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1 Abstract

In this thesis we investigate the transverse field Ising model (TFIM) by continuous uni-

tary transformations (CUT). First we will introduce a spin string algebra as operator

basis and show that we are able to reach very high orders with directly evaluated en-

hanced perturbative CUTs (deepCUT). A general expression for the flow equation up to

infinite order will be derived. Next static properties will be investigated including the

ground state energy per site, the energy dispersion, and the transverse magnetization.

Then we consider dynamical properties, namely the spin dynamical structure factor

(DSF). We will use the effective models and observables derived by the CUT method in

combination with the Lanczos algorithm and a continued fraction representation of the

Green function to calculate one-, two- and three-particle contributions to the DSF. To

our knowledge the three particle contributions in the TFIM have not been computed in

the literature before.
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2 Introduction

Since the discovery of high-temperature superconductivity (HTS) in 1986 [1] in doped

cuprates, research on low dimensional spin system has become one of the most impor-

tant fields of many body physics [2, 3]. In contrast to conventional superconductors,

high-temperature superconductors have transition temperatures above 30 K up to 138

K or even higher under pressure [4].

Many applications have been developed for superconductors including superconducting

coils in magnetic resonance imaging or very sensitive magnetometers called SQUIDs

(superconducting quantum interference device) [5]. This shows that the interest in su-

perconductors is not only motivated by scientific curiosity but also by technological

relevance.

While conventional superconductors are well explained by the BCS-theory [6], proposed

by John Bardeen, Leon Cooper and John Schrieffer in 1957, high-temperature super-

conductors can not be described by phononic interactions leading to the formation of

cooper pairs. The effect leading to superconductivity in these materials is still being

investigated and is one of the major open questions in condensed matter physics [2].

Most of these unconventional superconductors display a magnetically ordered phase

without doping [7, 8], which means that the magnetic interactions dominate the elec-

tronic and thermodynamic properties. Doping these materials with charge carriers leads

to the superconducting phase, which suggests that the magnetic interactions play an

important role in the dynamics of additional electrons and holes, respectively. A typical

phase diagram for a high-Tc superconductor is depicted in Fig. 2.1.

It has been suggested that the magnetic interactions between the electrons could lead to

a similar Cooper pairing effect like in conventional superconductors [9]. Hence a funda-

mental understanding of antiferromagnetic (and ferromagnetic) effects is important in

order to describe the underlying physics.
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Figure 2.1: Phase diagram for a generic high-temperature superconductor of the cuprate family.
T denotes the temperature and δ the degree of doping.

2.1 Low dimensional spin systems

Since cuprate high-temperature superconductors consist of layers of copper oxid sepa-

rated by layers of other atoms, the physics of the magnetic excitations is mainly two-

dimensional. This justifies low dimensional microscopic models which describe the dy-

namics of these materials. Additional effects such as intra-layer couplings, impurities

or anisotropies are often considered of minor importance and are left out in theoretical

calculations.

A famous model to describe low dimensional spin systems is the generalized Heisenberg

model [10],

H = −
∑

i,j

∑

α,β

Jαβij S
α
i S

β
j +

∑

i

~B · ~Si (2.1.1)

where i, j are the lattice sites and α, β ∈ {x, y, z} denote the spin vector components.

The spin-spin interaction is given by Jαβij and can also contain non-diagonal elements,

i.e. α 6= β, while ~B denotes an external magnetic field in suitable units, which couples

to all spins on the lattice.

For a low spin, i.e. S = 1/2, on a low dimensional lattice, quantum effects play a major

role and can result in complex correlations. Hence methods neglecting these features,

such as mean-field calculations, can miss a large amount of the physics in the system.

For a general lattice, coupling and external field, the Heisenberg model is usually hard

to solve. For certain cases however, analytical results are available and provide a solid

test ground with a variety of features to establish new methods and ideas. One of these

cases is the transverse field Ising model (TFIM) [11], which can be obtained from the
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generalized Heisenberg model by choosing

Jαβij = Jδi+1,jδαβδα,x, (2.1.2a)

~B = Γ~ez, (2.1.2b)

on a one-dimensonal lattice. This leads to the Hamiltonian

HTFIM = Γ
∑

i

Szi − J
∑

i

Sxi S
x
i+1. (2.1.3)

The TFIM has been studied intensively in many aspects of condensed matter physics [12].

There are also experimental setups and materials which partly realize the physics of the

TFIM [13,14].

2.2 Quantum critical point

The TFIM shows a quantum critical point (QCP). A QCP is a phase transition from

an ordered state into a disordered state purely driven by physical parameters at zero

temperature T = 0. In contrast to conventional phase transitions, where the occurence

of thermal fluctuations lead to a fundamental change in the physics of the system, a

quantum phase transition is initiated by quantum fluctuations. This makes them an

interesting subject of modern condensed matter research.

In general a QCP can continue into the finite temperature range, connecting to a ther-

mal phase transition. This is, however, not the case for the TFIM, as we will see in the

following chapter.

As mentioned before the two phases separated by the QCP usually differ in an order pa-

rameter, which is non-zero in the ordered phase, while it is zero in the disordered phase.

This is connected to the occurrence of off-diagonal long range order (ODLRO) [15], which

implies that correlations are maintained even over a macroscopic number of lattice sites

(known as the divergence of the correlation length).

The system lacks an internal length scale at the critical point, because the correlation

length diverges. Here the energy gap for the elementary excitations closes and therefore

they can be created with infinitesimal energy cost. For this case Sachdev developed

a field theoretical approach to describe the dynamics and correlations even at finite

temperature [16], similar to the Landau-Ginzburg-Wilson approach to classical phase

transitions [17].

The description of dynamical correlation functions in these critical systems is an im-

portant task to explain experimental results, such as inelastic neutron scattering rates.

In particularly the so called dynamical structure factor is specific to the system under

investigation and therefore of significant importance in theoretical physics [18].

However, despite the fact that the TFIM is integrable, the calculation of dynamical

correlations remains a difficult task. Especially the calculation of longitudinal structure
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factors has been impossible for a long time. These are structure factors perpendicular to

the transverse field. In 2006, over 40 years after the introduction of the TFIM, Hamer et

al. used series expansion techniques to propose an exact expression for the one particle

contributions of the longitudinal dynamical structure factor at zero temperature [19].

One aim of this thesis is to verify the results of Hamer et al by using the technique of

continuous unitary transformations, which will be described in the following.

2.3 Continuous unitary transformations

Unitary transformations are an important tool to obtain physical information on a sys-

tem, because they do not change the eigenvalues of the Hamiltonian. Therefore many

properties, such as ground state energy or dispersion, can be obtained by applying an

appropiate unitary transformation. Examples include the famous Bogoliubov transfor-

mation in the BCS-theory or the Fröhlich transformation [20] in electron phonon systems.

Often unitary transformations are applied one after another to diagonalize the Hamil-

tonian or to map the system onto an effective Hamiltonian with a smaller number of

degrees of freedom. This is also the basic idea of continuous unitary transformations

(CUT). Instead of applying a series of discrete transformations (or a single transforma-

tion) the transformation is performed in a continuous way. This transformation maps

the Hamiltonian onto an effective Hamiltonian, which still describes all the physics but

in an basis that is more suitable for evaluation.

The idea of CUT was first introduced by Wegner [21] and independently by G lazek and

Wilson [22, 23]. Since then many different CUT variations have been developed and

applied to manifold physical systems. Examples include the dimerized and frustrated

S = 1/2 chain [24], spin ladder systems [25, 26], the systematic mapping of the Hub-

bard model to the t-J model [27], the Kitaev honeycomb model [28] and the toric code

model in a parallel magnetic field [29]. Recently another CUT approach [30] has been

developed based on contributions from finite graphs (gCUT) and was also tested on the

TFIM.

In this thesis we will use the CUT method to derive effective models and observables

from the TFIM to calculate ground state properties as well as dynamical properties at

zero temperature.
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3 The transverse field Ising model

The transverse field Ising model (TFIM) was first introduced by de Gennes in 1963 [11] as

a pseudo spin model to describe the tunneling of protons in ferroelectric crystalls. Since

then the model has become a famous example for studying low dimensional strongly in-

teracting systems. It was applyied to multiple condensed matter systems. An overview

is given in Ref. [12].

The TFIM describes a chain of spins with S = 1/2, interacting through a ferromagnetic

exchange J along the x axis. A magnetic field is applied perpendicularly to the ferro-

magnatic interaction along the z axis.

Note that the ferromagnetic exchange can be replaced by an antiferromagnetic exchange

J → −J without significant influence. This coincides with a π rotation around Szi for

every second site i. The main difference is the location of the energy gap, which is

qcrit = 0 for the ferromagnetic case and qcrit = π for the antiferromagnetic case. In the

following chapter we will consider the ferromagnetic case, while our results are computed

for the antiferromagnetic case.

In the following we will consider a chain of infinite size, therefore we do not consider

boundary effects nor boundary conditions. This implies the Hamiltonian

HTFIM = Γ
∑

i

Szi − J
∑

i

Sxi S
x
i+1, (3.0.1a)

Γ > 0, (3.0.1b)

where the sum i runs over all lattice sites. Note that we normalized the distance between

two sites to one. In the following we will also use the Pauli matrices which are just

multiples of the S operators,

σα = 2Sα α ∈ {x, y, z} . (3.0.2)

Note that we have chosen ~ = 1 in all following chapters.

The model was solved exactly by Pfeuty in 1970 [31] based on the works of Lieb et al. [32]

and Niemeijer [33]. We will examine this exact solution in section 3.2. First we want

to establish a fundamental understanding of the TFIM by introducing a quasi-particle

picture and we will study two simple limits of the physical parameters. Later in this

chapter we will investigate the zero temperature characteristics. A detailed discussion

of the quantum critical point will follow.
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Note that the TFIM shows a discrete Z2 symmetry

Sx → −Sx (3.0.3a)

H → H (3.0.3b)

on the level of the Hamiltonian. We will see later that this symmetry will spontaneously

be broken in the ordered phase.

3.1 Qualitative understanding using quasi-particle

picture

To obtain a fundamental understanding of the physics of the TFIM, we will consider

two simple limits, namely the strong field limit and the zero field limit. The first one

will also be our starting point for a perturbative description by means of CUT.

In the strong field limit, the external field is of much greater magnitude than the internal

ferromagnetic interaction

Γ� J. (3.1.4)

We can therefore set J = 0. Then the Hamiltonian is blockdiagonal in every spin

subspace and the local Hilbert spaces for every site i decouple. The system describes

free spins with a magnetic field along the z axis, therefore the ground state becomes the

fully polarized state

|g〉 = |· · · ↓j−1↓j↓j+1 · · · 〉 . (3.1.5)

This is depicted in Fig. 3.1.

Figure 3.1: In the limit J = 0 the fully polarized state becomes the ground state of the TFIM.

Note that in this limit the Z2 symmetry is also provided by the ground state, because

Mx = 〈g|σx |g〉 = 0
Z2−→ −Mx = 0 = Mx (3.1.6)

holds.

In this limit an elementary excitation is given by a single spin flip in the system, as

depicted in Fig. 3.2.
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Figure 3.2: Elementary excitation of the TFIM in the strong field limit.

Under the influence of a finite but small J the excitations hop from site to site and show

an energy dispersion, which depends on the total momentum q.

Note that on a single site only one excitation can exist, which is similar to the Pauli

principle in fermionic systems. On the other hand the wave function of a multi-particle

state is symmetric under particle exchange, which is a bosonic property. Therefore the

elementary excitations are called hard-core bosons.

The complementary limit is the zero field or strong interaction limit, which means

that the internal ferromagnetic exchange is of much larger magnitude than the external

field,

Γ� J. (3.1.7)

We can therefore set Γ = 0, i.e. the external field is deactivated. In this limit the model

is reduced to the classical one-dimensional Ising model [34]. At zero temperature the

ground state is twofold degenerate. A graphical representation of the two ground states

is depicted in Fig. 3.3.

Figure 3.3: The two ground states of the TFIM in the strong interaction limit.

Note that these states break the Z2 symmetry due to

Mx = 〈g|σx |g〉 Z2−→ −Mx 6= 0. (3.1.8)

In contrast to the strong field limit, the elementary excitations are domain walls between

the two ground states. These excitations are extremely non-local in the spin picture,

i.e. a single domain wall is represented by an infinite number of spin flips. A graphical

illustration is shown in Fig. 3.4.

Figure 3.4: Domain walls are the elementary excitations of the TFIM in the strong interaction
limit.

We will refer to the phase, where Mx 6= 0, as the ferromagnetically ordered phase.
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3.2 Exact solution of the transverse field Ising model

In this section we will discuss the exact solution of the TFIM calculated by Pfeuty

in 1970 [31]. Starting point is the Hamiltonian in Eq. (3.0.1a). Expressing the spin

operators by S+ and S− yields

H = Γ
∑

j

(
S+
j S
−
j −

1

2

)
− J

4

∑

j

(
S+
j S
−
j+1 + h. c.

)
+
(
S+
j S

+
j+1 + h. c.

)
. (3.2.9)

Next a Jordan Wigner transformation [35]

Sj = exp

(
−πi

∑

k<j

c†kck

)
cjS

+
j = exp

(
πi
∑

k<j

c†kck

)
c†j (3.2.10a)

is applied, which maps the Hamiltonian onto a system of free fermions,

H = Γ
∑

j

(
c†jcj −

1

2

)
− J

4

∑

j

(
c†jcj+1 + h. c.

)
+
(
c†jc
†
j+1 + h. c.

)
. (3.2.11)

Note that the Jordan Wigner transformation is highly non-local. Therefore the evalua-

tion of correlation functions is rather complicated, especially in the longitudinal case.

Next a Fourier transformation followed by a Bogoliubov transformation [36] is applied

to diagonalize the remaining Hamiltonian, resulting in the expression

H = Γ
∑

q

Λqη
†
qηq −

Γ

2

∑

q

Λq, (3.2.12)

with the energy dispersion Λq given by

Λq =

√
1 +

J2

4Γ2
− J

Γ
cos(q). (3.2.13)

Note that q denotes the wave vector in the Brillouin zone. With the help of the dispersion

we can also obtain the energy gap ∆ as a function of J ,

∆ = Γ

∣∣∣∣1−
J

2Γ

∣∣∣∣ . (3.2.14)

The gap is located at qcrit = 0 in the Brillouin zone for a ferromagnetic exchange J .

The ground state energy per site is given by the expression

E0

N
= −Γ

2

∑

q

Λq
N→∞

= −Γ

2

1

π

π∫

0

Λqdq. (3.2.15)

This function is non-analytic for J = 2Γ.
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3.3 Zero temperature characteristics

The ground state energy per site in Eq. (3.2.15) is shown in Fig. 3.5.

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

E
0

N
[Γ

]

J [Γ]

Figure 3.5: Ground state energy per site of the TFIM as function of J . The gray shaded region
shows the ferromagnetically ordered phase while the black dashed line indicates the
value of the groundstate energy at the phase transition, see section 3.4.

The energy dispersion of the elementary excitations for various values of J is depicted

in Fig. 3.6. The dispersion is flat in the case J = 0 and begins to disperse with rising

parameter.

Note that the energy gap closes for the parameter J = 2Γ. For higher parameters the

gap opens again and is only zero at a single point as a function of J . Note that the

ground state energy is also non-analytic for J = 2Γ. This is hard to grasp by looking

only at Fig. 3.5.

Another interesting property is the magnetization along the transverse field,

Mz = 〈g|σz |g〉 . (3.3.16)

This property has also been worked out by Pfeuty

Mz =
1

π

π∫

0

1 + J
2Γ

cos(q)

Λq

dq, (3.3.17)

and is shown in Fig. 3.7.
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Figure 3.6: Energy dispersion of the elementary excitatons of the TFIM for various values of
J as function of wave vector q. Note that the dispersion is symmetric in the region
q < 0, which is not shown here.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

M
z

J [Γ]

Figure 3.7: Transverse magnetization Mz as a function of J in the TFIM. The gray shaded
region shows the ferromagnetically ordered phase while the black dashed line indi-
cates the value of the transverse magnetization at the phase transition, see section
3.4.
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For J = 0, all spins are aligned along the external field and the transverse magnetization

is at its maximum. With rising parameter J , the interaction disturbs the effect of the

external field and the magnetization begins to decrease. Note that the point J = 2Γ

is clearly non-analytical, which can be extracted from the exact formula in Eq. (3.3.17)

and also from the graph of the function.

3.4 Quantum critical point

As mentioned earlier, the energy gap of the system closes for J = 2Γ. This is one of the

key indications for a fundamental change in the underlying physics of the system. The

two limiting cases we have seen before differ strongly in their ground state symmetries

and a phase transition must occur between these two phases.

Another important feature is the existence of an order parameter Mx, that describes

the degree of long range order in the system. This parameter differs from zero in the

ordered phase, as opposed to the disordered phase.

The appeareance of long range order is associated with a broken symmetry, as we have

seen in the zero field limit.

One way to deal with long range order is the calculation of correlation functions, such

as

Gx(n) = 〈g|σxj σxj+n |g〉 . (3.4.18)

In general we expect that the correlation decreases with rising distance n. Therefore

lim
n→∞

〈g|σxj σxj+n |g〉 = C 〈g|σxj |g〉 〈g|σxj+n |g〉 (3.4.19)

should hold. In the ordered phase 〈g|σxj |g〉 differs from zero (if there is an infinitesimal

field along x), so that the correlation functions never drops to zero, which explains the

concept of long range order. Due to this fact the observable Mx = 〈g|σxj |g〉 is the order

parameter of the TFIM.

Fortunately, Pfeuty calculated the longitudinal magnetization Mx as a function of the

ferromagnetic interaction strength J ,

Mx =





(
1− 4Γ2

J2

) 1
8

, J ≥ 2Γ

0 , J < 2Γ
(3.4.20)

which is depicted in Fig. 3.8. As we can see the order parameter is zero for J < 2Γ and

rises rapidly for J ≥ 2Γ, which indicates the phase transition for the TFIM. This point

is generally denoted as a quantum critical point (QCP), which marks a phase transition

at zero temperature purely driven by the physical parameter J .

Another important quantity in this context is the correlation length ξ. The correlation
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Figure 3.8: Longitudinal magnetization Mx as a function of J . The gray shaded region shows
the ferromagnetically ordered phase.

length is defined as the length in which correlation functions typically begin to vanish,

Gx(n) ∝ exp

(
n

ξ

)
. (3.4.21)

The concept of long range order is connected to the divergence of ξ. For J < 2Γ the

correlation lenght remains finite, but when approaching the critical point J → 2Γ

ξ →∞, (3.4.22)

holds.

Similar to the finite temperature case, we can also define critical exponents which de-

scribe the behaviour of observables O(J) close to the quantum critical point,

O(J) ∝ (J − 2Γ)θ, (3.4.23)

where θ denotes the critical exponent. For the order parameter the corresponding critical

exponent is denoted β by convention and can be derived from Eq. (3.4.20). It takes the

value

β =
1

8
. (3.4.24)

Note that the quantum critical point does not continue to T 6= 0 but induces a quantum
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critical region where the physics of the model is influenced by thermal as well as by

quantum fluctuations. We stress that for T 6= 0 no ferromagnetic ordered phase exists

because the elementary domain walls are non-local excitations that create a macroscopic

change of the magnetization. This is similar to the classical one-dimensional Ising model,

where there is no phase transition at T > 0 either, see Ref. [34].

With this information we can construct a phase diagram of the TFIM, see Fig. 3.9.
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Figure 3.9: Phase diagram of the TFIM. The red curve indicates the order parameter and is
only non-zero for T = 0, i.e. in the Mx-J-plane. The green curves indicate the
quantum critical region (qc), here the physics is mainly dominated by quantum
and thermal fluctuations. The blue line shows the ferromagnetic ordered phase (fm
order) which does not extend to finite temperatures T > 0. The elementary exci-
tations of the ferromagnetic ordered phase are domain walls. For small parameters
J < 2Γ the system is in the polarized state (polarized) with single spin flips as
elementary excitations.
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3.5 Spectral properties

Although the TFIM is analytically integrable, the evaluation of dynamical correlations

remains a difficult task. The main reason for this is the non-local Jordan Wigner Trans-

formation in Eq. (3.2.10a), which makes evaluation of Green functions of the kind

Gx(n, t) = 〈g|σxj σxj+n(t) |g〉 , (3.5.25)

challenging. This is due to the fact that for n→∞ the Green function includes infinitely

many factors that need to be computed.

One important quantitiy in the study of spin systems is the dynamical structure factor

(DSF),

Sαβ(ω,Q) =
1

N

∞∫

−∞

dt

2π

∑

l,l′

eiωte−iQ(l−l′)〈Sαl (t)Sβl′ 〉, (3.5.26a)

α, β ∈ {x, y, z} ,

which is the Fourier transformation of the real-space- and time-dependent correlation

function. For α = β = z exact results are known [37, 38], but for α = β = x only the

one particle contributions have been calculated by Hamer et al. in 2006 [19].

The DSF is an important quantitiy because it is directly linked to the differential cross

section in inelastic scattering experiments, see Ref. [39].

A more detailed discussion will be given in chapter 7.
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4 Continuous unitary

transformations

In this thesis we will use the method of continuous unitary transformations (CUT) to

derive effective models, which allow for an easier evaluation of ground state properties

and dynamical correlation functions. The concept is also known under the name flow

equation method. The idea of CUT was first introduced by Wegner [21] and indepen-

dently by G lazek and Wilson [22,23].

In this chapter we will introduce the general concepts of CUT and focus on the enhanced

perturbative realization of the method (epCUT) [40, 41]. Concepts such as the residual

off-diagonality (ROD) and the directly evaluated epCUT (deepCUT) will be presented.

Finaly we will give an overview on the numerical implementation of the CUT used in

this thesis.

4.1 Concept of continuous unitary transformations

The goal of many studies in strongly correlated systems is the diagonalization of the

Hamiltonian. One major problem that appears even for low dimensional quantum sys-

tems is the exponential growth of the Hilbert space when including additional degrees of

freedom, such as additional sites on a finite chain of spins. In one-dimensional systems

full exact diagonalization (FED) is limited to much less then 100 sites, even if the local

Hilbert space is only two-dimensional. This size is far away from real solid state physics

where 1023 particles interact with one another.

In general a Hamiltonian can be diagonalized by the use of an appropriate unitary

transformation

Hdiag = UHU †, (4.1.1)

where U is a unitary matrix and H is the systems Hamiltonian. Many studies apply

unitary transformations to map the Hamiltonian into a more convenient form. This

corresponds to a change of basis in the Hilbert space of the Hamiltonian. In praxis it

is rather difficult to find a unitary transformation that directly yields a diagonal Hamil-

tonian. Furthermore there is no systematic method to obtain such a transformation

for different models, i.e., for every Hamiltonian we have to rethink on how to obtain a
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diagonalizing unitary transformation.

The idea of CUT is to use a more systematic way to find a unitary transformation that

maps the Hamiltonian into a diagonal representation. We therefore introduce a family

of unitary transformations depending differentiable on a parameter l ∈ R+, which makes

the Hamiltonian dependent on l via,

H(l) = U(l)HU †(l). (4.1.2)

To create an Hamiltonian that is differentiably dependent on l we specify the initial

condition by

H(l)
∣∣
l=0

= H ⇒ U(l)
∣∣
l=0

= 1. (4.1.3)

Therefore the unitary transformation is performed in a continuous fashion. By taking

the derivative of Eq. (4.1.2) we obtain the expression

∂lH(l) = (∂lU(l))HU †(l) + U(l)H(∂lU
†(l)), (4.1.4a)

= (∂lU(l))U †(l)U(l)︸ ︷︷ ︸
=1

HU †(l) + U(l)H U †(l)U(l)︸ ︷︷ ︸
=1

(∂lU
†(l)), (4.1.4b)

= (∂lU(l))U †(l)H(l) +H(l)U(l)(∂lU
†(l)), (4.1.4c)

in which we introduce the generator of the CUT by

η(l) = (∂lU(l))U †(l), (4.1.5a)

⇒ ∂lU(l) = η(l)U(l). (4.1.5b)

A formal solution for the unitary transformation is given by

U(l) = Le
∫ l
0 η(l′)dl′ , (4.1.6)

where L is the l-ordering operator, similar to the standard time-ordering operator. This

also explains why η(l) is denoted as the generator of the CUT.

It is easy to show that the generator is antihermitian,

0 = ∂l1 = ∂l(U(l)U †(l)) (4.1.7a)

= (∂lU(l))U †(l) + U(l)(∂lU
†(l)) = η(l) + η†(l). (4.1.7b)

Using Eq. (4.1.4c) we can compute the derivative of the flowing Hamiltonian H(l) with

respect to l. A short calculation yields

∂lH(l) = [η(l), H(l)] (4.1.8)
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which is the flow equation for the Hamiltonian H(l). It is a first order differential

equation with the initial condition given in Eq. (4.1.3).

For l → ∞ the Hamiltonian acquires its final form and it is denoted as the effective

Hamiltonian

Heff = H(l)
∣∣
l=∞ = U(∞)HU †(∞). (4.1.9)

In this context the question of convergence of the expression above can not be answered

and depends on the specific form of the generator as well as on truncation criteria.

Note that observables O also need to be transformed into effective observables with the

same unitary transformation. This results in the flow equation for observables via

∂lO(l) = [η(l), O(l)] . (4.1.10)

Finally, the effective observable is given by

Oeff = O(l)
∣∣
l=∞ = U(∞)OU †(∞), (4.1.11)

where the effective observable is expressed in the same basis as the effective Hamiltonian.

Note that the generator characterizes the CUT and the flow of the Hamiltonian. The

choice of the generator is an important question and it still represents an active field of

research.

4.1.1 Wegner’s generator

The first choice was Wegner’s generator [21]. He decomposed the Hamiltonian into two

parts, one that is already diagonal Hd and the non-diagonal part Hnd,

H = Hd +Hnd. (4.1.12)

Wegner’s generator is then given by the commutator between the diagonal part and the

non-diagonal part,

ηWeg(l) = [Hd(l), Hnd(l)] = [Hd(l), H(l)] . (4.1.13)

Notice that the second equality holds simply because the diagonal part commutes with

itself. The matrix elements of Wegner’s generator are given by

ηWeg,ij(l) = (hii(l)− hjj(l))hij(l). (4.1.14)
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To show that Wegner’s generator creates a diagonal Hamiltonian we calculate the deriva-

tive of the sum of the squared non-diagonal elements,

∂l
∑

i 6=j
|hij(l)|2 = −2

∑

i,j

(hii(l)− hjj(l))2 |hij(l)|2 . (4.1.15)

As we can see, the derivative is always negative or zero and the sum of the squared

non-diagonal elements is bounded from below, which proves the convergence of the gen-

erator.

There are two disadvantages associated with Wegner’s generator. First, the right hand

side of Eq. (4.1.14) vanishes for degeneracies. Thus it is not possible to decouple degen-

erate subspaces with Wegner’s generator. Second, Wegner’s generator does not conserve

band diagonal structures. In second quantization this implies that if the initial Hamil-

tonian creates n quasi-particles at maximum, H(l) can create more than n during the

flow. The flow of Wegner’s generator is depicted in Fig. 4.1.

Figure 4.1: Illustration of Wegner’s generator. The boxes represent the matrix elements. The
red boxes indicate the initial non diagonal parts of the Hamiltonian. The grey boxes
indicate the Hamiltonian during the flow. The black boxes indicate the effective
Hamiltonian after the flow. Note that degenerate subspaces are not diagonalized,
represented by bigger black boxes.

4.1.2 Particle conserving generator

To overcome the disadvantages of Wegner’s generator and to apply the idea of CUT to

a more general context, Mielke [42], in the context of band-matrices, and independently

Knetter and Uhrig [43], in the context of many-body physics, developed the particle

conserving (pc) or MKU generator. The pc generator directly aims at the quasi-particle

picture. The goal is to eliminate terms that are not quasi-particle conserving, leading
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to the requirement

[Heff , Q] = 0 (4.1.16)

in which Q counts the number of quasi-particles in the system.

The pc generator in matrix representation, in the eigenbasis of Q, is given by

ηpc,ij(l) = sgn(qi − qj)hij(l), (4.1.17)

where qi denotes the eigenvalues of the Operator Q. An equivalent description of the pc

generator can be given by decomposing the Hamiltonian into parts that create, H+(l),

conserve, H0(l), and annihilate, H−(l), quasi-particles,

H(l) = H+(l) +H0(l) +H−(l). (4.1.18)

Then, the quasi-particle conserving generator is simply given by

ηpc = H+(l)−H−(l). (4.1.19)

The convergence of the generator is proven for finite-dimensional systems, where a state

of minimal energy exists. Note that the pc generator preserves the band diagonal struc-

ture, i.e., the maximum number of particles created during the flow remains constant.

This is shown in Fig. 4.2.

Problems, however, can occur if the energies of multi particle states fall below the energy

of single or no particle energies. This is due to the fact that the pc generator attempts

to sorts all quasi-particle spaces according to energy, even if higher quasi-particle spaces

have less energy than lower quasi-particle spaces. For systems with a finite energy gap

this can be a minor problem, but for systems with a quantum phase transition, such as

the TFIM, the quasi-particle picture can break down and the validity of the CUT must

be questioned.
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Figure 4.2: Illustration of the pc generator. The boxes represent the matrix elements. The red
boxes indicate the initial non diagonal parts of the Hamiltonian. The grey boxes
indicate the Hamiltonian during the flow. The black boxes indicate the effective
Hamiltonian after the flow. Note that the band diagonal structure is preserved
during the flow.

4.2 Perturbative CUT and self-similar CUT

The CUT method consists of two fundamental steps. The commutator in Eq. (4.1.8)

needs to be calculated, followed by the integration of the resulting flow equation. The

latter can easily be done with standard numerical integration algorithms or even ana-

lytically.

In general, commuting H with η will create new types of terms that were originally not

part of the Hamiltonian. For systems with a finite dimension the operator space acting

on that Hilbert space is also finite, therefore only a finite number of new terms might

appear. Then, if the size of the Hilbert space is not too large for numerical calculations,

the CUT can be achieved in full accuracy.

This differs from situations in which the Hilbert space of the system has infinite dimen-

sions. Examples include systems in the thermodynamic limit. Here, all sorts of new

terms might arise, connecting several sites over large distances. In a numerical calcula-

tion we cannot treat an infinite number of operators, hence we have to restrict ourselves

to operators which are physically relevant.

One particularly successful approach towards this goal was perturbative CUT (pCUT)

[43]. In this method the Hamiltonian is divided, according to standard perturbation

theory, into a simple part H0 and a perturbation xV . For pCUT, H0 needs to have an

equidistant spectrum, while there are no restrictions concerning the perturbation. The

perturbation V is divided according to the number m of quasi-particles it creates or
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annihilates,

V =
m=N∑

m=−N
Tm, (4.2.20)

where Tm creates m quasi-particles and N is the maximum number of quasi-particles that

is created by V . Note that pCUT is solely defined for the pc generator. Furthermore the

restriction to an equidistant H0 is a drawback. On the other hand, pCUT is described

in a very general context, therefore the flow equation can be solved independently for a

variety of models. Only the action of the effective operators for the considered model

must be calculated to obtain an effective quasi-particle conserving model.

Another approach is self-similar CUT (sCUT) [44]. Here the structure of operators in

second quantization is arbitrary and no equidistant spectrum is required. Furthermore,

we are not restricted to the pc generator. The crucial point of sCUT is to choose a cer-

tain operator basis and calculate the commutator for the flow equation in this operator

basis in a self-similar fashion. This also implies that certain terms, which are not part of

the operator basis, will be truncated in order to obtain a finite size flow equation. The

truncation scheme depends on the model under consideration und typically involves the

range of operators as well as the number of quasi-particles the operator acts on [45].

For example, in a system of low quasi-particle density, terms describing the correlated

hopping of multiple excitations over a long range will be dropped in favour of terms

describing the hopping of a single excitation over a short range.

The advantages of sCUT are the free choice of the generator as well as the operator

basis. On the other hand the flow equation must be solved anew for each model and the

truncation scheme can include rather sophisticated considerations.

To avoid this variability in the truncation scheme the sCUT approach can be expanded

perturbatively, yielding the method of enhanced pCUT (epCUT). On the one hand it

contains the free choice of the generator and H0 but also the perturbatively controlled

expansion of the flow equation. In the following we will explain the epCUT method

according to Ref. [41].

4.3 Enhanced perturbative CUT

The idea of epCUT is to calculate all contributions to the differential equation system

(DES) correctly up to a given order. We stress that the algorithm is independent of the

chosen operator basis, but can result in different flow equations depending on the form

of the operators. We will denote our operators by the basis-set {Ai}. Then the flow

Hamiltonian can be written as

H(l) =
∑

i

hi(l)Ai (4.3.21)
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where the coefficients depend on the flow parameter l. For the generator we choose the

same operator basis with different coefficients,

η(l) =
∑

i

ηi(l)Ai =
∑

i

hi(l)η [Ai] (4.3.22)

where η [·] is a superoperator applying the generator scheme to the operator. For exam-

ple, if considering the pc generator, the fermionic creator c† would simply yield η
[
c†
]

= c†

while its hermitian conjugate c would yield η [c] = −c, see also Eq. (4.1.19).

With this definitions we can obtain the flow equation for a given generator basis by

∑

i

∂lhi(l)Ai =
∑

j,k

hj(l)hk(l) [η [Aj] , Ak] . (4.3.23)

Note that the commutator on the right hand side is in general a linear combination of

the operator basis {Ai}. We can therefore compare the coefficients for all operators to

obtain a scalar flow equation

∂lhi(l) =
∑

j,k

Dijkhj(l)hk(l). (4.3.24)

We call the Dijk ∈ C the contributions to the DES. They are obtained by calculating

the commutator in Eq. (4.3.23) and expanding the results in the given operator basis.

The contributions are the prefactors in this operator basis,

∑

i

DijkAi = [η [Aj] , Ak] . (4.3.25)

Note that this notation is still general and also applies to sCUT. The operator basis {Ai}
is not necessarily a multi-particle-representation. This fact will be used in the following

chapters.

Now we want to expand the flow equation in a small parameter x. We thus write our

initial Hamiltonian in the form,

H = H0 + xV (4.3.26)

where H0 describes the unperturbed Hamiltonian and V represents a perturbation. Note

that there are no restrictions concerning H0, but we will see later that the method works

best for a local and block-diagonal H0.

Next, we expand the Hamiltonian during the flow according to the order of the parameter

x,

H(l) =
m=n∑

m=0

H(m), H(m) ∝ xm, (4.3.27)
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where n denotes the maximum order that our calculation aims at. By using the rep-

resentation in Eq. (4.3.21) we also divide the coefficients h(l) according to orders in

x,

hi(l) =
m=n∑

m=0

xmf
(m)
i (l). (4.3.28)

Note that the initial values of f
(m)
i (0) are fixed by the starting conditions hi(0). Next

we insert this representation into Eq. (4.3.24), which yields

∂l

m=n∑

m=0

xmf
(m)
i (l) =

∑

j,k

Dijk

n∑

p,q

xp+qf
(p)
j (l)f

(q)
k (l). (4.3.29)

Comparing coefficients yields the perturbative expansion of the flow equation,

∂lf
(m)
i (l) =

∑

j,k

Dijk

p+q=m∑

p,q

f
(p)
j (l)f

(q)
k (l). (4.3.30)

Note that the contributions Dijk do not depend on the order of calculation but only on

the algebraic relations between the operators {Ai}. Furthermore Eq. (4.3.30) defines a

hierarchy for the coefficients of the flow equation, which means that a certain order is

only influenced by the same or by lower orders and not by higher ones.

4.3.1 Algorithm for the contributions

Once all contributions Dijk and operators relevant for a certain order are known, the

remaining task is to integrate the flow equation (4.3.30). Note that certain prefactors

are influenced only in high order calculations, e.g., long range hopping terms in a nearest

neighbor Hamiltonian will only be created in high orders. This means that the corre-

sponding coefficient f
(m)
i is nonzero only for high enough m. Hence one of the remaining

tasks is to calculate all contributions that are relevant up to a given target order n.

An effective algorithm is sketched in Fig. 4.3. Because of the hierarchy for the coeffi-

cients, the calculation to obtain all contributions for a given order is based on the previ-

ous orders. First note that horizontal and vertical lines in boxes indicate self-consistent

runs, i.e., the commutation of
[
η(1), H(0)

]
might produce new first order terms that need

to be included into the generator η(1). Then the commutator must be recalculated to

include the new operators in the generator. This procedure must be repeated until

self-consistency is reached. If the local Hilbert space is finite and H0 is local, the self-

consistent runs are guarenteed to finish, because the number of operators on a finite

cluster is finite. If H0 contains non block-diagonal terms the commutators
[
η(0), H(m)

]

also have to be carried out self-consistently.

If one of these self-consistent runs does not terminate, i.e., H0 is not block-diagonal and

not local, additional truncation criteria have to be introduced, which means that parts
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of the epCUT will be sCUT calculations.

When calculating the commutator [η [Aj] , Ak] new operators might appear that are not

yet part of the operator basis. In this case they will be included in the operator basis

and we define the minimal order of these operators Omin(Ai) as the order in which they

occur first.
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Figure 4.3: Illustration of the algorithm used to determine all contributions for a given max-
imum order, here 4, from Ref. [41]. The boxes represent the calculation of the
commutator between the different orders of the generator η(m) and the Hamilto-
nian H(n) to obtain the contributions to the DES. The calculation for every order
o is based on the previous orders and is achieved by calculating every commutator
with n+m = o.

4.3.2 Reduction of the DES

To save memory and computation time several optimizations have been introduced in

Ref. [41]. One possibility is the reduction of the size of the resulting DES by aiming only

at certain quantities of interest. For example, single hopping terms will not be influenced

by multi-particle interactions that only appear in very high orders. This means that if

we are only interested in single particle properties, such as the dispersion we can neglect

all contributions that do not influence our quantity of interest. The justification of this

approach lies in the hierarchy of the DES. We therefore introduce the maximum order

of an operator Ai Omax(Ai). It is defined as the maximum order in which an operator

still influences the quantity of interest.

For a more detailed discussion we refer the reader to Ref. [41], from which we take over

the expression

Omax(Aj) = max
{i,k|Dijk 6=0}

(Omax(Ai)−Omin(Ak)). (4.3.31)
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Note that this is an implict definition, which must be calculated self-consistently. The

starting point is given by

Omax(Ai) =




n, if Ai is targeted

0, otherwise
(4.3.32)

4.3.3 Directly evaluated epCUT

So far, the epCUT algorithm produces an effective Hamiltonian as a power series in x.

In recent studies, see Ref. [41], a non-perturbative evaluation of the DES showed a very

robust integration even beyond the point at which the bare series begins to diverge.

The idea is to apply the epCUT algorithm in Fig. 4.3 to obtain all contributions Dijk

as well as the operator basis. Then, the reduction of the DES is applied. In contrast to

the epCUT the flow equation is now solved for the hi(l) in Eq. (4.3.24) for all x anew,

rather than for a power series in the f
(p)
j (l). Therefore, the method is called directly

evaluated epCUT (deepCUT).

The method can be viewed as a sCUT calculation with a perturbative truncation scheme.

One main difference between sCUT and deepCUT is that contributions will be also

truncated in the deepCUT method, whereas sCUT only truncates the operator basis.

This allows deepCUT to achieve a very robust integration similar to sCUT.

Due to the recent positive results with deepCUT, we will use this method in all follwing

chapters.

4.3.4 Transformation of observables

As mentioned before, the transformation of observables is similar to the transformation

of the Hamiltonian, with the simplification that the generator is already known from the

Hamiltonian transformation. The starting point is the flow equation for observables in

Eq. (4.1.10). Equivalently to the expansion of the flowing Hamiltonian according to the

order in x, the same can be done for the observable via

O(l) =
∑

i

oi(l)Bi =
∑

i

n∑

m=0

f
(m),Obs
i (l)xmBi. (4.3.33)

Employing this expansion in the flow equation yields

∂loi(l) =
∑

j,k

DObs
ijk hj(l)ok(l) (4.3.34)
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and accordingly

∂lf
(m),Obs
i (l) =

∑

j,k

p+q=m∑

p,q

DObs
ijk f

(p)
j (l)f

(q),Obs
k (l) (4.3.35)

where the contributions DObs
ijk can again be calculated by the algebraic relation

∑

i

DObs
ijk Bi = [η [Aj] , Bk] . (4.3.36)

Note that the operator basis {Bi} must not be the same as the Hamiltonian operator

basis {Ai}, if the commutation relations between them are known.

The algorithm to calculate the contributions DObs
ijk is depicted in Fig. 4.4. The calculation

is alike to the Hamiltonian case, with the simplification that no new generator terms can

appear, which reduces the number of self-consistent runs. For η(0) = 0 the algorithm

is guaranteed to finish without introducing any additional truncation schemes. As in

the case of the Hamiltonian, the observable DES can also be reduced. For a detailed

discussion see Ref. [41].
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Figure 4.4: Illustration of the algorithm used to determine all contributions for the observable
transformation for a given maximum order, here 4, from Ref. [41]. The boxes
represent the calculation of the commutator between the different orders of the
generator η(m) and the observable O(n) to obtain the contributions to the DES.
The calculation for every order o is based on the previous orders and is achieved
by calculating every commutator with n+m = o.
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4.4 Implementation

To analyze the convergence of the CUT we introduce the residual off-diagonality (ROD).

The ROD is the square root of the sum of all off-diagonal prefactors squared,

ROD =

√∑

i

|ηhi(l)|2 (4.4.37)

where ηhi(l) only denotes complete coefficients that appear in the generator as well.

The ROD measures the distance to diagonality and describes the speed of convergence.

If l is large enough, the ROD should decrease exponentially and numerical integration

can be stopped, once a critical threshold has been undercut. Several studies, however,

show that the ROD does not necesserily converge if we consider a truncated system.

Therefore, we will carefully study it in the case of the TFIM.

The numerical integration of the deepCUT flow equation is done by using an adaptive

Runge Kutta algorithm. The flow is considered finished once the ROD falls below a

critical threshold, here 10−10. The typical integration range for this value is l < 200,

however this strongly depends on the parameter J and the order of calculation.

To reduce the necessary memory several symmetries are used, see also Ref. [46,47]. On

the one hand, the number of operators to be tracked is reduced by using the same coef-

ficient for an operator and its hermitian conjugate, due to the fact that all transformed

operators show this feature. For local observables a mirror symmetry is implemented.

It maps operators on the site i + k to the site i − k, if i is the position of the local

observable.

The algorithm to determine all contributions for a given order [41] as well as the calcu-

lation of dynamical correlations is implemented parallely, using the openMP library [48].
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5 String operator algebra

In the previous chapter, we explained how continuous unitary transformations are ap-

plied in a general context, for example for a hard-core bosonic algebra.

However, for the transverse field Ising model, the normal multi-particle-representation

is highly disadvantageous for describing the elementary excitations. Specifically, if one

aims at higher orders, the number of operators to be tracked grows exponentially, in-

creasing the numerical effort of storing all contributions to the DES. Therefore, we will

introduce a modified operator basis, which we will call string algebra. Note that this

algebra is similar to the Jordan-Wigner [35] representation of the Hamiltonian.

In the following chapter we will first give a definition for the string algebra. Next we

will prove that the algebra closes under the commutator. We can therefore obtain a

closed form of the flow equation for the Hamiltonian. Finally, we evaluate the action

of string operators on different states. This is especially interesting when transforming

observables, which are not part of the string algebra.

5.1 Definition

A string operator is given by the following product of Pauli operators

T φεn :=
∑

j

σφj

(
j+n−1∏

k=j+1

σzk

)
σεj+n =

∑

j

σφj σ
z
j+1σ

z
j+2 · · ·σzj+n−1σ

ε
j+n, (5.1.1a)

{φ, ε} ∈ {+,−}, (5.1.1b)

n ∈ N+. (5.1.1c)

We can see that each string operator is a string of σz matrices, framed by spin flip

creation- and/or annihilation-operators. We will refer to n as the range of an operator.

Here, we have already chosen the translationally invariant form of string operators.

When dealing with local observables it is also useful to introduce local string operators,

Oφε
j,n := σφj

(
j+n−1∏

k=j+1

σzk

)
σεj+n = σφj σ

z
j+1σ

z
j+2 · · · σεj+n, (5.1.2a)

{φ, ε} ∈ {+,−}, (5.1.2b)

n ∈ N+. (5.1.2c)
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Note that a translationally invariant string operator is given by a sum of local string

operators,

T φεn =
∑

j

Oφε
j,n. (5.1.3)

For n = 1, these definitions correspond to a normal hopping term or pair creation-

/annihilation-operator. For n > 1, the situation is slightly different. For example the

case n = 2, φ = + and ε = − can be rewritten in multi-particle-representation,

T+−
1 =

∑

j

σ+
j σ

z
j+1σ

−
j+2 (5.1.4a)

=
∑

j

σ+
j (2σ+

j+1σ
−
j+1 − 1)σ−j+2 (5.1.4b)

=
∑

j

2σ+
j σ

+
j+1σ

−
j+1σ

−
j+2 − σ+

j σ
−
j+2, (5.1.4c)

which is the sum of a quartic interaction term and a hopping term.

This simple example already illustrates the computational advantage of the string alge-

bra. If we tracked all operators in multi-particle-representation, a single string operator

of range n would be equal to 2n−1 multi-particle-operators. Therefore, if the model pre-

serves the algebra, it is convenient to describe all operators by using string operators.

It is also useful to define a string operator of range 0 consisting of a single σz matrix.

T0 :=
∑

j

σzj , (5.1.5a)

Oj,0 := σzj . (5.1.5b)

Note that with these definitions, the Hamiltonian of the transverse field Ising model can

be rewritten in terms of string operators

HTFIM =
Γ

2

∑

j

σzj +
J

4

∑

j

σ+
j σ
−
j+1 + σ+

j σ
+
j+1 + h.c. (5.1.6a)

=
Γ

2
T0 +

J

4

(
T+−

1 + T−+
1 + T++

1 + T−−1

)
. (5.1.6b)

Note that we have taken the antiferromagnetic model for J > 0. As mentioned before

this changes the properties of the model only slightly.

The computational difference between the multi-particle-representation and the string

operator basis is that all local operators are represented by the basis

{
σ+
j , σ

−
j , σ

z
j ,1
}
, (5.1.7)
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while in the multi-particle-representation the local operator basis is given by

{
σ+
j , σ

−
j , σ

+
j σ
−
j ,1

}
. (5.1.8)

To further investigate the differences between the multi-particle-representation and string

operators, we define a quasi-particle vacuum by

|0〉 = |· · · ↓j−1↓j↓j+1 · · · 〉 , (5.1.9)

which means that all spins in the chain point downwards. Note that this corresponds

to the strong field limit in the TFIM. A single spin excitation can be created by the

operator σ+
l . We denote this state by

|l〉 = σ+
l |0〉 . (5.1.10)

So far, this corresponds to a normal hard-core boson multi-particle-representation pic-

ture. The difference, however, comes into play, when string operators are applied to

excited states. Let us first look at the action of hopping terms on single excited states,

T−+
n |l〉 =

∑

j

σ−j σ
z
j+1σ

z
j+2 · · ·σ+

j+n |l〉 (5.1.11a)

=
∑

j

δl,jσ
z
j+1σ

z
j+2 · · ·σ+

j+n |0〉 (5.1.11b)

= (−1)n−1 |l + n〉 . (5.1.11c)

In the second line we used the property σ−j |l〉 = δl,j |0〉. Next we know that σzj |0〉 =

− |0〉, which gives us the final result. If there is only one quasi-particle in the system,

the main difference to normal hopping operators is the factor (−1)n−1.

For higher quasi-particle spaces we have to take into account that there might be particles

on the sites l + 1, l + 2 . . . l + n − 1. They will modify the exponent of (−1) and can

therefore change the sign of the resulting state.

5.2 Proof of closed algebra property

In chapter 6 and 7 we will apply the method of continuous unitary transformations to the

transverse field Ising model. The flow of operators is determined by commutating the

Hamiltonian with the generator of the unitary transformation. Therefore it is reasonable

to examine the string algebra characteristics under this operation.

In the following, we will show that the string algebra closes under the commutation.

This means that the result of the commutation of two string operators can again be

written as a linear combination of string operators.



36 String operator algebra

Figure 5.1: Graphical representation of a single string operator.

Figure 5.2: Graphical representation of the commutator of two string operators. The position
of the blocks represent the different sites upon which a local string operator acts.

As we have already seen, the Hamiltonian of the transverse field Ising model can be

written in terms of string operators. Later we will see that also the generator will be a

sum of string operators. Therefore, our method preserves the string algebra and high

order evaluations are easily accessible.

In order to simplify the proof of the closed algebra property we will introduce a graphical

representation for the string algebra. A single string operator is depicted by the block

in Fig. 5.1. The ends of the block represent the spin flip operators while the middle

part shows the string of σz matrices. For commutating two string operators we write

one block above the other. The positions of the blocks then represent the different sites

that a local string operator acts upon.

For example Fig. 5.2 shows the commutation of two local string operators, where the

lower one begins in the middle of the upper one. First, we will show that on a chain,

two string operators commute if neither of their start-/end-blocks are on the same site.

Without loss of generality that means that all commutators in Fig. 5.3 vanish. The last

one is simply zero because operators acting on completely different sites always commute

in a bosonic algebra.

Figure 5.3: Vanishing commutators of string operators on a chain.
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Figure 5.4: Simplifying the first commutator by factoring out (red) and multiplying the inner
string operators to identity (blue).

The expression for the first commutator is given by

[
Oφε
j,n, O

χξ
l,m

]
=
[
σφj · · ·σzl · · ·σzl+m · · ·σεj+n, σχl · · ·σξl+m

]
, (5.2.12)

with

l > j, l +m < j + n, φ, ε, χ, ξ ∈ {+,−} (5.2.13)

First, all operators on sites smaller than l and greater than l + m commute with all

other operators and can therefore be factored out. Second, all inner parts of the string

operators are σz matrices and therefore commute with one another. On each inner site,

we have a product of two σz matrices, yielding σzσz = 1, see also Fig. 5.4. Therefore,

only the edge operators remain. Now we use the identity [A,BC] = [A,B]C + B[A,C]

to simplify the result,

[
Oφε
j,n, O

χξ
l,m

]
∝
[
σzl σ

z
l+m, σ

χ
l σ

ξ
l+m

]
(5.2.14a)

=
[
σzl σ

z
l+m, σ

χ
l

]
σξl+m + σχl

[
σzl σ

z
l+m, σ

ξ
l+m

]
(5.2.14b)

= σzl+m [σzl , σ
χ
l ]σξl+m + σχl σ

z
l

[
σzl+m, σ

ξ
l+m

]
(5.2.14c)

= (χ)2σzl+mσ
χ
l σ

ξ
l+m + (ξ)σχl 2σzl σ

ξ
l+m (5.2.14d)

= 2
{

(χ)(ξ)σχl σ
ξ
l+m − (χ)(ξ)σχl σ

ξ
l+m

}
(5.2.14e)

= 0, (5.2.14f)

using [σz, σχ] = χ2σχ, σzσχ = χσχ and σχσz = −χσχ, if all operators act on the same

site.

For the second commutator the starting point is the expression

[
Oφε
j,n, O

χξ
l,m

]
=
[
σφj · · ·σzl · · ·σεj+n, σχl · · ·σzj+n · · ·σξl+m

]
(5.2.15)

with

l > j, l +m > j + n. (5.2.16)

First note that all operators on sites smaller than l and greater than j + n commute

with all other operators and can therefore be factored out. Secondly all operators on

sites l + 1 . . . j + n− 1 are σz matrices yielding again σzσz = 1, see also Fig. 5.5.
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Figure 5.5: Simplifying the second commutator by factoring out (red) and multiplying the inner
string operators to identity (blue).

Now we can simplify the result again,

[
Oφε
j,n, O

χξ
l,m

]
∝
[
σzl σ

φ
j+n, σ

χ
l σ

z
j+n

]
(5.2.17a)

=
[
σzl σ

φ
j+n, σ

χ
l

]
σzj+n + σχl

[
σzl σ

φ
j+n, σ

z
j+n

]
(5.2.17b)

= σφj+n [σzl , σ
χ
l ]σzj+n + σχl σ

z
l

[
σφj+n, σ

z
j+n

]
(5.2.17c)

= 2
{
−(χ)(φ)σχl σ

φ
j+n + (χ)(φ)σχl σ

φ
j+n

}
(5.2.17d)

= 0. (5.2.17e)

Finally the case n = 0 is trivial, because σz commutes with all inner string operators.

So far we have proven that only commutators for which string operators touch each other

at the edge can contribute. In the following, we want to calculate these contributions

exactly.

The relevant commutators are represented in Fig. 5.6. Note that all contributions com-

ing from mirroring symmetries are also included by exchange of the arguments of the

commutator. Furthermore, the edge operators of two string operators need to be differ-

ent, because otherwise the identity σ+σ+ = σ−σ− = 0 would yield a zero contribution.

The relevant expression for the first commutator is,

[
Oφε
j,n, O

−φξ
j,m

]
=
[
σφj · · ·σzj+m · · ·σεj+n, σ−φj · · ·σξj+m

]
, (5.2.18)

with

m < n. (5.2.19)

Again, we factor out commutating parts and combine inner σz matrices, see also Fig.

5.7. That implies

[
Oφε
j,n, O

−φξ
j,m

]
=
[
σφj σ

z
j+m, σ

−φ
j σξj+m

]
σzj+m+1 · · ·σεj+n (5.2.20a)

=
{[
σφj , σ

−φ
j

]
σzj+mσ

ξ
j+m + σ−φj σφj

[
σzj+m, σ

ξ
j+m

]}
σzj+m+1 · · ·σεj+n (5.2.20b)

= ξσξj+mσ
z
j+m+1 · · ·σεj+n (5.2.20c)

= ξOξε
j+m,n−m, (5.2.20d)

which is again a string operator of range n−m.
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Figure 5.6: Contributing commutators of string operators on a chain. The single box in the
third commutator represents a single σz matrix.

Figure 5.7: Simplifying the first contributing commutator by factoring out (red) and multiply-
ing the inner string operators to identity (blue).

The second commutator is given by

[
Oφε
j,n, O

−εξ
j+n,m

]
= σφj · · ·

[
σεj+n, σ

−ε
j+n

]
· · ·σξj+n+m (5.2.21a)

= εσφj · · ·σzj+n · · ·σξj+n+m (5.2.21b)

= εOφξ
j,n+m, (5.2.21c)

and it is therefore a string operator of range n+m.

The third commutator is given by

[
Oφε
j,n, Oj+n,0

]
= σφj · · ·

[
σεj+n, σ

z
j+n

]
(5.2.22a)

= −ε2σφj · · ·σεj+n (5.2.22b)

= −ε2Oφε
j,n, (5.2.22c)

which remains a string operator of range n.
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Figure 5.8: Simplifying the last contributing commutator by multiplying the inner string op-
erators to identity (blue).

In the last case we again use the identity σzσz = 1 for all inner σz matrices, see also

Fig. 5.8. Then we obtain the result

[
Oφε
j,n, O

−φ−ε
j,n

]
=
[
σφj σ

ε
j+n, σ

−φ
j σ−εj+n

]
(5.2.23a)

=
[
σφj σ

ε
j+n, σ

−φ
j

]
σ−εj+n + σ−φj

[
σφj σ

ε
j+n, σ

−ε
j+n

]
(5.2.23b)

= φσzj

{
ε

2
σzj+n +

1

2

}
+ εσzj+n

{−φ
2
σzj +

1

2

}
(5.2.23c)

=
φ

2
σzj +

ε

2
σzj+n (5.2.23d)

=
φ

2
Oj,0 +

ε

2
Oj+n,0 (5.2.23e)

which is by definition (5.1.5b) the sum of two string operators of range 0.

This concludes our proof of the closing of the string algebra. We use the results for

the local string operators in order to derive commutator relations for the translational

invariant string operators. We begin with the case n,m ∈ N+, n < m

[
T++
n , T−−m

]
= T+−

n+m + T−+
n+m − T+−

m−n − T−+
m−n, (5.2.24a)

[
T++
n , T+−

m

]
= T++

n+m − T++
m−n (5.2.24b)

[
T++
n , T−+

m

]
= T++

n+m − T++
m−n (5.2.24c)

[
T++
m , T+−

n

]
= T++

n+m + T++
m−n (5.2.24d)

[
T++
m , T−+

n

]
= T++

n+m + T++
m−n (5.2.24e)

[
T++
n , T0

]
= −4T++

n (5.2.24f)
[
T++
n , T++

m

]
= 0.

Next we consider the case n = m

[
T++
m , T−−m

]
= T+−

2m + T−+
2m + T0 (5.2.25a)

[
T++
m , T+−

m

]
= T++

2m (5.2.25b)
[
T++
m , T−+

m

]
= T++

2m (5.2.25c)
[
T++
m , T++

m

]
= 0. (5.2.25d)
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All remaining cases can easily be derived by conjugating these commutator relations.

With these results, we can examine the flow of the transverse field Ising model under

the continuous unitary transformation.

5.3 Closed form of flow equation

Consider the representation of the transverse field Ising model in the string algebra in Eq.

(5.1.6b). Without the non-particle-conserving terms T++
1 + T−−1 the Hamiltonian could

simply be diagonalized by Fourier transformation. Therefore, we choose the particle

conserving generator ηpc to deduce an effective particle conserving Hamiltonian which

we can diagonalize more easily.

To reach a better understanding of the continuous unitary transformation, we will first

derive the three leading orders for the flow equation. Here we will already see how the

flow for the transverse field Ising model is built up.

Next, we will derive a closed form of the flow equation up to infinite order. This is

a remarkable step, because in general it is not possible to obtain such a closed form

of the flow equation due to the large number of operators that appear in a high order

calculation.

First we define the Hamiltonian during the flow by

HTFIM(l) = t0(l)T0 +
∞∑

n=1

t+−n (l)
(
T+−
n + h.c.

)
+
∞∑

n=1

t++
n (l)

(
T++
n + h.c.

)
. (5.3.26)

Note that the flow of the real coefficients of T++
n and T−−n must be the same to obtain

a hermitian Hamiltonian. The same applies to T+−
n and T−+

n . For the sake of clarity

we omit the dependence of the coefficients on the flow parameter l in the following

examinations.

Comparison of the coefficients with Eq. (5.1.6b) yields the initial conditions

t0
∣∣
l=0

=
Γ

2
, (5.3.27a)

t+−1

∣∣
l=0

=
J

4
, (5.3.27b)

t++
1

∣∣
l=0

=
J

4
, (5.3.27c)

t+−n
∣∣
l=0

= t++
n

∣∣
l=0

= 0, n > 1. (5.3.27d)

We start our study in the strong field limit J → 0. Therefore, the energy scale is given

by Γ and the dimensionless perturbation parameter is x = J
Γ

. Observe that all non

particle conserving terms are at least of order one, hence we have no generator term η(0).
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Furthermore we can identify the starting blocks

H(0) = T0, (5.3.28a)

H(1) =
(
T+−

1 + h.c.
)

+
(
T++

1 + h.c.
)
, (5.3.28b)

η(1) = T++
1 − h.c.. (5.3.28c)

Following the epCUT algorithm in Fig. 4.3, we first calculate the block
[
η(1), H(0)

]
until

self-consistency is reached,

[
η(1), H(0)

]
=
[
T++

1 − h.c., T0

]
(5.3.29a)

= −4
(
T++

1 + h.c.
)
. (5.3.29b)

Obviously no new terms appear and the result is self-consistent. Because we have no

term η(0), our first order calculation is already finished, resulting in the first order flow

equation

∂lt0 = 0, (5.3.30a)

∂lt
+−
1 = 0, (5.3.30b)

∂lt
++
1 = −4t++

1 t0. (5.3.30c)

Note that all other coefficients t±±n , n > 1 remain constant in first order. This differ-

ential equation has the exact solution t0 = const, t+−1 = const, t++
1 = −J/4 exp(−4t0l),

resulting in the final values

t0
∣∣
l=∞ =

Γ

2
, (5.3.31a)

t+−1

∣∣
l=∞ =

J

4
, (5.3.31b)

t++
1

∣∣
l=∞ = 0. (5.3.31c)

This simple calculation shows us that on the one hand the CUT indeed decouples the

vacuum state from multi-particle states. On the other hand it, shows us that there are

no corrections to the ground state energy in first order, because the term t0 remains

constant.

For the second order we begin with the block
[
η(1), H(1)

]
to obtain second order terms,

[
η(1), H(1)

]
=
[
T++

1 − h.c., T++
1 + T+−

1 + h.c.
]

(5.3.32a)

= 2
(
T+−

2 + h.c.
)

+ 2T0 + 2
(
T++

2 + h.c.
)

(5.3.32b)

Here we see that the new terms T+−
2 + h.c. and T++

2 + h.c. appear. They are of minimal

order Omin = 2. The latter one is not particle conserving and must be added to the
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generator η(2). Furthermore we have a first correction to the ground state by the term

T0. Now we calculate the block
[
η(2), H(0)

]
self consistently,

[
η(2), H(0)

]
=
[
T++

2 + h.c., T0

]
(5.3.33a)

= −4
(
T++

2 + h.c.
)
. (5.3.33b)

Again, no new terms appear after the commutation, therefore we have obtained all

contributions for the second order. This implies the following set of flow equations

∂lt0 = 2t++
1 t++

1 , (5.3.34a)

∂lt
+−
1 = 0, (5.3.34b)

∂lt
+−
2 = 2t++

1 t++
1 , (5.3.34c)

∂lt
++
1 = −4t++

1 t0, (5.3.34d)

∂lt
++
2 = 2t++

1 t+−1 − 4t++
2 t0. (5.3.34e)

For the third order, the relevant commutators yield

[
η(1), H(2)

]
=
[
T++

1 − h.c., T++
2 + T+−

2 + h.c.
]
, (5.3.35a)

= −2T++
1 + 2T++

3 + 2T+−
3 − 2T+−

1 + h.c., (5.3.35b)
[
η(2), H(1)

]
=
[
T++

2 − h.c., T++
1 + T+−

1 + h.c.
]
, (5.3.35c)

= 2T++
1 + 2T++

3 + 2T+−
3 − 2T+−

1 + h.c., (5.3.35d)
[
η(3), H(0)

]
=
[
T++

3 − h.c., T0

]
, (5.3.35e)

= −4
(
T++

3 + h.c.
)
. (5.3.35f)

Thus, we obtain the flow equation up to the third order

∂lt0 = 2t++
1 t++

1 , (5.3.36a)

∂lt
+−
1 = −4t++

1 t++
2 , (5.3.36b)

∂lt
+−
2 = 2t++

1 t++
1 , (5.3.36c)

∂lt
+−
3 = 4t++

1 t++
2 , (5.3.36d)

∂lt
++
1 = −4t++

1 t0 − 2t++
1 t+−2 + 2t++

2 t+−1 , (5.3.36e)

∂lt
++
2 = 2t++

1 t+−1 − 4t++
2 t0, (5.3.36f)

∂lt
++
3 = 2t++

1 t+−2 + 2t++
2 t+−1 − 4t++

3 t0. (5.3.36g)
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Evaluating these first three expansions, it is possible to find the pattern for the contri-

butions to the flow equation. We extend the flow equation up to infinite order

∂lt0 = 2
∞∑

n=1

(
t++
n

)2
, (5.3.37a)

∂lt
+−
m = 2

k+l=m∑

k,l

t++
k t++

l − 2

|k−l|=m∑

k,l

t++
k t++

l , (5.3.37b)

∂lt
++
m = −4t++

m t0 + 2

|k−l|=m∑

k,l

sgn(k − l)t++
k t+−l + 2

k+l=m∑

k,l

t++
k t+−l , (5.3.37c)

m, k, l ∈ N+. (5.3.37d)

To prove this expression we will proceed in two steps. First, we show that all kinds of

string operators of arbitrary range will be created during the flow. Next we show which

contributions to the DES are created.

Our starting point for step one is the Hamiltonian of the TFIM in string operators in

Eq. (5.1.6b). By induction we show that once we have a complete set of operators of

maximum range n, T0, T
±±
1 , T±±2 , . . . T±±n we can create a new complete set of operators

of range n+ 1 by commutation with a string pair-creation-operator,

[
T++
n , T−−1

]
= T+−

n+1 + T−+
n+1 − T+−

n−1 − T−+
n−1, (5.3.38a)

[
T++
n , T+−

1

]
= T++

n+1 − T++
n−1, (5.3.38b)

[
T−−n , T−+

1

]
= −T−−n+1 + T−−n−1. (5.3.38c)

As we can see, we have created all new string operators of range n + 1. Because the

Hamiltonian in Eq. (5.1.6b) already comprises a complete set of range unity we can

deduce that all ranges n ∈ N+ will be created during the flow. Hence, we can conclude

for the generator of the TFIM

η =
∞∑

n=1

t++
n

(
T++
n − T−−n

)
. (5.3.39)

For step two we consider the relations in Eq. (5.2.24) and Eq. (5.2.25). We start with

the contributions to the operator T0. As we can see T0 will be created only in the case

m = n. For a given range n there are two contributions from the commutators

[
T++
n , T−−n

]
= T0 + . . . , (5.3.40a)

[
T−−n , T++

n

]
= −T0 + . . . (5.3.40b)

both with prefactor one. Note that T++
n and T−−n share the same prefactor up to a

sign due to hermiticity/anti-hermiticity. Finaly these considerations yield for the flow



5.3 Closed form of flow equation 45

equation for the prefactor of T0

∂lt0 = 2
∞∑

n=1

(
t++
n

)2
. (5.3.41)

Next we consider the operator T+−
m and T−+

m , respectively. They are created by two

different kinds of commutators, first

[
T++
k , T−−l

]
= T+−

m + . . . with k + l = m, (5.3.42a)
[
T−−k , T++

l

]
= −T+−

m + . . . with k + l = m, (5.3.42b)

and second

[
T++
k , T−−l

]
= −T+−

m + . . . with |k − l| = m, (5.3.43a)
[
T−−k , T++

l

]
= T+−

m + . . . with |k − l| = m, (5.3.43b)

all with prefactor one. Note that the operator T−+
m shares the same prefactor as T+−

m .

These calculations yield

∂lt
+−
m = 2

k+l=m∑

k,l

t++
k t++

l − 2

|k−l|=m∑

k,l

t++
k t++

l . (5.3.44)

Last we consider the operator T++
m and T−−m , respectively. They are created by three

different kinds of commutators, first

[
T++
k , T+−

l

]
= T++

m + . . . with k + l = m, (5.3.45a)
[
T++
k , T−+

l

]
= T++

m + . . . with k + l = m, (5.3.45b)

second

[
T++
k , T+−

l

]
= sgn(k − l)T++

m + . . . with |k − l| = m, (5.3.46a)
[
T++
k , T−+

l

]
= sgn(k − l)T++

m + . . . with |k − l| = m, (5.3.46b)

note that the sign function comes from the different signs in the cases [T++
n , T+−

m ] and

[T++
m , T+−

n ] in Eq. (5.2.24). Finally the third case is given by

[
T++
m , T0

]
= −4T++

m . (5.3.47)

Now we can write down the flow equation for the prefactor t++
m ,

∂lt
++
m = −4t++

m t0 + 2

|k−l|=m∑

k,l

sgn(k − l)t++
k t+−l + 2

k+l=m∑

k,l

t++
k t+−l , (5.3.48)
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which concludes our derivation for the flow equation for infinite order.

This result is remarkable considering that it would include tremendously more flow

parameters if we formulated the problem in multi-particle-representation. It also allows

us to evaluate the Hamiltonian transformation for very high orders, which is espacially

interesting in the vicinity of the quantum critial point J = 2Γ.

5.4 Evaluation of effective models within the string

algebra

In this section we explain how to evaluate the resulting effective Hamiltonian, for example

how to obtain the ground state energy per site or the dispersion relation. Additionaly, we

want to elaborate on how the CUT transforms observables. This is interesting regarding

measurable quantities such as the magnetization or spectral properties.

After the CUT, the effective Hamiltonian takes the form

H(l)
∣∣
l=∞ = t0(∞)T0 +

∑

n

t+−n (∞)
(
T+−
n + h.c.

)
(5.4.49)

Note that terms of the form T++
n + h.c. are rotated away by the CUT and do not

contribute to the final Hamiltonian. Therefore, the particle vacuum |0〉 now represents

the ground state of the effective Hamiltonian. This leads to the ground state energy per

site with the expression

1

N
H(∞) |0〉 =

1

N
t0(∞)T0 |0〉 (5.4.50a)

=
1

N
(−N)t0(∞) |0〉 (5.4.50b)

= −t0(∞) |0〉 . (5.4.50c)

We have used the property T+−
n |0〉 = T−+

n |0〉 = 0. As a result the ground state energy

is simply given by the coefficient E0

N
= −t0(∞) and can easly be read out after the CUT.

Next, we consider the dispersion relation for a single excitation in the system. Thereby

we define a Fourier transformed spin flip with momentum Q

|Q〉 =
1√
N

∑

n

eiQn |n〉 , (5.4.51)
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and examine the action of the Hamiltonian on this state

H(∞) |Q〉 =
∑

n

eiQn

{
t0(∞)T0 +

∑

n′

t+−n′ (∞)
(
T+−
n′ + h.c.

)
}
|n〉 (5.4.52a)

=
∑

n

eiQn

{
t0(∞)(−N + 2) |n〉+

∑

n′

t+−n′ (∞)(−1)n
′−1(|n− n′〉+ |n+ n′〉)

}

(5.4.52b)

= (E0 + 2t0(∞)) |Q〉+
∑

n′

∑

n

t+−n′ (∞)(−1)n
′−1
{
eiQ(n+n′) + eiQ(n−n′)

}
|n〉

(5.4.52c)

=

(
E0 + 2t0(∞) +

∑

n′

2t+−n′ (∞)(−1)n
′−1 cos(Q)

)
|Q〉 , (5.4.52d)

which is again an eigenstate of the Hamiltonian. The dispersion is therefore given by

the Fourier sum of hopping coefficients except for a sign

ω(Q) = 2t0(∞) +
∑

n′

2t+−n′ (∞)(−1)n
′−1 cos(Q). (5.4.53)

To obtain quantities such as the magnetization we also have to transform observables

via the CUT to effective observables. If the observable is part of the string algebra, the

problem is again simplified due to the closed algebra property. For example, this is the

case for the transverse magnetization

Mz = 〈0|σzeff |0〉 , (5.4.54a)

σzeff = U †(l)σzU(l)
∣∣
l=∞. (5.4.54b)

Another possibility to obtain the transverse magnetization is via the groundstate energy,

∑

j

σzj =
H

Γ
− J

Γ

dH

dJ
, (5.4.55a)

⇒Mz =
E0

ΓN
− J

ΓN

dE0

dJ
. (5.4.55b)

In contrast to this, the magnetization along x is more complicated, because the corre-

sponding observable σx = σ+ + σ− is not part of the string algebra. But due to the fact

that the flow of the Hamiltonian is very compact in the string algebra, we stay within

the local basis (5.1.7) in order to transform such observables.

This observation is in agreement with the fermionic representation of the transverse field

Ising model employed by the Jordan-Wigner transformation. There the observable σx

is represented by an extremely non-local string of operators acting upon an extensive

number of lattice sites. By staying in the spin picture, we avoid this problem at the cost
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of a more complex, but local operator structure. Specifically, such an observable can

have terms of the form

σxeff ∝
∑

j

(
σ+
j

∏

lmn...

σzkσ
z
l σ

z
m · · ·+ h.c.

)
(5.4.56a)

+
∑

jko

(
σ+
j σ

+
k σ

+
o

∏

lmn...

σzkσ
z
l σ

z
m · · ·+ h.c.

)
(5.4.56b)

+
∑

jko

(
σ+
j σ

+
k σ
−
o

∏

lmn...

σzkσ
z
l σ

z
m · · ·+ h.c.

)
(5.4.56c)

+ . . . , (5.4.56d)

after the CUT. Here the indices j, k, l,m, n, o denote lattice sites that are not necessary

adjacent. In a finite order calculation the number and range of operators remain finite,

hence they are not extensive.

Note that the generator includes only even numbers of creation-/annihilation-operators.

Therefore, the generator preserves the parity of an observable, i.e., the number of par-

ticles is only changed in multiples of two. If such an operator acts upon the vacuum |0〉
we can easly calculate the resulting state

σxeff |0〉 ∝
∑

j

(−1)#σz |j〉
︸ ︷︷ ︸

1 particle excitations

+
∑

jko

(−1)#σz |jko〉
︸ ︷︷ ︸
3 particle excitations

+ . . . (5.4.57)

where #σz denotes the number of σz matrices in an operator.
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6 Static results

In this chapter we present and evaluate the static results for the transverse field Ising

model. The expression ’static’ refers to properties which are time-independent, such as

the ground state energy per site, the energy dispersion or the magnetization. At first,

we look at the residual off diagonality (ROD). This gives us an overview for the numer-

ical errors we can expect due to the fact that we can not integrate up to l = ∞. We

investigate how the CUT behaves directly at the critical point J = 2Γ, where the energy

gap closes.

Next we discuss the ground state energy and compare the results for different orders with

the exact results given by Pfeuty [31]. The energy dispersion is evaluated for different

orders and values of J and it is again compared to the exact results. With the help of

the dispersion we can also obtain the energy gap as a function of J .

Finally, we look at the transverse magnetization Mz obtained by an observable trans-

formation.

6.1 Convergence of CUT

To monitor the convergence of the CUT, we previously introduced the residual off diag-

onality (ROD) in (4.4.37). Since all off diagonal terms also appear in the generator, the

ROD also serves as a norm for the generator.

For a system of finite size and a finite energy gap we generally expect that the ROD

decreases exponentially. We will see that this also holds for the TFIM if we stay below

the critical value J = 2Γ.

Once the ROD reaches a critical threshold (here 10−10), we consider the CUT completed

and stop the integration. The point in l where the threshold is reached strongly depends

on our expansion parameter J and the order of calculation.

A generic behaviour of the CUT is depicted in Fig. 6.1. Notice that the ROD is de-

creasing exponentially. The effect of different orders becomes conspicuous above l ≈ 2.

Increasing the parameter J has an even more significant effect, as we can see in Fig.

6.2. On the one hand, the initial value of the ROD at l = 0 rises, because the initial

Hamiltonian has a larger off-diagonal part. On the other hand, the speed of the expo-

nential decay decreases with higher values of J . This is expected, because the energy

gap begins to decrease.
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Figure 6.1: ROD for different orders and a fixed value of J = 1.0Γ.
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Figure 6.2: ROD for different values of J and a fixed order.
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Figure 6.3: ROD at the critical point J = 2Γ for different orders.

In general, for J 6= 2Γ, the CUT always converges exponentially. Therefore, we do not

need to introduce special generators such as the n : m generators in Ref. [26]. On the

other hand, upon approaching the critical point J = 2Γ, the threshold value of l begins

to rise, resulting in more time consuming numerical integration.

At the critical point the energy gap of the TFIM closes. In an exact CUT calculation

we would now only expect an algebraic decrease of the ROD. Due to the fact that we

exclusively consider finite order calculations, this behaviour is only true for small values

of l.

This effect is depicted in Fig. 6.3. It shows the ROD at the critical point J = 2Γ

for different orders. First, note that both scales are logarithmic, which implies that

straight lines represent power laws. Therefore, the envelope of all orders is an algebraic

declining function, as expected for an exact CUT. The power law fit reveals an exponent

of 1.5 ± 0.4. For higher values of l all RODs show an exponential decay, which implies

that for all finite orders the CUT still “sees” an effective gap. Due to the truncation of

the differential equation system, this error is suppressed with increasing order. Finally,

note that the threshold value of l for an order 256 at the critical point is about a factor

50 greater than the threshold value for an order 9 at J = 0.5Γ. This reinforces our

previous statement concerning the rise of the threshold value of l.

When going beyond the phase transition, the ROD again declines exponentially, but

much more slower than in the disordered phase. Furthermore, much of the weight is

concentrated in matrix elements connecting high ranges in real space. Therefore our

perturbative truncation scheme ignores many of the important physical processes. This

can be explained by the fact, that in the limit J → ∞, the elementary excitations are
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non-local domain walls. Within our localized description based on spin-flips, the CUT

is not able to catch this feature of the TFIM.

This should, however, not be seen as a general disadvantage of our method, because with

an adapted quasi-particle picture, such as a Kramers-Wannier duality transformation

[49], it should also be possible to describe the ordered phase with CUT.

6.2 Ground state energy

To evaluate the ground state energy of our effective, quasi-particle conserving model, we

refer the reader to Eq. (5.4.50). An exact expression for the ground state energy per

site was calculated by Pfeuty [31], see Eq. (3.2.15). As mentioned before, it is possible

to reach very high orders within the string operator framework. We were therefore able

to obtain the ground state energy per site up to order 256.

In the context of perturbative expansions for more complex models, this is a very high

order. Due to the fact that the number of representatives only rises linearly even higher

orders are accessible. Higher orders, however, do not improve the results significantly,

therefore we restrict ourselfs up to order 256. It is worth emphasizing that the phase

transition at J = 2Γ can not be described with any finite order calculation.

Figure 6.4 shows the exact result for the ground state energy per site in comparison to

various orders for the CUT. As expected, the precision of the CUT increases with higher

orders. Even close to the QCP the CUT of order 128 and the exact results can barely

be separated from each other.

To make a more quantitative statement we investigate the absolute difference of the

CUT calculation to the exact curve,

∆
E0

ΓN
=

∣∣E0 − E0,(CUT)

∣∣
ΓN

. (6.2.1)

This quantity is depicted in Fig. 6.5. First, note that we have taken the logarithm of

both, ∆ E0

ΓN
and J . Consequently straight lines represent power laws,

∆
E0

ΓN
= AxP , (6.2.2a)

⇒ log

(
∆
E0

ΓN

)
= log(A) + P log(x). (6.2.2b)

In this logarithmic scale, the QCP is located at log10

(
J
2Γ

)
= 0. A closer analysis reveals

that with increasing order, the ground state energy is obtained more and more accurately.

Furthermore all orders follow a power law whose exponent increases with the order.

This is reasonable because in a perturbative expansion we expect the errors to be in

O(xorder+1).

By fitting the curves to linear functions, using the Levenberg-Marquardt algorithm [50,

51], we obtain the exponents of the power laws. They are reported in Tab. 6.1.
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Ground state energy exponents
Order Exponent Fitting Error
9 10 ± 3
16 21 ± 4
32 33 ± 3
64 72 ± 6
128 132 ± 5

Table 6.1: Exponents of the power laws for the ground state energy obtained by fitting linear
functions.

-0.64

-0.62

-0.6

-0.58

-0.56

-0.54

-0.52

-0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
0

N
[Γ

]

J [Γ]

-0.637

-0.636

-0.635

-0.634

1.99 1.995 2

Order 3
Order 9

Order 32
Order 64

Order 128
Exact

Figure 6.4: Ground state energy per site as function of J . Comparison of the exact result with
various CUT orders.

As expected, the exponents are at least above and close the order of the calculation.

Additionally we want to investigate how the ground state energy of the effective model

evolves above the QCP. As explained before, beyond this point our quasi-particle picture

breaks down and we can not expect to obtain a quantitatively correct answer. For low

orders < 64 this holds true but surprisingly the ground state energy for higher orders is

described qualitatively correct, see also Fig. 6.6. Naturally, we are not able to achieve a

precision of < 10−10 as we did in the disorderd phase. Nevertheless, the value is correct

up to 10−2 for an order 256 even at the point J = 4Γ.

A possible explanation is the fact that the ground state energy is a fairly robust quantity

even beyond the QCP.
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6.3 Dispersion

In this section we consider the results for the energy dispersion of the TFIM. We refer

the reader to eq. (5.4.53) on how to obtain the energy dispersion from the effective

Hamiltonian.

The exact dispersion is given by the simple expression

ω(q) = Γ

√
1 +

J2

4Γ2
+
J

Γ
cos(q), (6.3.3)

see also Ref. [31]. Expanding this expression in the Parameter x = J/Γ yields

ω(q)

Γ
= 1 +

1

2
cos(q)x+

1

16
(1− cos(2q))x2 +

1

64
(− cos(k) + cos(3q))x3 +O(x4).

(6.3.4)

This shows us that hopping processes of even/odd parity appear only in even/odd orders.

The dispersion is an important quantity that can also be measured in experiments. We

will later see that the dispersion determines the position of the one-particle dynamical

structure factor in frequency space.

As before we were able to reach order 256 for the CUT calculation. Therefore we obtain

hopping matrix elements up to a maximum range of 256. For small parameters J , a low

order calculation is sufficient to achieve a good agreement with the exact result. This is

depicted in Fig. 6.7 and Fig. 6.8. Closer to the QCP this changes distinctly, see Fig. 6.9

and Fig. 6.10 , which makes higher order calculations necessary. Directly at the QCP

we are able to obtain the correct result within 10−5 over a large part of the Brillouin

zone.

This behaviour is expected, because the excitations become more and more dispersive

with increasing parameter J . Consequently, the correlation length increases rapidly

close to the QCP and hopping processes over more and more sites become important.

To include these physical processes we need higher orders, because the maximum range

that we can describe directly corresponds to the order of calculation.

A closer look exactly at the QCP also reveals that our calculation of the dispersion is

worst in the region of the critical wave vector q = π. Here, the energy gap closes and

our quasi-particle picture breaks down, see insets of Fig. 6.9 and Fig. 6.10.

Similar to the ground state energy we investigate how CUT predicts the dispersion

above the QCP. In the limit of J →∞ the elementary excitations become domain walls.

Domain walls are non-local in terms of spin flip excitations and they are not expected to

be described correctly by the CUT. Figure 6.11 shows the exact dispersion at J = 2.5Γ

and the CUT calculation of order 256. Interestingly, the CUT describes the upper half

of the dispersion with a precision of 0.001, but when approaching the critical wave vector

q = π the result strongly differs from the exact one.
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Figure 6.11: Energy dispersion at the QCP J = 2.5Γ. Comparison of the exact result with the
CUT calculation. The second CUT curve was filtered by a low pass so that only
the first 16 Fourier-coefficients contribute.

We therefore filtered the first 16 fourier-coefficients of the CUT calculation and compared

the resulting curve with the exact one. This improves the result significantly, especially

at the critical wave vector. However, this is a purely numerical observation and can

not be justified analytically. In particular the Fourier coefficents t+−n above 16 are not

converged, which is shown in Fig. 6.12.

Another interesting quantity that we can obtain using the dispersion is the energy gap

∆ of the lowest lying excitations. For all parameters J the gap is located at q = π in

the Brillouin zone. Using the exact dispersion (6.3.3) yields the following expression for

the gap as a function of the parameter J

∆(J) = Γ

∣∣∣∣1−
J

2Γ

∣∣∣∣ . (6.3.5)

Due to the linearity of this expression, all orders above zero of the CUT yield this graph

exactly up to numerical errors < 10−10 and up to the QCP. Figure 6.13 shows the exact

energy gap in comparison to the CUT calculations. Above the QCP the CUT continues

with the linear curve, which is expected in a perturbative truncation scheme in the small

Parameter J . The CUT is not able to catch the non differentiable point at J = 2Γ.

This fact also explains the above deviations of the dispersion for J > 2Γ. Because the

gap is forced to be a linear function, there is a constraint that forces the dispersion at

q = π to become negative above the QCP.
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6.4 Magnetization

6.4.1 Transverse magnetization

Last we examine the transverse magnetization given by the expression,

Mz = − 1

N

∑

j

〈g|σzj |g〉 = − 1

N
〈g|
∑

j

σzj |g〉 (6.4.6)

Note that ’transverse’ refers to the direction of the external field, which is in our model

the z-axis.

Here |g〉 denotes the ground state of the Hamiltonian, which is the zero particle state

after the CUT. In the limit J → 0 all spins are aligned along the external field. As a

result,

lim
J→0

Mz = 1, (6.4.7)

holds.

In the case J > 0 the spins are disturbed by the antiferromagnetic interaction, reducing

the transverse magnetization. An exact expression for this quantity was calculated by

Pfeuty in Ref. [31] and is given in Eq. (3.3.17).

To acquire the transverse magnetization in context of the CUT calculation, we transform

the observable σzj with the same unitary transformation onto an effective observable.

Note, that the corresponding operator can be expressed by a string operator by means

of

∑

j

σzj (l = 0) = T0. (6.4.8)

Due to this identity and the fact that the string algebra closes under the commutator,

we know that the final effective observable can be written as a linear combination of

string operators,

σzeff =
∑

j

σzj (l)
∣∣
l=∞ (6.4.9a)

= o0(∞)T0 +
∑

n

o+−
n (∞)

(
T+−
n + h.c.

)
+ o++

n (∞)
(
T++
n + h.c.

)
. (6.4.9b)

Note that all coefficients o+−
n and o++

n do not contribute to the zero particle expectation

values. However, they can not be ignored during the flow of the observable.

Finally, the transverse magnetization after the CUT is given by

Mz = − 1

N
〈0|σzeff |0〉 = o0(∞). (6.4.10)
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the CUT calculation. The inset shows a close view on the QCP.

Transverse magnetization exponents
Order Exponent Fitting Error
16 15 ± 1
32 31 ± 1
64 65 ± 2
128 129 ± 2

Table 6.2: Exponents of the power laws for the transverse magnetization obtained by fitting
linear functions.

Due to this simple form of the observable we could again reach very high orders even

for the observable transformation. For an order of 128 and J < 1.8Γ the results agree

up to the numerical precision of 10−10. The transverse magnetization calculated by the

CUT is shown in Fig. 6.14 in comparison to the exact result.

As expected the result improves with increasing order. For J > 2Γ we again see an

agreement for higher orders but with a systematic offset. This can be accounted to

the non-analytical point in the magnetization at J = 2Γ, which can not be described

properly by the CUT calculation in its present form.

To analyze the errors more quantitatively, Fig. 6.15 shows the difference between the

exact curve and the CUT calculation, similar to Eq. (6.2.1). First, notice that we have

taken the logarithm of both, ∆Mz as well as J . Consequently straight lines represent

power laws, see also (6.2.2b). By fitting the curves to linear functions we obtain the

exponents of the power laws. They are reported in Tab. 6.2. As expected, the exponents

are at least above and close to the order of the calculation.
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6.4.2 Longitudinal magnetization

Note that the order parameter in the TFIM is given by the longitudinal magnetization,

Mx = − 1

N

∑

j

〈g|σxj |g〉 . (6.4.11)

For J < 2Γ the longitudinal magnetization is zero, but it acquires a finite value for

J > 2Γ. Due to the fact that the observable σxj creates or annihilates an odd number

of excitations and the generator of the CUT preserves the parity of observables, the

longitudinal magnetization will always be zero within the CUT calculation, even above

the QCP.

One possibility to avoid this problem is to introduce symmetry breaking terms in the

Hamiltonian of the TFIM, such as a longitudinal field hxσx. However, such terms would

not be part of the string algebra and would therefore prevent access to higher order

calculations. Therefore, we concentrate on the transverse magnetization. Results, how-

ever, for dynamical longitudinal correlations are accessible and will be given in the next

chapter.
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6.5 Conclusions of the present chapter

In this chapter we investigated the static properties of the TFIM. First we analyzed the

convergence of the CUT by evaluating the ROD for various orders and parameter val-

ues. In general all RODs decayed exponentially, while the envelope at the QCP showed a

power law, as expected for an exact CUT. As a result we could already see the influence

of the QCP in the speed of convergence for the CUT.

It was shown that we can obtain the ground state energy per site in a high numerical

precision up to the QCP. Even above the QCP the results are still in a qualitative agree-

ment with the exact results, which was accredited to the robustness of the ground state

energy.

For the dispersion the results are in good agreement below the QCP. Above the QCP

the dispersion was only valid for small values of the wave vector q. Presumably, the

reason for this is a contstraint to the energy gap that forces the dispersion to become

negative at the critical wave vector q = π. A low pass filter was applied, which could

improve the results significantly even at the critical wave vector.

Last, we investigated the transverse magnetization, which was obtained by an observable

transformation. For high orders we achieved a good agreement with the exact results

up to the QCP. Above the QCP the transverse magnetization obtained a constant error,

which was attributed to the non-analytical point at J = 2Γ.

It is worth emphasizing that all results above the QCP have to be considered carefully,

because our local quasi-particle picture breaks down at this point. It is therefore remark-

able that many quantities, like the ground state energy, the transverse magnetization

and parts of the dispersion, are at least in qualitative agreement with the exact results.
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7 Dynamic results

In this chapter we will present and evaluate the dynamic results for the transverse field

Ising model. Here, ’dynamic’ refers to spectral properties such as the dynamical struc-

ture factor (DSF). The DSF is an important quantity because it is directly measurable

in scattering experiments. Furthermore, dynamical correlations strongly depend on the

model under study and often exhibit features which rely on the microscopic interactions

in the Hamiltonian. Examples can include bound states in antiferromagnetic spin lad-

ders [52] or the finite-temperature low-energy ’Villain’ modes [53,54].

In this chapter, we will concentrate on zero temperature dynamics, which is a valid ap-

proximation for the experiment as long as kbT � ∆, where ∆ is the energy gap of the

system under study.

Despite the fact that the TFIM is integrable, the calculation of dynamical correlations

remains a difficult and complex problem. For the transverse DSF, exact expressions can

be found for example in Ref. [38]. 2006 Hamer et al. proposed an analytic expression

for the one-particle longitudinal DSF [19], but to our knowledge there are no results

concerning higher quasi-particle spaces.

In the following, we will show our results for the transverse as well as for the longitudi-

nal DSF. For the transverse DSF our results agree very well with the exact expressions,

within numerical errors of the order of 10−5. The one-particle longitudinal results co-

incide with those proposed by Hamer et al. and therefore support their expression.

Furthermore, we will show three-particle longitudinal results for the TFIM. Hence we

will also investigate the higher particle spaces.

Other methods, such as the tDMRG [55] and exact diagonalization of finite chains, can

also yield expressions for the DSF. They are, however, often limited by finite size effects

or problems when transforming time dependent data into frequency space. This prob-

lem is avoided in the CUT calculation, because the calculation is done directly in the

thermodynamic limit and in frequency space.

Additionally, many other methods depend on the Jordan-Wigner-Transformation to map

the spin Hamiltonian onto fermions. Therefore, it is not possible to obtain longitudinal

correlations within this framework, because they are represented by an extensive string

of Fermi operators on the chain.

This problem is also avoided by the CUT, because we stay within the spin picture and

do not need extensive operators to describe these correlations.

Nevertheless, one disadvantage of our description is that our effective Hamiltonian is
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obtained by numerical integration, so we can not calculate analytical expressions for the

DSF.

7.1 Dynamical structure factor

The dynamical structure factor is defined as the Fourier transformation of the correlation

function 〈Sαl (t)Sβl′ 〉 in time and space,

Sαβ(ω,Q) =
1

N

∞∫

−∞

dt

2π

∑

l,l′

eiωte−iQ(l−l′)〈Sαl (t)Sβl′ 〉, (7.1.1a)

α, β ∈ {x, y, z} , (7.1.1b)

where Q denots the total momentum. In the following we restrict ourselves to the

diagonal part of the DSF, namely α = β.

The DSF is linked to the imaginary part of the retarded, zero temperature Green function

by the fluctuation-dissipation theorem at zero temperature, see for example Ref. [56],

Sαα(ω,Q) = − 1

π
ImGαα(ω,Q). (7.1.2)

In our context, at T = 0, it is useful to write this Green function as a resolvent

Gαα(ω,Q) = lim
δ→0+
〈g|Sα(−Q)

1

ω − (H(Q)− E0) + iδ
Sα(Q)|g〉, (7.1.3a)

ω ∈ R+,

in which E0 is the ground state energy and

Sα(Q) =
1√
N

∑

l

eiQlSαl (7.1.4)

is the Fourier transformed spin operator Sαl .

When integrating (7.1.1a) over energy we obtain the static or equal time structure

factor,

Sαα(Q) =
1

N

∑

l,l′

e−iQ(l−l′)〈Sαl Sαl′ 〉. (7.1.5)

Integrating again over the wave vector Q yields the total spectral weight, i.e., the sum

rule

Sαα =
1

N

∑

l

〈Sαl Sαl 〉 = (Sα)2 =
1

4
. (7.1.6)
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The sum rule allows us to evaluate how much weight is concentrated in certain quasi-

particle spaces [57].

Now we introduce the CUT framework, see also Ref. [52, 58], by inserting several iden-

tities UU † = 1 into Eq. (7.1.3a),

Gαα(ω,Q) = lim
δ→0+
〈g|UU †Sα(−Q)UU †

1

ω − (H(Q)− E0) + iδ
UU †Sα(Q)UU †|g〉,

(7.1.7)

where U denotes the continuous unitary transformation at l =∞

U = UCUT

∣∣
l=∞. (7.1.8)

Applying these unitary transformation to the states and operators yields

U † |g〉 = |0〉 , (7.1.9a)

U †Sα(Q)U = Sαeff(Q), (7.1.9b)

U †
1

ω − (H(Q)− E0) + iδ
U =

1

ω − (Heff(Q)− E0) + iδ
. (7.1.9c)

Note that the new ground state is given by the quasi-particle vacuum |0〉, because our

effective Hamiltonian is quasi-particle conserving and the pc generator sorts the quasi-

particle spaces according to energy. Furthermore we expect that the ground state does

not break particle conservation. Combining these expression with Eq. (7.1.7) and (7.1.2)

yields

Sαα(ω,Q) = − 1

π
Im lim

δ→0+
〈0|Sαeff(−Q)

1

ω − (Heff(Q)− E0) + iδ
Sαeff(Q)|0〉, (7.1.10)

which depends only on our effective Hamiltonian and effective observable obtained by

the CUT.

7.2 Splitting different quasi-particle spaces

In this section we specialize our consideration above to the string operator basis, see Eq.

(5.1.7). To calculate Sαα(ω,Q) in our effective model, we need to Fourier transform the

effective observables Sαeff . We therefore split the effective observable into terms according

to the number of particle creators σ+ and particle annihilators σ− they contain.
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Figure 7.1: Graphical illustration of the local observable transformation by the CUT. The ini-
tial observable is located at site r. Due to the CUT new terms appear in the
effective observable, which also act on neighboring sites. In this model the maxi-
mum range of the effective observable is given by the order of the calculation, but
most of the weight will be located near the site r if we are not to close the QCP.

The notation

Sαeff =
∞∑

c=0,a=0

Seff

∣∣c
a

(7.2.11)

introduces the operators Seff

∣∣c
a
, which create c particles and annihilate a particles. First

note that every operator with a 6= 0 simply yields

Seff

∣∣c
a6=0
|0〉 = 0 (7.2.12)

if it acts on the quasi-particle vacuum. Therefore, we can ignore these operators in the

case T = 0, because they do not contribute to the DSF.

Next we examine how the Fourier transformed effective observable acts on the quasi-

particle vacuum. First, note that according to Eq. (7.1.1a) we need a local effective

observable in order to define the Fourier transformed observables. Due to the CUT this

local observables acquires a finite extension, depending on the observable, the parameter

J and the order of calculation. This is depicted in Fig. 7.1. Investigating the action of

the effective observable on the zero-particle state |0〉 yields

Sαeff(Q) |0〉 =
1√
N

∑

r

eiQr
∑

c=0

Seff

∣∣c
0
|0〉

=
1√
N

∑

r,j

eiQrseff,j |0〉

+
1√
N

∑

r,d0,j

eiQrsd0
eff,j |r + d0〉 (7.2.13)

+
1√
N

∑

r,d0,d1,j

eiQrsd0,d1

eff,j |r + d0, r + d0 + d1〉

+
1√
N

∑

r,d0,d1,d2,j

eiQrsd0,d1,d2

eff,j |r + d0, r + d0 + d1, r + d0 + d1 + d2〉

+ . . .
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where we have introduced several new notations. First |r + d0〉 , d0 ∈ Z denotes a single

excited state at site r + d0, see also Eq. (5.1.10). Analogously, |r + d0, r + d0 + d1〉 is a

state with two excitations at sites r+d0 and r+d0+d1 and so on. Note that d1, d2 · · · > 0

due to the hardcore constraint and the indistinguishability of the particles. The effect

of the operator Seff

∣∣c
0

is split into the different sites it creates excitations. The values

seff,j, s
d0
eff,j, s

d0,d1

eff,j , . . . are the different prefactors of the operators. Note that in contrast

to the multi-particle-representation we need an additional index j because it is possible

to obtain two operators that create excitations on the same site without being the same

operator. For example take the two operators S+
r and S+

r S
z
r+1. They both create an

excitation on site r, but the latter one might changes the sign of the energy, depending

on the state of the neighbouring site. Thus, the index j is a multi-index to distinguish

all of these operators.

Because the effective Hamiltonian in Eq. (7.1.10) is particle conserving, we can now split

the DSF according to particle number,

Sαα(ω,Q) = Sαα0 (ω,Q) + Sαα1 (ω,Q) + Sαα2 (ω,Q) + . . . , (7.2.14)

where Sαα0 (ω,Q) = Sαα0 denotes the on site correlation, like M2
z for α = z.

7.2.1 One-particle case

For the one-particle structure factor, the state

Seff

∣∣1
0
(Q) |0〉 =

1√
N

∑

r,d0,j

eiQrsd0
eff,j |r + d0〉 (7.2.15)

must be considered. Shifting the r sum by d0 results in the expression

Seff

∣∣1
0
(Q) |0〉 =

1√
N

∑

r,d0,j

e−iQd0eiQ(r+d0)sd0
eff,j |r + d0〉 (7.2.16a)

=
∑

d0,j

sd0
eff,je

−iQd0

︸ ︷︷ ︸
:=s

d0
eff,j(Q)

|Q〉 (7.2.16b)

=
∑

d0,j

sd0
eff,j(Q) |Q〉 (7.2.16c)

which is in fact a one-particle state with momentum Q. From now on we refer to

this one-dimensional Hilbert space as H1
Q, which stands for the one-particle excitations

with total momentum Q. In this case the evaluation of the resolvent in Eq. (7.1.10) is
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analytically possible,

Sαα1 (ω,Q) = − 1

π
Im lim

δ→0+
〈Q|

(∑

d0,j

sd0
eff,j(Q)

)∗
1

ω − (H(Q)− E0) + iδ

(∑

d0,j

sd0
eff,j(Q)

)
|Q〉

(7.2.17a)

= −
∣∣∣∣∣
∑

d0,j

sd0
eff,j(Q)

∣∣∣∣∣

2
1

π
Im lim

δ→0+

1

ω − ω(Q) + iδ
, (7.2.17b)

= −
∣∣∣∣∣
∑

d0,j

sd0
eff,j(Q)

∣∣∣∣∣

2
1

π
Im

(
P 1

ω − ω(Q)
− iπδ(ω − ω(Q))

)
, (7.2.17c)

=

∣∣∣∣∣
∑

d0,j

sd0
eff,j(Q)

∣∣∣∣∣

2

δ(ω − ω(Q)), (7.2.17d)

which is just the one-particle static structure factor multiplied with a delta function in

energy space. Note that we have used Dirac’s identity,

lim
δ→0+

1

ω − ω0 + iδ
= P 1

ω − ω0

− iπδ(ω − ω0), (7.2.18)

in Eq. (7.2.17c).

7.2.2 Two-particle case

For the two-particle structure factor the state

Seff

∣∣2
0
(Q) |0〉 =

1√
N

∑

r,d0,d1,j

eiQrsd0,d1

eff,j |r + d0, r + d0 + d1〉 (7.2.19)

must be considered. Shifting the exponent by d0 + d1/2, the center of mass, results in

the expression

Seff

∣∣2
0
(Q) |0〉 =

∑

d0,d1,j

e−iQ(d0+d1/2)sd0,d1

eff,j

1√
N

∑

r

eiQ(r+d0+d1/2) |r + d0, r + d0 + d1〉
︸ ︷︷ ︸

:=|Q,d1〉

(7.2.20a)

=
∑

d0,d1,j

e−iQ(d0+d1/2)sd0,d1

eff,j︸ ︷︷ ︸
:=s

d0,d1
eff,j (Q)

|Q, d1〉 (7.2.20b)

=
∑

d0,d1,j

sd0,d1

eff,j (Q) |Q, d1〉 (7.2.20c)

where we have introduced |Q, d1〉 which is the Fourier transformation of a two-particle

state with distance d1. From now on we refer to this Hilbert space as H2
Q, which stands

for the two-particle excitations with total momentum Q. Note that the action of Heff is
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trivial in the zero and one-particle case. But it must be carefully analyzed in the multi-

particle case due to the hardcore constraint. We emphasize the structure of the effective

Hamiltonian in Eq. (5.4.49). Hence we analyze the action of the operators T0, T
+−
n , T−+

n

separately. Starting with the simple operator T0 yields

t0(∞)T0 |Q, d1〉 = t0(∞)T0
1√
N

∑

r

eiQ(r+d0+d1/2) |r + d0, r + d0 + d1〉 (7.2.21a)

= t0(∞)(−N + 4)
1√
N

∑

r

eiQ(r+d0+d1/2) |r + d0, r + d0 + d1〉 (7.2.21b)

= (E0 + 4t0(∞)) |Q, d1〉 . (7.2.21c)

Note that we substract the ground state energy in Eq. (7.1.10) which can therefore be

left out in the action of Heff . Next we analyze the action of the operator T+−
n ,

∑

n

t+−n (∞)T+−
n |Q, d1〉 =

∑

n

(−1)n−1t+−n (∞)eiQn/2 |Q, d1 + n〉

+
∑

n<d1

(−1)n−1t+−n (∞)eiQn/2 |Q, d1 − n〉 (7.2.22)

+
∑

n>d1

(−1)nt+−n (∞)eiQn/2 |Q, n− d1〉 ,

and of the operator T−+
n ,

∑

n

t+−n (∞)T−+
n |Q, d1〉 =

∑

n

(−1)n−1t+−n (∞)e−iQn/2 |Q, d1 + n〉

+
∑

n<d1

(−1)n−1t+−n (∞)e−iQn/2 |Q, d1 − n〉 (7.2.23)

+
∑

n>d1

(−1)nt+−n (∞)e−iQn/2 |Q, n− d1〉 .

Note the different signs of the second and third term due to string operator property.

The remaining task of evaluating the resolvent in Eq. (7.1.10) will be considered in

section 7.3.

7.2.3 Three-particle case

For the three-particle structure factor the state

Seff

∣∣3
0
(Q) |0〉 =

1√
N

∑

r,d0,d1,d2,j

eiQrsd0,d1,d2

eff,j |r + d0, r + d0 + d1, r + d0 + d1 + d2〉 (7.2.24)
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must be considered. Shifting the exponent by d0 + 2d1/3 +d2/3 results in the expression

Seff

∣∣3
0
(Q) |0〉 =

∑

d0,d1,d2,j

e−iQ(d0+2d1/3+d2/3)sd0,d1,d2

eff,j (7.2.25a)

· 1√
N

∑

r

eiQ(r+d0+2d1/3+d2/3) |r + d0, r + d0 + d1, r + d0 + d1 + d2〉
︸ ︷︷ ︸

:=|Q,d1,d2〉

(7.2.25b)

=
∑

d0,d1,d2,j

e−iQ(d0+2d1/3+d2/3)sd0,d1,d2

eff,j︸ ︷︷ ︸
:=s

d0,d1,d2
eff,j (Q)

|Q, d1, d2〉 (7.2.25c)

=
∑

d0,d1,d2,j

sd0,d1,d2

eff,j (Q) |Q, d1, d2〉 (7.2.25d)

where we have introduced |Q, d1, d2〉, which is the Fourier transformation of a three-

particle state with distance d1 between the first two particles and distance d2 between

the second two particles. From now on we refer to this Hilbert space as H3
Q, which stands

for the three-particle excitations with total momentum Q. Similary to the two-particle

state we examine the action of the effective Hamiltonian on the three-particle state. The

simple operator T0 yields

t0(∞)T0 |Q, d1, d2〉 = t0(∞)(−N + 6) |Q, d1, d2〉 (7.2.26a)

= (E0 + 6t0(∞)) |Q, d1, d2〉 . (7.2.26b)

Next we analyze the action of the operator T+−
n ,

∑

n

t+−n (∞)T+−
n |Q, d1, d2〉 =

∑

n

(−1)n−1t+−n (∞)eiQn/3 |Q, d1 + n, d2〉

+
∑

n<d1

(−1)n−1t+−n (∞)eiQn/3 |Q, d1 − n, d2 + n〉

+
∑

n>d1

(−1)nt+−n (∞)eiQn/3 |Q, n− d1, d2 + d1〉 (7.2.27)

+
∑

n<d2

(−1)n−1t+−n (∞)eiQn/3 |Q, d1, d2 − n〉

+
∑

d1+d2>n>d2

(−1)nt+−n (∞)eiQn/3 |Q, d1 + d2 − n, n− d2)〉

+
∑

n>d1+d2

(−1)n−1t+−n (∞)eiQn/3 |Q, n− d1 − d2, d1)〉 ,
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and of the operator T−+
n ,

∑

n

t+−n (∞)T−+
n |Q, d1, d2〉 =

∑

n

(−1)n−1t+−n (∞)e−iQn/3 |Q, d1, d2 + n〉

+
∑

n<d2

(−1)n−1t+−n (∞)e−iQn/3 |Q, d1 + n, d2 − n〉

+
∑

n>d2

(−1)nt+−n (∞)e−iQn/3 |Q, d1 + d2, n− d2〉 (7.2.28)

+
∑

n<d1

(−1)n−1t+−n (∞)e−iQn/3 |Q, d1 − n, d2〉

+
∑

d1+d2>n>d1

(−1)nt+−n (∞)e−iQn/3 |Q, n− d1, d1 + d2 − n〉

+
∑

n>d1+d2

(−1)n−1t+−n (∞)e−iQn/3 |Q, d2, n− d1 − d2〉 .

The remaining task of evaluating the resolvent in Eq. (7.1.10) will be considered in

section 7.3.

7.3 Lanczos algorithm and continued fraction

representation

As we have already seen in Eq. (7.2.14) the DSF can be divided into different quasi-

particle subspaces. Furthermore we have shown that,

Heff : Hc
Q → Hc

Q , c ∈,N+. (7.3.29)

holds for the effective Hamiltonian.

We use this property to evaluate the resolvent in Eq. (7.1.10) by means of a Lanczos

tridiagonalization and a continued fraction representation of the resolvent, see Ref. [59,

60]. The basic idea is to transform the effective Hamiltonian into a basis, in which its

action on the states in Hc
Q is given by a tridiagonal matrix. Then the resolvent can be

expressed as a continued fraction of the kind

〈0|Sαeff

∣∣c
0
(−Q)

1

ω − (Heff(Q)− E0)
Sαeff

∣∣c
0
(Q)|0〉) =

b2
0

ω − a0 − b21

ω−a1−
b22

...

, (7.3.30)
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where the coefficients an and bn are the matrix elements of the tridiagonal matrix rep-

resentation of the effective Hamiltonian

Heff

∣∣c
Q,tri
− E0 =




a0 b1 0 0 . . .

b1 a1 b2 0 . . .

0 b2 a2
. . .

0 0
. . . . . .

...
...



. (7.3.31)

Here, the matrix itself depends on the momentum Q and the quasi-particle space c. To

obtain these matrix elements we use the Lanczos tridiagonalization, see Ref. [59,60].

It is worth emphasizing that we only need to know the action of the effective Hamiltonian

on a state ~v ∈ Hc
Q in order to obtain the required continued fraction coefficients an and

bn. This action was already calculated in the previous two sections and can now be

used for the Lanczos tridiagonalization. For a more detailed discussion of the Lanczos

algorithm, see Ref. [61].

The pattern to obtain the continued fraction coefficients reads

~v0 = Seff

∣∣c
0
(Q) |0〉 (7.3.32a)

bn = |vn| (7.3.32b)

~un =
~vn
bn

(7.3.32c)

an = ~uT
nHeff~un (7.3.32d)

~vn+1 =




Heff~un − an~un − bn~un−1 if n > 0

Heff~u0 − a0~u0 if n = 0
(7.3.32e)

with n ∈ N0. As we can see, the algorithm consists of the multiple application of the

Hamiltonian Heff on the start vector ~v0 and a Gram-Schmidt orthogonalization. Note

that the starting vectors were already calculated in the previous sections.

7.3.1 Errors

In the following sections we investigate one-, two- and three-particle spectral densities.

The one-particle case can be treated fairly simply as we have seen before. For the

two- and three-particle cases, however, we need to employ the Lanczos algorithm, which

induces additional numerical errors. On the one hand, it is impossible to achieve an

infinite depth in the continued fraction in Eq. (7.3.30). We deal with this problem by

the use of appropiate terminators [52, 59,60].

On the other hand, the Hilbert spaces Hc
Q c > 1 are of infinite dimension and the action

of the effective Hamiltonian must be truncated to a suitable subspace. This is done by
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introducing a maximum range between the multi-particle excitations. This means that

the relative distances d1, in the case H2
Q, and d1, d2, in the case H3

Q, will be restricted

to a maximum range dmax,

|Q, d1〉 → d1 < dmax (7.3.33a)

|Q, d1, d2〉 → d1, d2 < dmax. (7.3.33b)

To obtain a negligible computation time, the maximum range in the two-particle case

will be around 4000, while we restrict ourselves to a maximum of 200 in the three-particle

case.

The error introduced by this truncation becomes significant once the correlation length

times the maximum number of considered continued fraction coefficients is greater than

these values. Otherwise we would truncate a large amount of the physics we want to

describe. It is therefore negligible if we restrict ourselves to parameters J < 1.9Γ.

A more quantitative analysis of this fact will be considered in the following sections.

7.3.2 Termination

The result of the tridiagonalization is a finite set of continued fraction coefficients an

and bn. Considering the form of the DSF in Eq. (7.1.10) and the continued fraction

(7.3.30), we still have to take the imaginary part of the limit δ → 0+. For any finite

continued fraction this results in the sum of δ-functions. This is correct for any finite

size system, but in the thermodynamic limit we expect the spectral density to be a

continuous function of ω and Q with δ-functions only located at discrete states such as

bound states.

The position of the upper and lower edge of multi-particle continua is determined by

the single particle dispersion through

ωcmax = max
q1+q2+...qc=Q

c∑

i=1

ω(qi) (7.3.34a)

ωcmin = min
q1+q2+...qc=Q

c∑

i=1

ω(qi), (7.3.34b)

in which the max/min is obtained under the constraint of total momentum conservation.

For a connected continuum it can be shown that the corresponding continued fraction

coefficients approach limits which are directly connected to the position of the upper

and lower edge of the continuum [52,59,60],

a∞ =
ωcmax + ωcmin

2
(7.3.35a)

b∞ =
ωcmax − ωcmin

4
. (7.3.35b)
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One way to achieve a finite broadining is to take iδ as a finite value. Then all delta

functions will become Lorentzians. This can be applied when trying to simulate finite

resolution effects in experiments. An example is depicted in Fig. 7.2.

Another way is to use a suitable function to terminate the continued fraction and to

obtain a continuous spectral density. The easiest way to explain this is the following

example: Let

an = a ∀n (7.3.36a)

bn = b ∀n (7.3.36b)

then the Green function can be written as

G(ω) = lim
δ→0+

b2

ω + iδ − a− b2

ω+iδ−a− b2

...

=
b2

ω − a− τ(ω)
, (7.3.37)

where τ(ω) denotes our terminator. Due to the self-similarity of the terminator and the

Green function in Eq. (7.3.37) we can deduct

⇒ τ(ω) = G(ω) (7.3.38)

for this special case. Then,

τ 2(ω) + (a− ω)τ(ω) + b2 = 0 (7.3.39)

holds. In this case we can calculate the corresponding spectral density exactly by

⇒ Sαα(ω) = − 1

π
ImG(ω) (7.3.40a)

= − 1

π
Im

1

2

(
ω − a− i

√
4b2 − (ω − a)2

)

︸ ︷︷ ︸
τ(ω)

(7.3.40b)

This simple example shows the main advantage of terminators in comparison to trun-

cation of the finite continued fraction, see Fig. 7.2. For our simple example spectral

density the calculation with a terminator even obtains the exact spectral density. In

practice the condition (7.3.36a) and (7.3.36b) does not hold exactly, however once the

continued fraction coefficients have converged close enough to the limits a∞ and b∞, we

can insert the square root terminator (7.3.40b) to obtain a smooth continuous function

of ω. Furthermore it is possible to check the level of convergence, because we can obtain

the limits a∞ and b∞ from the one-particle dispersion analytically.
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Figure 7.2: Graphical illustration of the finite broadening effect. The exact spectral density is
shown as the black curve. This is also the curve obtained by the use of the square
root terminator. The parameters of the exact density are a = 0 and b = 1. The
red curve is the finite continued fraction of depth four with a finite broadening of
δ = 0.1.

7.3.3 Band edge singularities

Another piece of information that can be obtained from the sequence an and bn are the

exponents of the band edge singularities, see also Fig. 7.3. They are directly connected

to the asymptotically terms in an → a∞ and bn → b∞. A more detailed analysis reveals

that

an = a∞ + b∞
β2 − α2

2n2
+O

(
1

n3

)
(7.3.41a)

bn = b∞ + b∞
1− 2α2 − 2β2

8n2
+O

(
1

n3

)
, (7.3.41b)

holds for algebraic singularities at the band edges, see Ref. [59]. This relation allows us

to obtain the band edge singularities up to the signs by fitting a function of the kind

f(x) = C +
D

x2
(7.3.42)

to the obtained continued fraction coefficients.
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Figure 7.3: Graphical illustration of the band edge singularities in the DSF.

This approach is limited by two facts. On the one hand we need to choose a lower

bound for n high enough, so that the terms in O
(

1
n3

)
are already small to obtain a

useful fit. On the other hand we need to choose a upper bound for n low enough, so

that the limitation of the Hilbert space in the Lanczos tridiagonalization does not spoil

the convergence of the sequences {an, bn}.
Due to these complementary requirements, the obtained exponents can contain rather

large numerical errors.

For two free hardcore particles on a chain, the band edge singularities are known to be

α = β = 1/2, see Ref. [62, 63]. We expect this behaviour also to be true in the case of

the TFIM because here the particle interaction does not exist in the exact solution. In

general we expect to see a change in the singularities once a bound state merges with a

continuum of states, see also Ref. [52].

In the case α = β = 1/2 the constraints (7.3.41a) and (7.3.41b) yield

an = a∞ +O
(

1

n3

)
(7.3.43a)

bn = b∞ +O
(

1

n3

)
. (7.3.43b)

We confirm this assumption in the two-particle case later in this chapter.
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7.4 Szz dynamical structure factor

In this section we investigate the transverse structure factor Szz. Due to the fact that

the observable σz stays local in the Jordan-Wigner representation of the TFIM, the DSF

can also be obtained analytically. Exact expressions can be found in Ref. [38] and in the

zero temperature case read

Szz(Q,ω) =

π∫

−π

dk1
1− f(Q, k1)

4
δ(ω − ω(k1 −Q/2)− ω(k1 +Q/2)), (7.4.44)

with

f(Q, k1) =

(
Γ + J

2
cos(k1 −Q/2)

) (
Γ + J

2
cos(k1 +Q/2)

)

ω(k1 −Q/2)ω(k1 +Q/2)
. (7.4.45)

As we can see in the δ-function in Eq. (7.4.44) the DSF only consists of a two-particle

continuum. Note that even with rising parameter J , no weight is shifted towards higher

particle spaces. We emphasize that this fact can easily be explained within the string

operator algebra. The corresponding local operator σzj = Oj,0 is part of the string

algebra, therefore our effective observable after the CUT consists of a linear combination

of string operators,

σzj,eff =
∑

d

oj+dOj+d,0 +
∑

d,n

o+−
j+d,n(O+−

j+d,n + h.c.) + o++
j+d,n(O++

j+d,n + h.c.) (7.4.46)

where the maximum range n is limited by the order of calculation. Therefore, our

starting vector can at most create two excitations in the system.

Another side effect of the string property is that we can again reach very high orders,

even for our local observable transformation. Because we have to transform a non

translational-invariant operator, we additionally have to consider the positions j+d and

the starting site j. Therefore the computation time increases significantly but we were

still able to achieve a maximum order of 128.

Once the local observable transformation is completed, we calculate the starting vector

σzeff

∣∣2
0
(Q) |0〉. Note that for computational reasons we consider the Pauli matrices σ

instead of the spin operators S. This modifies our sum rule in Eq. (7.1.6). Then we

apply the Lanczos algorithm in order to obtain the continued fraction coefficients. Note

that we also need the effective Hamiltonian Heff for the Lanczos tridiagonalization. With

the help of the continued fraction coefficients and the square root terminator we finally

obtain the DSF.

Note that the restriction to a fixed quasi-particle subspace is only possible with the

effective Hamiltonian and the effective observable, because in the original Hamiltonian

particle number conservation does not hold.

Overview plots for the DSF obtained in this way are shown in Figs. 7.4, 7.5 and 7.6,
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all for an order 128. In these plots we see the two-particle continuum in dependence of

total momentum Q and energy ω.

First note that the overall two-particle intensity rises for larger parameters J . This is

due to the fact the transverse magnetization decreases and therefore spectral weight is

gained in the two-particle channel.

Furthermore we see that for small parameters most of the weight is concentrated in the

lower branch of the Brillouin zone while this swaps upon going to larger parameters.

Note the singularity inside the continuum on the right side of the Brillouin zone that

separates two regions with low and high spectral weight, clearly visible for the case

J = 1.9Γ. Knowing the exact expression (7.4.44) we can argue that this originates

from the δ-function and therefore from the two-particle density of states, as the function

f(Q, k1) is smooth and differentiable everywhere as long as J < 2Γ.

An additional feature is the rise of the two-particle bandwith of the DSF upon increasing

J . For J = 0 the two-particle continuum is zero everywhere. Then, a finite particle

hopping creates a two-particle contiuum centered around the line ω = 2Γ. This can

be attributed to the one-particle energy ω(q) becoming more and more dispersive with

rising parameter. Note that the minimal two-particle energy is always located at Q = 0

which can be explained by two particles having momenta q1 = π and q2 = −π and

therefore an energy which is twice the energy gap.
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Figure 7.4: The DSF Szz for the parameter J = Γ. The maximum range for the Lanczos
algorithm is dmax = 1000 sites, the continued fraction was evaluated to a depth
of 50 and then terminated by the square root terminator. The color indicates
the spectral density, see legend to the right. The upper and lower edge of the
two-particle continuum are indicated by white lines.
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Figure 7.5: The DSF Szz for the parameter J = 1.5Γ. The maximum range for the Lanczos
algorithm is dmax = 1000 sites, the continued fraction was evaluated to a depth
of 50 and then terminated by the square root terminator. The color indicates
the spectral density, see legend to the right. The upper and lower edge of the
two-particle continuum are indicated by white lines.
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Figure 7.6: The DSF Szz for the parameter J = 1.9Γ. The maximum range for the Lanczos
algorithm is dmax = 1000 sites, the continued fraction was evaluated to a depth
of 50 and then terminated by the square root terminator. The color indicates
the spectral density, see legend to the right. The upper and lower edge of the
two-particle continuum are indicated by white lines.
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We want to investigate more profoundly how the CUT calculation differs from the exact

calculation by examining the DSF for fixed parameters J and total momenta Q. This

is depicted in Figs. 7.7, 7.8 and 7.9. The plot shows Szz for the parameters J = Γ,

J = 1.5Γ and J = 1.9Γ and for the momenta Q = 0.1π, Q = π/2 and Q = π, calculated

by the CUT in order 128 in comparison with the exact result.

First note the very good agreement for all parameters and momenta. The form of the

DSF is very close to a half ellipse, which is reasonable because the continued fraction

coefficients converge very quickly towards their final values a∞ and b∞. This fast con-

vergence is close to the case in Eq. (7.3.40b), where the exact DSF is given by a half

ellpise.

With rising parameter J more spectral weight is concentrated at the lower band edge,

which can be attributed to a complex interplay between momentum- and energy-conservation.

For the parameter J = 1.9 and Q = π/2 we also see the singularity inside the continuum

of the DSF which separates the two regions of spectral weight.
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Figure 7.7: DSF Szz for the parameter J = Γ for three total momenta Q. The maximum
range for the Lanczos algorithm is dmax = 4000 sites, the continued fraction was
evaluated to a depth of 100 and then terminated by the square root terminator.
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Figure 7.8: DSF Szz for the parameter J = 1.5Γ for three total momenta Q. The maximum
range for the Lanczos algorithm is dmax = 4000 sites, the continued fraction was
evaluated to a depth of 100 and then terminated by the square root terminator.
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Figure 7.9: DSF Szz for the parameter J = 1.9Γ for three total momenta Q. The maximum
range for the Lanczos algorithm is dmax = 4000 sites, the continued fraction was
evaluated to a depth of 100 and then terminated by the square root terminator.
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To investigate the numerical errors in more detail, we look at the absolute difference

between the exact DSF and the CUT calculation. This quantity is depicted in Figs.

7.10, 7.11 and 7.12 for the same parameters and momenta as above. Note that the left

hand scala is logarithmic. By comparing the different graphs it becomes obvious that

the error strongly depends on the total momentum Q. The error is lower in the middle

of the continuum than at the band edge singularities. This is expected due to the strong

change of the DSF at these points.

On average the error is below 10−6Γ−1 even for large parameters J . We deduce that

the errors are mainly produced by inaccuarcies in the Lanczos tridiagonlization and the

limitation of the maximum range in the transformation of the observable by the CUT.

Nonetheless the errors are still very small and justifiy our approach.
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Figure 7.10: Difference of the exact DSF Szz and the CUT calculation for the parameter J = Γ.
The maximum range for the Lanczos algorithm is dmax = 4000 sites, the continued
fraction was evaluated to a depth of 100 and then terminated by the square root
terminator.
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Figure 7.11: Difference of the exact DSF Szz and the CUT calculation for the parameter J =
1.5Γ. The maximum range for the Lanczos algorithm is dmax = 4000 sites, the
continued fraction was evaluated to a depth of 100 and then terminated by the
square root terminator.
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Figure 7.12: Difference of the exact DSF Szz and the CUT calculation for the parameter J =
1.9Γ. The maximum range for the Lanczos algorithm is dmax = 4000 sites, the
continued fraction was evaluated to a depth of 100 and then terminated by the
square root terminator.
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Figure 7.13: Continued fraction coefficients for the case J = 1.5Γ and total momenta Q = 0
and Q = π/2. The upper plot shows the first ten coefficients converging rapidly to
their limit values indicated by horizontal lines. The lower plot shows the absolute
difference between the coefficients and their final values.

Next we investigate how the continued fraction coefficients approach their limit values

and how the limitation of the considered Hilbert space hampers the convergence. The

continued fraction coefficients for the case J = 1.5Γ and total momenta Q = 0 and

Q = π/2 are shown in Fig. 7.13.

The coefficients for the case Q = 0 approach their limit even exponentially. Therefore

we know by Eq. (7.3.41a) and Eq. (7.3.41b) that the exponent of the band edges are

both 1/2, as expected.

For the case Q = π/2 the coefficients do not converge so rapidly, which is still plausible.

Therefore we plotted the coefficients for this case versus 1/n2 to check if they are in

O(1/n2), see Fig. 7.14. Both coefficients oscillate around the final value which can not

be described by Eq. (7.3.41a) and Eq. (7.3.41b). This again verifies that the exponents

are 1/2.

Note that the limitation to a finite Hilbert space can have a strong effect on the conver-

gence of the continued fraction coefficents. This is shown in Fig. 7.15. By reducing the

maximum range to 200 sites the convergence of the continued fraction coefficients is first

lowered and finally spoiled completely at n ≈ 55, which supports our previous statement

concerning the extraction of exponents from the continued fraction coefficients.
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sites. At n ≈ 55 the restriction of the Hilbert space spoils the convergences of the
coefficients.
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7.5 Sxx dynamical structure factor

In this section we discuss the results for the longitudinal structure factor Sxx. Since σx

creates an odd number of particles and the generator of the CUT preserves the parity

of an observable, the DSF Sxx consists of 1, 3, 5, . . . particle contributions.

In Ref. [19] Hamer et al. proposed an analytic expression for the one-particle contri-

bution. To our knowledge no data is available in literature for higher quasi-particle

contributions.

In the first part of this section we present our results for the one-particle contribution

to the longitudinal DSF. We compare our results to those of Hamer et al. In the second

part we consider the three-particle contribution to Sxx as an example of higher quasi-

particle spaces.

Note that the local observable σxj transforms into a non-local operator under the Jordan-

Wigner transformation, acting on an extensive number of sites. Therefore, no easy anal-

ysis of this observable in fermionic terms is possible. This problem is avoided in the

string operator basis (5.1.7). On the other hand, the observable σxj is not part of the

string algebra, therefore its structure is more complicated, see Eq. (5.4.56a). This com-

plicated structure prevents us from achieving very high orders, because the number of

representatives to track grows exponentially with every order.

We were, however, able to obtain results up to order 38. Here the computational effort

reaches its limit, because the contributions to the differential equation system take more

than 8 GB of memory.

7.5.1 One-particle contributions

As explained in section 7.2.1 the one-particle structure factor consists of the equal time

structure factor and a δ-function in energy space,

Sxx1 (ω,Q) =

∣∣∣∣∣
∑

d0,j

sd0
eff,j(Q)

∣∣∣∣∣

2

︸ ︷︷ ︸
Sxx

1 (Q)

δ(ω − ω(Q)). (7.5.47)

Therefore our quantity of interest is the one-particle equal time structure factor Sxx1 (Q).

Within the CUT framework this quantity can be exctracted from the effective observable

σxj,eff , by Fourier transformation of the terms that create exactly one particle. Note that

for computational reasons we consider the Pauli matrices σ instead of the spin operators

S. This only modifies our sum rule in Eq. (7.1.6).
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Figure 7.16: Overview of the one-particle equal time structure factor Sxx1 (Q) for different pa-
rameters J . For J → 2Γ the value at Q = π diverges although the integral remains
finite.

In 2006 Hamer et al. analyzed the one-particle spectral weights of the TFIM and pro-

posed the analytic expression

Sxx1 (Q) =

[
1−

(
J
2Γ

)2
] 1

4

ω(Q)
. (7.5.48)

In the following we refer to this expression as the exact one and compare it to our results.

An overview of the exact equal time structure factor is given in Fig. 7.16. We can see

that the structure factor at Q = π diverges when J → 2Γ. Note that the divergence

of the structure factor is expected and the exponents can be described within a general

scaling theory developed by Sachdev [16].

In Figs. 7.17, 7.18 and 7.19 we compare the CUT results with the exact expression for the

parameters J = Γ, J = 1.5Γ and J = 1.9Γ. As expected the results become worse upon

approaching the QCP. A closer analysis reveals that the highest absolute error occurs

at the critical wave vector Q = π. The DSF diverges at this point, so that the relative

error, not shown in the graphs, remains essentially constant over the whole Brillouin

zone.

The plot for the parameter J = 1.9Γ also shows that the results improve on passing

to higher orders. Consequently our results differ only by about of 1% even close to the

QCP at J = 1.9Γ. Therefore, we agree with the results obtained by Hamer et al.
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Figure 7.17: One-particle equal time structure factor Sxx1 (Q) for the parameter J = Γ. Com-
parison of the exact expression with the CUT results. The inset shows the absolute
difference between the exact curve and the CUT.
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Figure 7.18: One-particle equal time structure factor Sxx1 (Q) for the parameter J = 1.5Γ.
Comparison of the exact expression with the CUT results. The inset shows the
absolute difference between the exact curve and the CUT.
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Figure 7.19: One-particle equal time structure factor Sxx1 (Q) for the parameter J = 1.9Γ.
Comparison of the exact expression with the CUT results. The inset shows the
absolute difference between the exact curve and the CUT.

Another quantity of interest is the integrated equal time structure factor, known as the

one-particle spectral weight,

Sxx1 =
1

π

π∫

0

Sxx1 (Q)dQ. (7.5.49)

As explained before, the absolute spectral weight for all particle channels is fixed by a

sum rule. Therefore the relative one-particle spectral weight measures the intensity of

one-particle excitations in comparison to the weight in higher particle excitations.

This quantity is depicted in Fig. 7.20. As we can see, this quantity shows a very sharp

edge at J ≈ 2Γ and has a singularity at the QCP. To explain this sharp edge we also

display the correlation length ξ on the upper x-axis. This quantity is given approximately

by the expression

ξ ≈ v

∆
(7.5.50)

where ∆ is the energy gap and v is the spin wave velocity. The latter can be obtained

by fitting 2v cos(Q/2) to the maximum of the dispersion. Hence the correlation length

diverges at the QCP when the energy gap closes. The CUT agrees very well with

the exact results as long as the order of calculation is below the correlation length,

because with every order we can describe approximatly one additional range of physical

processes.
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Figure 7.20: One-particle spectral weight as function of the parameter J . Comparison of the
exact expression with the CUT results. The inset shows the absolute difference
between the exact curve and the CUT.

In our previous considerations this was no problem because we were able to achieve

orders > 100. Due to the very sharp edge of the one-particle spectral weight the CUT

is not able to capture this feature. But the agreement improves on increasing order.

7.5.2 Three-particle contributions

As in the two-particle Szz(ω,Q) case, the three-particle case Sxx3 (ω,Q) consists of a con-

tinuum of states. We are again limited to a maximum order 38, including the reduction

of the DES, due to the complicated structure of the local observable σx.

Once the local observable transformation is completed, we calculate the starting vector

σxeff

∣∣3
0
(Q) |0〉. Then we apply the Lanczos algorithm in order to obtain the continued frac-

tion coefficients. Note that we also need the effective Hamiltonian Heff for the Lanczos

tridiagonalization. With the help of the continued fraction coefficients and the square

root terminator we then obtain the DSF.

In contrast to the two-particle case we have to deal with two relative distances d1 and

d2. If we restrict these distances to dmax, the considered Hilbertspace has a size of d2
max

and it is therefore limited to smaller values than in the two-particle case. Therefore

the coefficients must be carefully checked to avoid spoiled convergence due to the finite

range in the multi-particle states.

We again stress that the restriction to a fixed particle number space is only possible with

the effective Hamiltonian and the effective observable, because the original Hamiltonian
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is not particle number conserving.

Overview plots for the DSF obtained in this way are found in Figs. 7.21, 7.22 and 7.23,

all for an order 38. In these plots we see the three-particle continuum in dependence of

total momentum Q and energy ω.

Note that the overall intensity rises when increasing the coupling J , because spectral

weight is transferred from the one-particle sector to the higher quasi-particle channels,

compare Refs. [24–26].

In addition we notice that most of the spectral weight is concentrated in the lower half

of the Brillouin zone for small parameters J . This slowly shifts for growing parameters

similar to the Szz case.

For J = 1.9Γ most of the spectral weight is concentrated rather sharply at the lower edge

of the continuum. This is in partial agreement with the Szz case, where this tendency

can be observerd as well. Still the shape of the DSF differs strongly from the semi ellipse

case.

Furthermore, we notice a slight wiggling for the case J = 1.9Γ, which must be attributed

to the finite order calculation and to inaccuracies due to the restriction to a finite Hilbert

space. Still we expect the errors to be rather small, especially when comparing it to the

results for the one-particle structure factor.

Another observation is that the minimal three-particle energy is now located at Q = π.

This can be understood in terms of three particles having momenta q1 = π, q2 = −π
and q3 = π, all with the minimal energy ∆.
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Figure 7.21: The DSF Sxx3 for the parameter J = Γ. The maximum range for the Lanczos
algorithm is dmax = 100 sites, the continued fraction was evaluated to a depth of
50 and then terminated by the square root terminator. The color indicates the
spectral density, see legend to the right. The dispersion is indicated by the white
solid line. The upper and lower edge of the two-particle continuum are indicated
by white dashed lines.
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Figure 7.22: The DSF Sxx3 for the parameter J = 1.5Γ. The maximum range for the Lanczos
algorithm is dmax = 100 sites, the continued fraction was evaluated to a depth of
50 and then terminated by the square root terminator. The color indicates the
spectral density, see legend to the right. The dispersion is indicated by the white
solid line. The upper and lower edge of the two-particle continuum are indicated
by white dashed lines.
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Figure 7.23: The DSF Sxx3 for the parameter J = 1.9Γ. The maximum range for the Lanczos
algorithm is dmax = 100 sites, the continued fraction was evaluated to a depth of
50 and then terminated by the square root terminator. The color indicates the
spectral density, see legend to the right. The dispersion is indicated by the white
solid line. The upper and lower edge of the two-particle continuum are indicated
by white dashed lines.
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Figure 7.24: DSF Sxx3 for the parameter J = 1.75Γ for three chosen total momenta Q. The
maximum range for the Lanczos algorithm is dmax = 200 sites, the continued
fraction was evaluated to a depth of 100 and then terminated by the square root
terminator.

To investigate the errors more quantitativly consider Fig. 7.24. Here we see Sxx3 for the

parameter J = 1.75Γ and momenta Q = 0, Q = π/2 and Q = π for different orders.

For this case, the results differ only slightly depending on the order of calculation and

show good agreement even close to the QCP. We can also observe again, that most of

the spectral weight is concentrated at the lower band edge for large values of J . For the

two-particle case Szz(ω,Q), we saw that the band edge singularities are 1/2 as expected.

Now we investigate the three-particle case Sxx3 (ω,Q). As in the two-particle case we

use the constraint (7.3.41a) and (7.3.41a) by fitting a linear function to the continued

fraction coefficients in dependence of 1/n2. This is shown in Figs. 7.25 , 7.26 and 7.27,

for the case J = 1.5Γ with total momentum Q = 0, Q = π/2 and Q = π.

Note that no divergence is observed in Fig. 7.24, therefore we expect the exponents of

the band edge singularities to be positive. In contrast to the two-particle case we clearly

see no exponential decay towards the limit values. For all momenta both an and bn show

a linear behaviour for small enough 1/n2. We stress that the O(1/n3) terms matter

strongly up to 1/n2 ≈ 0.0002 ⇒ n ≈ 70.

Interestingly the slope for an differs from zero for Q = 0, which indicates that the lower

and upper band edge singularity differ, cf. Eq. (7.3.41a). On the other hand, the slope is

close to zero for Q = π, which indicates that the band edge singularties strongly depend

on total momentum Q.
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Figure 7.25: Continued fraction coefficients for the case J = 1.5Γ and total momentum Q =
0. The upper panel shows the coefficients an and the lower panel shows the
coefficients bn. The limit values are indicated by horizontal lines. The red/green
lines indicated linear fits for small 1/n2. Note that the x-axis scale is 1/n2.
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Figure 7.26: Continued fraction coefficients for the case J = 1.5Γ and total momentum Q =
π/2. The upper panel shows the coefficients an and the lower panel shows the
coefficients bn. The limit values are indicated by horizontal lines. Note that the
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Figure 7.27: Continued fraction coefficients for the case J = 1.5Γ and total momentum Q =
π. The upper panel shows the coefficients an and the lower panel shows the
coefficients bn. The limit values are indicated by horizontal lines. Note that the
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Band Edge Singularities for Sxx3 (ω,Q)
Q α β
0 (2.47 ± 0.05) (0.98 ± 0.02)
π/2 (2.97 ± 0.04) (2.70 ± 0.04)
π (2.95 ± 0.05) (2.82 ± 0.04)

Table 7.1: Exponents for the Band Edge Singularities for Sxx3 (ω,Q)

The values for the band edge singularities obtained by the linear fit, using the Levenberg-

Marquardt algorithm [50, 51], are shown in Tab. 7.1. For Q = π and Q = π/2 both

exponents seem to be 3 while in the case Q = 0 the exponents differ and we assume that

α = 2.5 and β = 1 holds.

In Ref. [64] a general expression for the multi-particle band edge singularities is derived

for a hardcore boson toy model. It reads,

Sn ∝ ω
n2−3

2 for n > 1, (7.5.51)

independent of total momentum Q. For the three-particle case this yields Sn ∝ ω3,

which is in agreement with our results for Q = π and Q = π/2, but differs for Q = 0.

A possible explanation for this could be the more complicated structure of our effective

Hamiltonian.
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7.6 Conclusions of the present chapter

In this chapter we investigated the dynamical structure factor for the longitudinal and

transverse case of the TFIM. With the help of the CUT it is possible to divide the DSF

into contributions from different quasi-particle spaces that are not mixed by the effective

Hamiltonian. We then used a continued fraction representation of the resolvent and the

Lanczos tridiagonalization to find results for the DSF.

For Szz, exact results are known and could also be reproduced by the CUT. We investi-

gated how the numerical limitations, such as the restriction of the Hilbert space, affects

the results. These findings are useful for cases, in which no exact expression is known.

For the one-particle contributions of Sxx Hamer et al. [19] proposed an exact expression

in 2006 . Our results are in good agreement with this expression and verify their findings

at least for small parameters J .

Subsequently new results are shown for the three-particle case of Sxx. It strongly differs

from the semi elliptic two quasi-particle continuum in the Szz case. For higher parame-

ters, most of the spectral weight is concentrated at the lower band edge. With the help

of the continued fraction coefficients we also extracted information about the band edge

singularities.

These results show that higher particle spaces are also accessible with the help of effec-

tive Hamiltonians and observables derived by the CUT method. For parameters J > 2Γ,

the present perturbative approach is of course not useful anymore, however we are still

able to describe relatively long correlation lengths in the polarized phase.
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8 Conclusion

In this thesis we investigated the transverse field Ising model (TFIM) by means of

continuous unitary transformations (CUT).

8.1 Results

First the general framework of continuous unitary transformations was introduced, with

a special focus on the enhanced perturbative realization of the method (epCUT and

deepCUT). The string algebra was introduced as our operator basis on which we perfom

the CUT. The closing property of the algebra under the commutator was shown for a

one dimensional chain. Next the TFIM was written in terms of string operators and the

CUT method was applied in this operator basis. We have shown that the derivation of

effective models up to very high orders in the parameter J is possible. Furthermore, it

was possible to derive the flow equation up to infinite order. This is a remarkable step,

because the TFIM is a non-trivial model in the thermodynamic limit.

Next we investigated the static properties of the TFIM and compared them to the exact

results calculated by Pfeuty. The ground state energy per site, the transverse magneti-

zation as well as the energy dispersion agreed very well up to the critical point J = 2Γ.

Above the critical point only the ground state energy and the transverse magnetization

were close to the exact calculation. For this case the dispersion was only in partial

agreement. Still, this is a remarkable result, because our quasi-particle picture breaks

down at the quantum critical point (QCP) and the elementary excitations for J > 2Γ

are non-local domain walls, hard to describe by means of local spin flips.

Next we investigated the dynamical structure factor (DSF) for the TFIM at zero tem-

perature. We started by introducing the general framework to calculate Green functions

within our effective model. We used the Lanczos algorithm and a continued fraction

representation to calculate the resolvent representing the DSF.

In the next section the transverse DSF was calculated and compared to the exact results.

For these spectral properties, high orders are available within the string operator basis.

All results agree well with the exact results. Many of the small deviations were located

at the edges of the continuum, which can be explained by the square root singularity

located at these points.

Next, the longitudinal DSF was considered. Here the order of calculation was limited

to a maximum of 38. However we were still able to confirm the results by Hamer et al.
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for small enough parameters J .

A novel result is the calculation of three-particle contributions to the DSF. This is a very

complicated problem, because the interaction of multiple particles on the chain must be

considered. Still all results show good convergence for sufficiently high orders and are

therefore considered to be quantitatively correct. The three-particle continuum shows

an accumulation of spectral weight at the lower edge. We also obtained exponents for

the band edge singularities by investigating the convergence of the continued fraction

coefficients.

8.2 Outlook

Further investigations could include the Syy DSF or finite temperature effects, leading to

a broadening of single particle lines as well as low frequency responses due to intraband

scattering. However this remains a difficult task, because the full statistical operator

must be considered in order to calcultate the needed Green functions.

Furthermore, the method of CUT is not restricted to one dimensional systems, therefore

higher dimensions can be considered to further investigate multi-particle excitations in

these systems. For example the 2d transverse field Ising model should be in the same

universality class as the 3d classical Ising model, which is not exactly solvable so far.

Therefore, calculation of critical exponents could be an interesting research topic.
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rekter Auswertung. Diplomarbeit, TU Dortmund, 2011.

[41] H. Krull, N. A. Drescher and G. S. Uhrig. Enhanced perturbative continuous unitary

transformations. Physical Review B, 86:125113, September 2012.

[42] A. Mielke. Flow equations for band-matrices. European Physical Journal B, 5:605–

611, 1998.

[43] C. Knetter and G.S. Uhrig. Perturbation theory by flow equations: dimerized and

frustrated S = 1/2 chain. European Physical Journal B, 13:209–225, 2000.

[44] S. Dusuel and G.S. Uhrig. The quartic oscillator: a non-perturbative study by

continuous unitary transformations. Journal of Physics A, 37(39):9275, 2004.

[45] S. Duffe and G. S. Uhrig. Hole dispersions for antiferromagnetic spin-1/2 two-leg

ladders by self-similar continuous unitary transformations. The European Physical

Journal B, 84:475–490, 2011.

[46] A. Reischl. Derivation of Effective Models using Self-Similar Continuous Unitary

Transformations in Real Space. PhD thesis, 2006.

[47] S. Duffe. Effective Hamiltonians for Undoped and Hole-Doped Antiferromagnetic

Spin-1/2 Ladders by Self-Similar Continuous Unitary Transformations in Real

Space. PhD thesis, TU Dortmund, 2010.

[48] G. Jost B. Chapman and R. van der Pas. Using OpenMP: Portable Shared Memory

Parallel Programming (Scientific and Engineering Computation). The MIT Press,

2007.

[49] H. A. Kramers and G. H. Wannier. Statistics of the two-dimensional ferromagnet.

part i. Physical Review, 60:252–262, August 1941.

[50] K. Levenberg. A Method for the Solution of Certain Non-Linear Problems in Least

Squares.

[51] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parame-

ters.

[52] T. Fischer. Description of quasiparticle decay by continuous unitary transforma-

tions. PhD thesis, 2012.



Bibliography 111

[53] A. J. A. James, F. H. L. Essler and R. M. Konik. Finite-temperature dynamical

structure factor of alternating Heisenberg chains. Physical Review B, 78(9):094411,

September 2008.

[54] A. J. A. James, W. D. Goetze and F. H. L. Essler. Finite-temperature dynamical

structure factor of the Heisenberg-Ising chain. Physical Review B, 79(21):214408,

June 2009.

[55] A. E. Feiguin and S. R. White. Time-step targeting methods for real-time dynamics

using the density matrix renormalization group. Physical Review B, 72:020404, July

2005.

[56] D. Chandler. Introduction to Modern Statistical Mechanics. Oxford University

Press, 1987.

[57] C. Knetter and G. S. Uhrig. Dynamic structure factor of the two-dimensional

shastry-sutherland model. Physical Review Letters, 92:027204, January 2004.

[58] K. P. Schmidt. Spectral Properties of Quasi One-dimensional Quantum Antiferro-

magnets Perturbative Continuous Unitary Transformations. PhD thesis, 2004.

[59] D. G. Pettifor and D. L. Weaire. The Recursion Method and its Applications,

volume 58. Springer Verlag, Berlin, 1985.

[60] V. S. Viswanath and G. Müller. The Recursion Method. Springer Verlag, Berlin,

1994.

[61] W. Vetterling W. Press, S. Teukolsky and B. Flannery. Numerical Recipes in C.

Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

[62] G. S. Uhrig and H. J. Schulz. Magnetic excitation spectrum of dimerized antiferro-

magnetic chains. Physical Review B, 54:R9624–R9627, October 1996.

[63] G. S. Uhrig and H. J. Schulz. Erratum: Magnetic excitation spectrum of dimerized

antiferromagnetic chains. Physical Review B, 58:2900–2900, August 1998.

[64] S. Kirschner. Multi-particle spectral densities. Diplomarbeit, Universität zu Köln,
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