the
thermodynamical limit 𝑁 → ∞ which cannot be calculated exactly anymore.

The estimates 𝑆est,3/8, the rigorous lower bounds 𝑆low,3, and the exact persisting part 𝑆∞
are plotted in Figure 6.2 for up to 𝑁 = 9 bath spins. Overall, the persisting part 𝑆∞ of the
autocorrelation function decreases for larger baths which is due to the increasing amount
of weakly coupled bath spins that are responsible for the long-time behavior of the central
spin dynamic. The lower bound 𝑆low,3 is not sufficiently large to describe the full persisting
part 𝑆∞ of the autocorrelation function. Looking at the estimate 𝑆est,3, the new approach
results in an improvement when using the same constants of motions as for 𝑆low,3. This
improvement decreases for larger 𝑁, though. Resorting to all eight constants of motions
to calculate 𝑆est,8 results in an additional improvement. This is an expected observation
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Figure 6.2: Comparison between the rigorous lower bounds 𝑆low,3 and the estimates
𝑆est,3 and 𝑆est,8. In addition, the exact persisting part 𝑆∞ of the autocorrelation function
is shown. The gray area indicates the interval [𝑆BA, 𝑆BB] in which the exact persisting
part 𝑆∞ is expected in the thermodynamical limit 𝑁 → ∞.
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6 Estimates for persisting spin correlations in the central spin model

because by resorting to more constants of motions, the complete GGE (6.7) is approximated
better. While the estimates 𝑆est,8 get significantly closer to the exact result 𝑆∞, they are
yet again not sufficiently large to describe the full persisting part 𝑆∞.

Not all constants of motion 𝑋𝑖 by themselves yield a significant improvement of the estimate.
This is mainly the case for 𝐻0 which does not have an overlap with neither 𝑃↑ nor 𝑆𝑧

0 . In
contrast, 𝐼𝑧 yields a large improvement for these small bath sizes. Nevertheless, it is unclear
what happens exactly in the thermodynamical limit 𝑁 → ∞.

The improvements also depend on the parameter 𝑥 and seem to become better for larger
𝑥. This parameter appears in the exponential coupling distribution (6.18) and fixes the
amount of bath spins with a small hyperfine coupling 𝐽𝑖. For a larger 𝑥, the dephasing
of the central spin becomes more dominant, leading to a smaller persisting part of the
autocorrelation function. This is because the amount of weakly coupled bath spins is mainly
responsible for the long-time behavior of the central spin [18, 20, 23]. The degeneracy of the
eigenvalues {𝐸𝑗}, required for the exact calculation of 𝑆∞ using (6.17), depends noticeably
on the parameter 𝑥. Since the degeneracy decreases for larger 𝑥, the value of 𝑆∞ decreases as
well, meaning the persisting fraction of the autocorrelation function depends on the amount
of weakly coupled bath spins. Note that the observed behavior is indeed in agreement with
the calculations for the exact persisting part 𝑆∞, the estimates 𝑆est, and the rigorous lower
bounds 𝑆low shown in Figure 6.2.

Bath sizes of up to nine spins as shown in figure 6.2 do not describe the physical systems of
interest. Extrapolating to larger bath sizes as done in reference [23] requires data for at least
bath sizes of 𝒪(100) spins for reliable results. Hence, it can only presumed what happens
for larger 𝑁. Unfortunately, since the estimates are already quite close to or even within
the interval [𝑆BA, 𝑆BB], it has to be expected that an extrapolation would still lead to too
small values for infinite bath sizes 𝑁 → ∞. This must be the case because not all relevant
constants of motions 𝑋𝑖 are taken into account, meaning not the complete GGE (6.7) but
the approximation ̃𝜌∞ is used to describe the equilibrium state. The improvements gained
through higher order combinations of conserved quantities in the series expansion (6.12)
seem to be too small to make up for not including all possible combinations of conserved
quantities directly in first order. This is in agreement with the observed improvements
gained by considering more constants of motion directly, meaning 𝑆est,8 > 𝑆est,3.

To study the present approach in the thermodynamical limit of an infinite bath size 𝑁 → ∞,
a route based on calculating the leading orders of the individual contributions using Gaussian
integrals to evaluate traces analytically can be considered, similar to the calculations by
Seifert et al. [23] to obtain the leading orders for the rigorous lower bounds. It is a valid
method to obtain the leading order contributions because the central spin model is expected
to behave classically in the thermodynamical limit 𝑁 → ∞.
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7 Conclusion

In this thesis, spin dynamics in the central spin model were studied by employing the Born
approximation to derive the first quantum mechanical corrections to the classical equations
of motion. In an experimental context, the central spin model describes the decoherence of
a single electron spin (qubit) which is confined in a quantum dot. The decoherence occurs
mainly due to the hyperfine interaction between the electron and the surrounding nuclear
spins. Theoretical analyses on this field are relevant for spin noise measurements.

The intention of this thesis consisted of improving the classical simulation by taking first
quantum mechanical corrections into account. By splitting the Hamiltonian of the central
spin model into two parts, the classical equations of motion are still contained within
the derived DEQ system. Then, the second order correction is obtained by treating the
interacting part of the split Hamiltonian within Born approximation. This leads to a DEQ
system which scales linearly with the amount of bath spins, rendering a treatment of large
bath sizes feasible.

The numerical analysis of the derived DEQ system shows an improvement over the classical
equations of motion on a small timescale. Various errors show the correct power law so
that the DEQ system has to be considered as correct. Because of this, it also seems like
the weak-coupling approximation is valid, at least on this small timescale. By comparing
the results to exact and DMRG data, it can be concluded that the approach is not capable
of describing the long-time behavior of the central spin dynamic, though. Mainly, the
dephasing for longer times is missing. Because the Markov-approximation is not justified for
the central spin model, treating it within Born approximation only yields an improvement
for short times. This timescale could be extended by gradually including higher order
corrections. However, this is not an easy task which will most likely lead to only a small
improvement. The required computation times to solve the related DEQ systems would also
grow accordingly due to the additional complexity. Another improvement is gained when
applying an external magnetic field to the central spin because this interaction is included
exactly within this approach. This leads to an overall smaller error. Yet, dephasing is still
missing or too slow within the solution.

The missing feature of dephasing can be partly included by taking a route based on calculating
averages of Gaussian bath ensembles, just as used for classical simulations. However, trying
to improve the classical simulations by including the Born corrections leads to the challenge
of finding a valid sampling method for the Gaussian distributed Overhauser field. Because
the spin length has to be treated in a quantum mechanical manner, it is not possible to use
the full classical simulation (FCS) as a basis for a simulation including the Born corrections.
The approach using quantum mechanical sampling (QMS) leads to problems with the scaling
of the second order correction for larger bath sizes because the sampled bath spin length
depends on the bath size. Hence, since the Born corrections already yield a too large
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7 Conclusion

contribution for small baths, no improvement is gained when dealing with a much larger
bath. Alternative sampling approaches yield a wrong variance, but they also indicate that
the scaling of the sampled bath spin length is not the only problem of the present approach.
The Born corrections seem to be simply too large for all times, almost independently of the
considered bath size.

In a final approach to make use of the derived Born corrections, a semiclassical approach
is studied. Here, the central spin only precesses around the Overhauser field, meaning its
problematic second order correction is simply neglected. They are still taken into account
for the individual bath spins. Yet, this semiclassical simulation leads to an unpredictable
behavior for the central spin dynamics after the first characteristic minimum, which is
very hard to analyze any further. This must be the case because the Born approximation
leads to a second order correction of classical equations of motion. This correction yields
an improvement over the simple classical precession, but only on a small timescale. For
longer times, this approach is not controllable anymore so that an unpredictable behavior
might occur. Thus, the approach of improving the classical simulation by the first quantum
mechanical corrections concludes unsuccessfully.

Further studies could analyze the impact of the inclusion of a strong external magnetic field
on the developed approaches. Since the inclusion already yields an improvement for a single
simulation as discussed in chapter 4, it should also yield an improvement when averaging
over an ensemble of individual calculations. Yet, other approaches already focus directly on
including a strong magnetic field, allowing them to deal with this particular case quite well.
Remember that the main intention of this thesis was describing the vanishing or low field
limit which is important for spin noise measurements which has failed. As mentioned before,
the discussed approaches did not yield the anticipated results.

For further studies on this field, the full classical simulation should be considered. In a
recent master thesis by Hüdepohl [20], it has been shown that the full classical simulation is
a very efficient approach to study the behavior of the central spin for long times and in the
thermodynamical limit of an infinite bath size. Later, other semiclassical approaches could
be studied, for example to deal with the spin length in a quantum mechanical manner.

In the last chapter, a new approach is presented which allows for calculating estimates for
persisting correlations in the central spin model. The intention is to obtain an improvement
of the rigorous lower bounds which were recently calculated by Seifert et al. [23]. The
approach is based on the generalized Gibbs ensemble, using a limited amount of constants
of motions to approximately describe the density operator which describes the equilibrium
state for infinite times. While this approach leads to an improvement over rigorous lower
bounds for very small bath sizes, it is still not close enough to the exact solution. It can
only be presumed what happens for a much larger bath, but it seems like this would still be
the observation in the thermodynamical limit.

It may be possible to further improve the estimates by taking other conserved quantities into
account. This should lead to an improvement due to approximating the complete generalized
Gibbs ensemble better. However, those constants of motion that have been identified to
be the most relevant ones for the rigorous lower bounds by Seifert et al. [23] are already
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considered in the present thesis. Therefore, improving the new estimates significantly by
only a small number of additional conserved quantities seems to be a hard task.

Until now, it is unclear if the improvements for small bath sizes also translate to an
improvement in the thermodynamical limit. Hence, another route for further studies could
consist of looking at the leading orders of the individual contributions, obtained by using
Gaussian integrals to evaluate traces analytically, similar to calculations in Reference [23].
Through this, it should be possible to obtain results for infinite bath sizes which is the
physical limit of interest.
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A Spin and vector algebra

Note that throughout this thesis, natural units (ℏ = 1) are used.

Pauli matrices:

𝜎𝑥 = (0 1
1 0) , 𝜎𝑦 = (0 −𝑖

𝑖 0 ) , 𝜎𝑧 = (1 0
0 −1) (A.1)

𝜎𝛼𝜎𝛽 = 𝛿𝛼𝛽𝟙 + 𝑖 ∑
𝛾

𝜎𝛾𝜖𝛼𝛽𝛾 (A.2)

[𝜎𝛼, 𝜎𝛽] = 2𝑖 ∑
𝛾

𝜎𝛾𝜖𝛼𝛽𝛾 (A.3)

{𝜎𝛼, 𝜎𝛽} = 2𝛿𝛼𝛽𝟙 (A.4)
Tr {𝜎𝛼} = 0 (A.5)

Spin operators:

𝑠𝛼 = 𝜎𝛼/2 (A.6)
𝑆𝛼

𝑖 = 𝟙 ⊗ ⋯ ⊗ 𝜎𝛼/2⏟
𝑖th place

⊗ ⋯ ⊗ 𝟙 (A.7)

𝑆𝛼
𝑖 𝑆𝛽

𝑖 =
𝛿𝛼𝛽
4

𝟙 + 𝑖
2

∑
𝛾

𝑆𝛾
𝑖 𝜖𝛼𝛽𝛾 (A.8)

[𝑆𝛼
𝑖 , 𝑆𝛽

𝑖 ] = 𝑖 ∑
𝛾

𝑆𝛾
𝑖 𝜖𝛼𝛽𝛾 (A.9)

[𝑆𝛼
𝑖 𝑆𝛽

𝑗 , 𝑆𝛾
𝑗 𝑆𝛿

𝑖 ] = 𝑖
4

∑
𝜅

(𝑆𝜅
𝑗 𝜖𝛽𝛾𝜅𝛿𝛼𝛿 + 𝑆𝜅

𝑖 𝜖𝛼𝛿𝜅𝛿𝛾𝛽) (A.10)

{𝑆𝛼
𝑖 , 𝑆𝛽

𝑖 } =
𝛿𝛼𝛽
2

𝟙 (A.11)

Rotation matrix 𝐷 (det 𝐷 = +1):

𝐷𝑇𝐷 = 𝟙 (A.12)

𝐷 ( ⃗𝑎 × ⃗𝑏) = det 𝐷 [(𝐷 ⃗𝑎) × (𝐷 ⃗𝑏)] = (𝐷 ⃗𝑎) × (𝐷 ⃗𝑏) (A.13)

Scalar product:

⃗𝑎 ⋅ ⃗𝑏 = ⃗𝑏 ⋅ ⃗𝑎 = ⃗𝑎𝑇 ⃗𝑏 = ∑
𝛼

𝑎𝛼𝑏𝛼 (A.14)
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Cross product:

⃗𝑎 × ⃗𝑏 = ∑
𝛼𝛽𝛾

⃗𝑒𝛼𝑎𝛽𝑏𝛾𝜖𝛼𝛽𝛾 (A.15)

⃗𝑣0 × ⃗𝑣𝑖 = 𝑉0 ⃗𝑣𝑖 (A.16)
𝑉 𝑇

0 = −𝑉0 (skew-symmetric) (A.17)

Matrix-vector product:

𝑀 ⃗𝑎 = ∑
𝛼𝛽

𝑀𝛼𝛽𝑎𝛽 ⃗𝑒𝛼 (A.18)

Matrix multiplication:

(𝐴𝐵)𝛼𝛽 = ∑
𝛾

𝐴𝛼𝛾𝐵𝛾𝛽 (A.19)

Scalar triple product:

⃗𝑎 ⋅ ( ⃗𝑏 × ⃗𝑐) = ⃗𝑐 ⋅ ( ⃗𝑎 × ⃗𝑏) = ⃗𝑏 ⋅ ( ⃗𝑐 × ⃗𝑎) (A.20)

( ⃗𝑎 × ⃗𝑏) ⋅ ⃗𝑐 = ∑
𝛼𝛽𝛾

𝑎𝛼𝑏𝛽𝑐𝛾𝜖𝛼𝛽𝛾 (A.21)

Product of two scalar-products:

( ⃗𝑎 ⋅ ⃗𝑆𝑖) ( ⃗𝑏 ⋅ ⃗𝑆0) = [( ⃗𝑏 ⃗𝑎𝑇) ⃗𝑆𝑖] ⋅ ⃗𝑆0 (A.22)
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