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Abstract

The energy gap for single charge excitation ∆ in a half-filled Fermi-Hubbard model in
the regime of strong interactions is studied for both a one-dimensional chain and two-
dimensional squared lattice. Charge fluctuations in this regime are suppressed. Therefore,
it is appropriate to use an effective model, namely the t-J model. Here, the model is
used in the limit of 0 < J � T � ∆ to describe the movement of a hole in a disordered
spin background. The energy spectrum connected to this movement provides information
regarding the energy gap.

In this context, the iterated equations of motion approach represents a tool to gain
insights into the dynamics of a hole and thus to resolve the energy spectrum connected
to the energy gap. As in previous studies, an ansatz with a scalar product is used,
which is slightly modified here. Results for the energy gap gained with this approach are
compared to results from former studies using different approaches. Occurring differences
are attributable to not considering spin correlations in this approach.

Kurzfassung

Im Hinblick auf die vorliegenden Arbeit wird die Energie Lücke ∆ für eine einzelne
Ladungsanregung in einem halbgefüllten Fermi-Hubbard Modell in Bereich starker Wech-
selwirkung sowohl auf einer eindimensionalen Kette als auch auf einem zweidimensionalen
quadratischen Gitter untersucht. Ladungsfluktuationen sind in diesem Grenzbereich stark
unterdrückt, sodass es möglich ist ein effektives Modell herzuleiten, das t-J Modell. Der
Grenzbereich 0 < J � T � ∆ soll dieses Modells in dieser Arbeit dazu dienen die Bewe-
gung eines Loches in dem paramagnetischen halb gefüllten Zustand zu beschreiben und so
Informationen über die Energie Lücke für eine einzelne Ladungsanregung zu erhalten.

Es wird eine Methode vorgestellt die es ermöglicht in Form von iterierten Bewegungsglei-
chungen das Energiespektrum aufzulösen und so Rückschlüsse auf die Energielücke für
Ladungsanregung zu ziehen. Dafür wird ein Ansatz mit Operatorskalarprodukt verwendet,
der in Vergleich zu vorigen Studien zur iterierten Bewegungsgleichungen modifiziert wird.
Die resultierenden Energielücken werden mit Ergebnissen anderer Methoden verglichen.
Auftretende Unterschiede werden auf die Nichtberücksichtigung von Spin Korrelationen
bei diesem Ansatz zurückgeführt.
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1 Introduction

The field of physics investigating phases and phase transitions in a condensed-matter
systems is a broad research area. While the variety of phases is very limited in daily life,
there is a multitude of phenomena in the lower temperature range. The spectrum goes
from phases which are characterized by their magnetic properties like the antiferromagnetic
and ferromagnetic phase to phases determined by their electronic properties like metal,
superconductor, semiconductor and Mott-Insulator or other exotic phases as the Bose-
Einstein condensate only to name a few [1]. Phases characterized by different interactions
and properties are of course able to overlap so there are e.g. paramagnetic Mott insulating
and antiferromagnetic Mott insulating phases. All those phases despite their different
behavior and form of appearance in condensed-matter physics share the property that
they are built of the same building blocks electrons, protons and neutrons which then
form different Atoms and Molecules. In which way those particles interact with each
other in the system has an influence on the phases of the system. Due to the incredible
amount of particles in a condensed-matter system, it is necessary to break down these
interactions into tangible mathematical models, which still provide a sufficient description
of the reality. Since in reality different phases transit into each other if parameters in the
environment change, the wish to describe those transitions also in theoretical models is
deeply rooted in the field of condensed-matter physics. For example superconductivity
has been successfully described with the help of the BCS theory [2].

But already models considering only the bare necessary interactions can be full of physical
behavior and therefore they are essential for a better physical understanding. One famous
model falling into this category is the Ising model [3] which considers only spin interaction
of nearest neighbors on a rigid lattice in an external magnetic field. It brought an
understanding for anti- and ferromagnetic behavior. Further, it is possible in the model
in two dimension to find a thermal driven phase transition of its magnetic phase. Where
for a vanishing external field an analytical exact solution [4] was found, the study of
other parameter regimes or higher dimensions rely on approximate approaches e.g. density
matrix renormalization group [5], mean field theory [6] or Monte Carlo simulations [7].
Hence, models that at fist glance appear quite simple can become a separate field of
research whose problems are anything but easy to solve. So investigating new approximate
approaches in order to reach a better understanding in areas where an analytical solution is
not possible is always of relevance in basic research. The results of those new approximate
approaches are mostly evaluated against available analytical solutions or other establish
methods and should be able to reproduce them.

This outlined procedure is part of the present work. Here, a new approach is studied
in the context of a phase transition in a model also well-established in the field of
condensed-matter, namely the Fermi-Hubbard model [8–10]
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1 Introduction

The Fermi-Hubbard model is capable to describe a phase transition between a Mott-
insulator phase and a metal phase by considering only electrons hopping on a lattice with
an on site electron-electron-interaction. Where in one dimension an exact solution of the
model is possible [11], this holds not for other finite dimension. So the situation is quite
similar to the Ising model and the model is study with different approximate approaches
e.g. dynamic mean-field theory [12], perturbation theory [13] and variational Monte Carlo
method [14]. In some borderline cases of the model deriving an effective model is also a
commonly used means [15]. Regardless of the theoretical approaches, due to the progress
made in the experimental physics in recent years, this first purely theoretical model can
be investigated also in real systems [16, 17]. So the research on the Fermi-Hubbard model
is far from complete and the application of this new approach promise new insights.

This new approach is based on the iterated equation of motion approach [18] which
already was successfully applied in the context of non-equilibrium physics in the Fermi-
Hubbard model [19] and large central spin models [20]. In this thesis, the iterated equation
of motion approach is applied to an effective model of the Fermi-Hubbard model, the
t-J model [21], to determine the motion of a hole and thus investigated the transition
between the Mott-Hubbard insulating and the metal phase.

The work is structured as follows. In chapter 2 first an introduction to the Fermi-Hubbard
model is given and its basic properties are discussed. After that the t-J model is introduced
whereby all necessary terms in the model are discussed in detail. Then, the tool kit used
in this thesis, the iterated equation of motion approach, is presented and accompanied
by first considerations to connect the results of the iterated equation of motion approach
with an energy spectrum. After this different approaches to determine an operator basis
are discussed. In the beginning of chapter 3 the foundation is laid to apply the approach
to the real problem and determine the dynamics of a hole in a disordered spin background.
Here, two different cases are presented with different consequences for the applied method.
Additionally, a further operator representations for this approach is discussed in more
detail. Concluding the chapter 3 a form in which the results are presented is established.
In chapter 4 contains all calculated results in this thesis starting with a simple model in
one dimension as a testbed for this approach where the two different cases are compared
to each other. Then the simple model is extended to a two-dimensional squared lattice.
The approach is applied to the t-J model in both one and two dimension. In chapter 5 a
summary of all obtained results within this work is given followed by an outlook.
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2 Theory

2.1 Fermi-Hubbard model

This section considers the Fermi-Hubbard model, which serves as the foundation for the
derivation of a t-J model in the further sections. Here an overview of the model is given
and its properties are discussed. Onward all calculations are done in natural units within
which h̄ is set to unitary.

The Hubbard model was first independently proposed in the year 1963 by John Hubbard
[8], Junjiro Kanamori [9] and Martin C. Gutzwiller [10]. It delivers a description for
correlated electron systems with narrow energy bands in a solid state system and serves
as an important ingredient in other topics such as high-temperature superconductors,
transition metals and their oxides, polymers, heavy Fermionic materials, fullerenes and
liquid Helium [22].

The model is based on the assumption that electrons face a coulomb repulsion if they are
located at the very same site. Otherwise, they can move freely. Furthermore, electrons are
tightly bounded at the atomic sites. So in the real space representation of the model the
electron wave functions are highly localized Wannier functions [23] taking into account the
periodicity of the system and form a complete set of orthogonal function. Furthermore,
it is reasonable to describe the model in the second quantization where the operators
f †l,σ and fl,σ either create or annihilate an electron at site l and with spin σ ∈ {↑, ↓}. In
second quantization the Hamiltonian of the model in real space reads

H ′ = Ht +H ′
int (2.1a)

Ht = −t
∑
〈i,j〉σ

f †i,σfj,σ (2.1b)

H ′
int = U

∑
i

n̂i↑n̂i↓ (2.1c)

where 〈i, j〉 indicates that i, j are nearest neighbors to each other. Here, Ht is the
kinetic part describing simple hopping processes between two nearest neighbor sites with
the hopping amplitude t > 0 and Hint denotes the interaction part which considers the
repulsive Coulomb interaction of electrons at the same site with the strength U ≥ 0.
Due to the Pauli exclusion principle in the Fermionic system the number operator n̂i,σ
is limited to the values of {0, 1}. If the number operators n̂i,↑ and n̂i,↓ both count an
electron, two electrons occur on the same site and the system receives an energy penalty
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2 Theory

of U . In this thesis we are dealing with a system near half-filling and thus it is convenient
to make an energy shift in the Hamiltonian by the means of

H = H ′ − U
N

2
+ U

L

2
. (2.2)

with the overall number of particle N and number of sites L in the system. This leads to
a Hamiltonian of the form

H = Ht +Hint (2.3a)

Ht = −t
∑
〈i,j〉σ

f †i,σfj,σ (2.3b)

Hint = U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
(2.3c)

where the chemical potential is set to zero at half-filling. Furthermore, the Hamiltonian in
the representation of equation (2.3) is particle-hole symmetric since in this representation
empty or doubly occupied sites hold both an energy penalty of U/4 Here, empty sites are
associated with holes in the system. Whereas a single occupied sites lower the energy
by a value of −U/4. Apparently, removing or adding an electron in the half-filling case
described by equation (2.3), so that a hole or doubly occupied site remains, requires both
an energy of U/2. This two processes are associated with a charge excitation of the system.
If we talk about the Hamiltonian of the Fermi-Hubbard model, we refer to the operator
in equation (2.3). In figure 2.1 the Fermi-Hubbard model for an one-dimensional chain is
illustrated.

−t

−U
4

U
4

U
4

−U
4

Figure 2.1: Illustration of the Fermi-Hubbard model for an one-dimensional chain.
Empty or doubly occupied sites cost an energy of U

4 while single sites set free an energy
of U

4 . Also, hopping processes are rewarded with an energy of t.

Contrary to higher finite dimensions the Fermi-Hubbard model in one-dimension d = 1
is analytically solvable via Bethe ansatz [11]. As a result of the missing analytical
solution in higher finite dimension borderline cases for the model are often discussed. The
Fermi-Hubbard model has two interesting borderline cases. On one side with a vanishing
interaction U = 0 the system collapses to an effective one-particle problem and can be
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2.1 Fermi-Hubbard model

solved exactly by a transformation of the kinetic part Ht into the momentum space. For
a hypercubic d-dimensional lattices this results in a dispersion relation

εk = −2t

d∑
i=1

cos (kai) (2.4)

with k denoting the momentum vector and ai representing the primitive translation vector
of the used lattice. One property of interaction-free system is the bandwidth W = 2zt
where z = 2d is the coordination number z of the underlying lattice. For half-filling
this case describes a metal. Hereafter the interaction strength is expressed as a relation
between U and bandwidth W in the form of W/U. The counterpart is the atomic limit
t→ 0 where two difference energy levels are present. One is located at −U/2 and the other
at U/2, which can be calculated for this case with one-electron Green function [8]. For
a not vanishing hopping it can be shown with an approximation done in Ref. [24] that
these two energy levels broaden into two bands, the lower (LHB) and the upper (UHB)
Hubbard band. Each band has the bandwidth of Weff leaving us with a spectral density
ρ(E) presented in a simplified manner in figure 2.2 for U � W . The UHB contains
the energy spectrum of adding one electron whereas the LHB contains the spectrum of
removing of an electron from the half-filled ground state and the energy difference between
the energetically lowest state in the HUB and the highest in the LHB determine the gap
size [22]. Due to the particle-hole symmetry in the Hamiltonian of equation (2.3) LHB
and UHB are completely symmetric around zero. As shown in figure 2.2 there is an energy

LHB UHB

ρ(E)

∆

U/2−U/2 0

Weff Weff

E

Figure 2.2: Simplified illustration of the spectral density ρ(E) of the Fermi-Hubbard
model in the case of U �W . With the lower LHB and the upper UHB Hubbard band
have an effective bandwidth of Weff and the gap for single charge excitations ∆.

gap for single charge excitation of ∆ in the parameter regime of U � W . Hence, the
Fermi-Hubbard model at half-filling for U � W describes an insulator with the band
gap ∆. In the case of decreasing interaction strength U the energy gap ∆ separating
LHB and UHB also decreases up to a point of critical interaction strength Uc where LHB
and UHB finally touch and the energy gap ∆ for single charge excitation vanishes. At
this critical value the system undergoes a phase transition between the Mott-Hubbard
insulating and metal phase. In this context, describing this transition and determining a
critical interaction strength Uc is a quite difficult topic. At least in one dimension it is
possible due to its integrability to generate exact results [25]. Other approaches study
for example a Bethe lattice with infinite connectivity by using e.g. perturbation theory
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2 Theory

[13] or dynamic mean-field theory [12, 26]. As mentioned in chapter 1, in this thesis a
different approach to determine the critical interaction strength Uc is used by describing a
hole motion in a disordered spin background.

In the limit of strong interaction U � W doubly occupied sites and holes are highly
suppressed and therefore a mapping of the Fermi-Hubbard model at half-filling in second
order perturbation theory to an antiferromagnetic Heisenberg model with the coupling
constant of J = 2t2/U is possible [27]. Whereas in the vicinity of half-filling it is possible
to describes movements of holes and doubly occupied sites for U �W with an effective
model, the t-J model which is introduced in section 2.2. Furthermore, to realize the
disordered spin background the t-J model is considered for 0 < J � T � ∆ with the
temperature T [25].

2.2 Generalized t-J model

As mentioned in section 2.1, in the limit of strong interaction U � W it is possible to
map the Fermi-Hubbard model at half-filling to an antiferromagnetic Heisenberg model.
Also, for values up to W/U ≈ 0.8 it is justified to map the Fermi-Hubbard model to
another effective model, a generalized t-J model [21]. The following section introduces
the t-J model and gives an overview about the model essential for this thesis.

Starting with the Hubbard model at half-filling in the limit of strong interaction all sites
each are occupied with only one electron. By reducing the interaction strength electrons
are gradually allowed to move leaving some sites empty or doubly occupied. These sites
are deviations from the previous one electron per site state and are referred to as a sort of
charge fluctuations in the system. Here, both doubly occupied and empty sites are called
double occupancies DO. In the regime of reducing the strong interaction it is possible to
a certain point of the interaction strength to derive an effective Hamiltonian conserving
the numbers of DOs. There are different approaches to reach an effective model which
eliminates the creation of charge fluctuations in the system. One possible approach is to
create an effective Hamiltonian through a degenerate perturbation theory in the scheme
of [28] for the half-filled Hubbard model for t �U. Done e.g. in Ref. [29] up to the seventh
order for the linear chain or in Ref. [30] for the simple cubic (sc) lattice up to the fifth
order. Another approach is to use a continuous unitary transformation CUT to derive
an effective Hamiltonian e.g. done in Ref. [21, 31]. Here we refer to the Hamiltonian
of a generalized t-J model from the work done by A. Reischl, E. Müller-Hartmann and
G. S. Uhrig [21].

Now we sketch the steps to obtain the effective model via a CUT. Within the derivation
the focus lays more on the obtained effective model than the theory behind the CUT. So
if a more detailed description is sought, we again refer to the studies done in Ref. [21].
Generally speaking the energy sector of different numbers of DOs are well separated
for strong interaction. So through the CUT a disentanglement of the different sectors
belonging to different number of DOs is achieved resulting in an effective model. By
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2.2 Generalized t-J model

starting to alter the representation of the normal Fermionic creator and annihilator as
shown below by the means of

f †i,σ = f †iσn̂iσ̄ + f †iσ

(
1− n̂iσ̄

)
(2.5)

fi,σ = fiσn̂iσ̄ + fiσ

(
1− n̂iσ̄

)
(2.6)

it is possible to identify terms in the hopping part of the Hubbard model 2.3b depending
on the effect on the count of DOs in the system. The hopping part H0 now reads

H0 = T0 + T+2 + T−2 (2.7a)

T0 = t0
∑
〈i,j〉σ

[(
1− n̂iσ̄

)
f †iσfjσ

(
1− n̂jσ̄

)
+ n̂iσ̄f

†
iσfjσn̂jσ̄ + h.c.

]
(2.7b)

T+2 = t+2

∑
〈i,j〉σ

[
n̂iσ̄f

†
iσfjσ

(
1− n̂jσ̄

)
+ n̂jσ̄f

†
jσfiσ

(
1− n̂iσ̄

)]
(2.7c)

T−2 = t−2

∑
〈i,j〉σ

[(
1− n̂iσ̄

)
f †iσfjσn̂jσ̄ +

(
1− n̂jσ̄

)
f †jσfiσn̂iσ̄

]
(2.7d)

where σ̄ = −σ and Ti denotes terms which change the number of DOs of the system by
i. The coefficients t0, t−2 t+2 do not differ at the beginning of the CUT from the bare
hopping parameter t of the Hubbard model. Here, the transformation −t→ t is performed
beforehand to the Hamiltonian of equation (2.3). Due to its particle-hole symmetry on
bipartite lattices, its spectrum is invariant under such transformation [32]. The figure 2.3
shows possible processes of T0 describing only movements of a DO on the lattice while
figure 2.4 illustrates process that change the number of DOs in the system.

t0

i j

(a)

t0

ij

(b)

Figure 2.3: Two different process for a DO movement on the lattice. First in figure 2.3a
via a doubly occupied site and second in figure 2.3b via an empty site. With the difference
that in latter case electron and DO movement take place in opposite direction and in
the former in the same direction.
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2 Theory

t+2

ij

(a)

t−2

ij

(b)

Figure 2.4: Processes that change the number of DOs in the System. In figure 2.4a the
creation of two DOs is shown while figure 2.4b shows the annihilation of two DOs.

As mentioned above, we are looking for an effective model conserving the DOs. So terms
like T−2/2 should not be presented in the effective Hamiltonian. The continuous unitary
transformation uses the flow equation

d
dl
H(l) = [η(l),H(l)] (2.8)

with the flow parameter l and the generator η(l) =
[
D̂,H(l)

]
to transform the Hamiltonian

into such a model. Here, the operator

D̂ :=
∑
i

[
n̂i↑n̂i↓ +

(
1− n̂i↑

)(
1− n̂i↓

)]
(2.9)

counts the number of DOs in the system. Starting with H(l = 0) = H the effective model
is obtained for l → ∞. Apart from that a truncation scheme is necessary to restrict to
important terms arising during the flow. Therefore, in Ref. [21] the truncation is done
according to the locality of new terms referring to a two-dimensional squared lattice. The
result is an effective model contains different terms describing different processes conserving
the number of DOs in the system. Hopping of DOs, Spin couplings or interaction between
two DOs are for example part of those processes. For this thesis terms describing the
movement of one DO on a lattice are of great interest. Therefore, only spin couplings in
the order of J = t2/U and hopping of one DO are terms occurring in the Hamiltonian.
In the limit 0 < J � T � ∆ we assume that terms describing spin couplings can be
neglected. In the following, all DO-hopping processes, which are necessary to describe a
t-J model for a two-dimensional squared lattice according to Ref. [21], are discussed, which
includes simple nearest neighbor (NN) T0 and both simple T ′

0 and spin dependent T ′
0,s

next nearest neighbor (NNN) hopping on a two-dimensional squared lattice. Where for
the NNN hopping a further distinction is made between diagonal T ′

x and linear T ′′
x NNN

hopping. This distinction is necessary for use of the Hamiltonian on a one-dimensional
chain, since the diagonal NNN hopping does not exist in one dimension. Starting with
the simple NN hopping of a DO which is equivalent to the T0 term of equation (2.7b)
with the amplitude t0 = t being equal to the hooping amplitude of the Fermi-Hubbard
model. The diagonal NNN hopping has almost the same form as T0 with the difference of
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2.2 Generalized t-J model

a factor -1 between the hopping of a hole and a particle DO to ensure the particle hole
symmetry. So the diagonal NNN hopping reads

T ′
0 = t′

∑
〈〈i,j〉〉dσ

[(
1− n̂iσ̄

)
f †iσfjσ

(
1− n̂jσ̄

)
− n̂iσ̄f

†
iσfjσn̂jσ̄ + h.c.

]
(2.10)

where 〈〈i, j〉〉d denotes the diagonal NNN sites. Two possible processes are illustrated in
the figure 2.5. The spin dependent diagonal NNN hopping reads as

T ′
s,0 = t′s

∑
〈i,k,j〉dαβ

[(
1− n̂iᾱ

)
f †iασαβfjβ

(
1− n̂

jβ̄

)
· Sk

+n̂iᾱf
†
iα σαβfjβn̂jβ̄ · Sk + h.c.

] (2.11)

with α, β ∈ {↑, ↓}. In the equation above Sk is the spin vector at site k and it is
advisable to use the representation Sk = 1

2

(
σ−k + σ+k , i(σ

−
k − σ+k ), σ

z
k

)T with σ+k = f †k,↑fk,↓,
σ−k = f †k,↓fk,↑ and σzk = nk,↑ − nk,↓. Furthermore, σ denotes a vector consisting of the
three Pauli matrices (σx,σy,σz) where the index αβ refers to the corresponding matrix
element with ↑= 0; ↓= 1. As in equation (2.10) i and j are diagonal NNN and in addition
k is NN of both sites which is written as 〈i, k, j〉d. For example in a two-dimensional
square lattice the path connecting the sites i, k and l forms a right angle as shown in
figure 2.6.

−t′
j

i

(a)

i

j
t′

(b)

Figure 2.5: Two possible processes for a diagonal next-nearest neighbor hopping T ′
0 of

a DO according to (2.10) on a two-dimensional square lattice, illustrated via movements
firstly of a doubly occupied site in figure 2.5a and secondly of an empty site in figure 2.5b.
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k

i

j

σ−

t′s

(a)

σ+
i k

j
t′s

(b)

Figure 2.6: Two possible processes out of various spin dependent diagonal next-nearest
neighbor hopping of a DO described by T ′

s,0 in equation (2.11). In figure 2.6a the hopping
of a doubly occupied site or in figure 2.6b the hopping of an empty site results in a spin
flip on the site k.

Furthermore, both simple and spin-dependent linear NNN hopping has to take into
consideration. The simple linear NNN hopping

T ′′
0 = t′′

∑
〈〈i,j〉〉lσ

[(
1− n̂iσ̄

)
f †iσfjσ

(
1− n̂jσ̄

)
− n̂iσ̄f

†
iσfjσn̂jσ̄ + h.c.

]
(2.12)

read like T ′
0 with the different that 〈〈i, j〉〉l indicates i and j are 3NN sites to each other.

Possible processes of T ′′
0 are shown in figure 2.7. As well as the diagonal NNN hopping

holds a spin-dependent part T ′
s,0 the linear spin-dependent hopping T ′′

s,0 exists too with

T ′l
s,0 = t′ls

∑
〈i,k,j〉lαβ

[(
1− n̂iᾱ

)
f †iασαβfjβ

(
1− n̂

jβ̄

)
·Sk

+n̂iᾱf
†
iασαβfjβn̂jβ̄· Sk + h.c.] .

(2.13)

It also contains the vector of Pauli matrices and the spin vector on site k which is also
NN site to i and j. But now i and j are linear NNN to each other displayed by 〈i, k, j〉l.

−t′′

j ik

(a)

t′′

j k i

(b)

Figure 2.7: Two possible processes for a linear nearest neighbor hopping T ′′
0 of a

DO according to equation (2.12) on a two-dimensional square lattice, illustrated via
movements firstly a doubly occupied site in figure 2.7a and secondly an empty site in
figure 2.7b..
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2.3 Iterated equations of motion approach

Carried over to the 2D squared lattice the sites i, j and k lie all on one straight line in
the lattice as shown in figure 2.8 where possible process of T ′′

s,0 are displayed.

t′′s

j k i

σ+

(a)

t′′s

j k i

σ−

(b)

Figure 2.8: Two possible processes out of various spin dependent linear next-nearest
neighbor hopping of a DO described by T ′′

s,0 in equation (2.13). In figure 2.8a the hopping
of a doubly occupied site or in figure 2.8b the hopping of an empty site results in a spin
flip on the site k.

So overall the effective Hamiltonian Heff reads as

Heff = T0 + T ′
0 + T ′

s,0 + T ′′
0 + T ′′

s,0 +Hint . (2.14)

The strength for all the different hopping amplitudes txx of the various hopping terms in
equations (2.10) to (2.13) is related to the simple hopping t0 in T0 and changes depending
on the relation of W/U[21]. But as mentioned at the beginning of this section the model is
only capable of describing the situation for values up to W/U ≈ 0.8. So all in all we are
able to describe the dynamics of one DO in the Hubbard model on a two-dimensional
squared lattice in the parameter regime W/U ≤ 0.8 with the in Hamiltonian described
equation (2.14) of an effective t-J model.

2.3 Iterated equations of motion approach

The section 2.1 already gave a brief overview about the methods used to determine the
energy gap for single charge excitation and the critical value Uc for which the gap closes.
As mentioned above, an analytical solution for the Hubbard model is only possible using
the Bethe ansatz in one-dimension and in infinite-dimension, where in infinite-dimension
a mean field approach is used. So for finite dimensions greater than one-dimension, a
semi-analytical treatment is necessary. In this section we deal with such semi-analytical
approach, the iterated equation of motion approach, which will be referred to as the iEoM
approach in the following. Mostly in literature, the iEoM approach is applied to calculate
the time dependency of an operator A(t). Nevertheless, in this thesis this approach is used
to calculate a value for the energy gap for single charge excitation of the system. As the
name suggests, the approach is based on an iterative scheme, where with each iteration
the number of appearing equations increases steadily. For the purpose of applying the
iEoM approach in this thesis this section gives an overview about the iEoM approach. The
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questions how to determine the energy gap using the iEoM approach will be addressed
later in section 2.4.

Since the iEoM approach dealing with time evolution a short summery of the pictures
used for in quantum mechanics to describe time dependencies is given beforehand. There
are three equivalent used pictures: The Schrödinger picture, Heisenberg picture and the
Dirac picture [33], where the last one is only listed for the sake of completeness and
finds no use in this thesis. In the Schrödinger picture the time dependency is contained
in the bras 〈ψ(t)| and kets |ψ(t)〉 and operators are constant in time except they have
explicit time dependence.In contrast, the operators in the Heisenberg picture contain the
time dependency and the states are constant in time. When AS denotes an operator
in the Schrödinger picture and AH the corresponding in the Heisenberg picture, the
transformation between these two equivalent pictures is made via

AH(t) = U †
S(t, t0)ASUS(t, t0) (2.15)

with the unitary time evolution operator US(t, t0). In its most general form, the time
evolution operator has the following representation

US(t, t0) = TD exp
(
−i

∫ t

t0

dt′HS(t
′)

)
(2.16)

where TD is the Dyson time ordering operator with the property

TD (A(t1)B(t2)) =

{
A(t1)B(t2) if t1 > t2

B(t2)A(t1) otherwise
(2.17)

and HS(t
′) indicates an explicit time dependence of the operator. In this thesis we do

not make use of the explicit form (2.16). Despite this, the equation describing the time
dependence of an operator in the Heisenberg picture is derived form equation (2.15).
Leaving us with the Heisenberg equation of motion in its most general form

d
dt
AH(t) = i [HH(t), AH(t)] + U †

S(t, t0)
∂

∂t
AS(t)US(t, t0) . (2.18)

For a time dependence of the operator without explicit occurrence of time t in the
Schrödinger picture AS(t) = AS the Heisenberg equation of motion reduces to

d
dt
AH(t) = i [HH(t), AH(t)] =: iL(AH(t)) (2.19)

whereby for future reference the Liouville superoperator L (.) := [HH(t), .] is introduced
as a shorthand notation for the commutation with the Hamiltonian HH(t) of the system.
Furthermore, all operators of interest in this thesis are missing an explicit time dependence.
Therefore, equation (2.19) is used as a starting point for the following calculations. In
the following, all operators in the Heisenberg picture are noted as A(t), where all other
operator A without time dependence are operators in the Schrödinger picture.

12



2.3 Iterated equations of motion approach

After this brief excursion regarding the different pictures in quantum mechanics, we now
turn to the derivation of the iEoM approach. Starting with an arbitrary operator A(t) in
the Heisenberg picture. The operator can be written as an operator expansions

A(t) =
∑
i

hi(t)Ai (2.20)

consisting of complex prefactors hi(t) which contain all time dependencies and time
independent operators Ai in the Schrödinger picture taken from a certain operator basis
O = {A1, . . . , An} [18]. The Heisenberg equation of motion (2.19) for the operator (2.20)
reads

d
dt
A(t) = iL (A(t)) = i

∑
i

hi(t)L(Ai) (2.21)

where L(Ai) can also be written as a linear combination of other operator Aj in the given
Basis O

L(Ai) =
∑
j

MjiAj . (2.22)

Combining all previous equations (2.20) to (2.22) and considering that the time dependence
is only stored in the prefactors hi(t), the following equation results∑

i

d
dt

(hi(t))Ai = i
∑
ij

Mjihi(t)Aj . (2.23)

A coefficient comparison for an operator in equation (2.23) yields

d
dt
hj(t) = i

∑
i

Mjihi(t) . (2.24)

Writing all prefactors hi(t) in a vector h(t) the relation in equation (2.24) is writable as a
matrix vector product

d
dt

h(t) = i M h(t) . (2.25)

The matrix M consists of the prefactors which arise by applying the Liouville superoperator.
Thus, it will be called the Liouville matrix in the following. The equation (2.25) describes
the effect of the so called Liouville matrix on the time-dependent prefactors hi(t) of the
operator expansion in equation (2.20). So the time evolution of the operator A(t) is
obtained by solving the first order differential equation system in equation (2.25) for h(t).
This can be done of course using either a numerical or analytical approach. In both cases
necessary for the complete solution of the differential equations are initial conditions for
the operator A(t = 0). For the starting point t = 0 the operator A(t) should be equal to
the operator in the Schrödinger picture

A(t = 0) = A . (2.26)

13
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Therefore, the operator A needs to be included in the operator basis O. Presuming the
operator A is the first operator A0 in the operator basis O, the first element in the vector
h(t) is associated with the operators AS . So the initial condition for h(t) reads

hi(t = 0) =

{
1 | i = 0

0 | i 6= 0
. (2.27)

With the iEoM approach we are capable to calculate the evolution in time of an operator.
Hence, with this method we can study for example time dependent observables like the
local occupation number or calculate time average for an operator as done in Ref. [19].

In this thesis we are not interested in the explicit time evolution of an operator but more
in the energy gap of the Mott-Hubbard insulator described by the t-J model in the regime
of 0 < J � T � ∆ as mentioned in section 2.1. Hence, we need to find parameters in
the iEoM approach that provide insights into the energy values connected to the energy
gap of the model. Therefore, in the next section, we consider possible approaches to the
solution of the differential equations in equation (2.25) and their applications to determine
the energy gap of the model.

2.4 Addressing the solution of the iterated equations of motion
approach under consideration of the energy gap

As mentioned above there are two general approaches to solve the differential equation
of equation (2.25). The first is a numerical solution and the other one is an analytical
solution. Here the two approaches are brief summarized and it is evaluated whether they
are suitable for calculating the energy gap of the system.

Numerical solution
In the numerical solution the vector h(t) is calculated for discrete time steps tn = nh,
n ∈ N0. To give an estimation for a next step h(tn) the previous step tn−1 is taken into
account. Whereby the initial vector of equation (2.27) serves as the start vector for this
process. Well-known methods for this type of solutions are the Runge-Kutta methods
[34]. Now the task is to rate the solution regarding its potential to give insights into the
energy gap. Since the vector h(tn) contains only factors hi indicating the portion of basis
operators Ai in A(tn) to a given time tn as shown in equation (2.20), there is at first no
clear connection to the energy gap. Therefore, it is not really possible to make a statement
concerning the energy gap of the system unless it is possible to find an observable which
is directly connected to the energy gap. Thus, this approach to the solution might not be
the way to determine the energy gap. At first, we drop this approach, and we turn to an
analytical one.

14



2.4 Addressing the solution of the iEoM approach under consideration of the energy gap
of the Mott insulator

Analytical solution
On the other hand it is also possible to analytically solve the differential equation system
in equation (2.25) by a linear transformation into the eigensystem of the Liouville matrix
M. Consider that the Liouville matrix M ∈ Cn×n is a diagonalizable matrix so that a
linear transformation Q ∈ Cn×n exists which fulfills

Q−1MQ = D (2.28)

where the matrix D = Diag (λ1, . . . , λn) is a diagonal matrix with the eigenvalues λi ∈ C
of M. Furthermore, each eigenvalue λi can be associated with an eigenvector vi ∈ Cn

which satisfies the eigenvalue equation

Mvi = λivi . (2.29)

In order to determine the eigenvalues of M it is necessary to compute the zeros of the
characteristic polynomial

p(λ) = det(M − λI) = 0 (2.30)

with the identity I having the same dimension n×n as M. The zeros of the characteristic
polynomial p(λ) are the eigenvalues λi of M with the algebraic multiplicity µ which count
the number of occurrence as a root of p(λ). If the algebraic multiplicity µ > 1 for some
eigenvalues of M we say matrix M has degenerate eigenvalues and µ corresponding eigen-
vectors span the subspace of those degenerate eigenvalues. Furthermore, the eigenvectors
are assumed to be normalized i.e. ||vi||2 = 1. If we now apply these considerations to
the differential equation system of equation (2.25), we can analytically solve the first
order differential equation system and in the end we obtain a fundamental set of solutions
{y1(t), . . . ,yn(t)} with

yi(t) = eiλitvi . (2.31)

Together with the initial condition in equation (2.27) the solution for h(t) is a superposition
of the fundamental set

h(t) =
n∑

i=1

αiyi(t) =
n∑

i=1

αieiλitvi (2.32)

where the coefficient set αi ensures that the initial conditions are met.

For this approach, the possibility of gaining insights into the energy gap of the system is
also being examined. In contrast to a numerical solution the analytical solution holds more
information concerning the system studied. In addition to the vector h(t) the analytical
solution delivers a set of eigenvalues {λi} and eigenvectors {vi} which can be interpreted
in terms of their physical meaning for the system. Here, the eigenvalues are examined
first. If they are made out of complex values, it leads to an exponentially diverging
contribution in the time evolution of A(t) which is regarded as an unphysical behavior [18,
19]. Therefore, to ensure only oscillatory contributions in A(t), preventing the occurrence
of complex eigenvalues λi of M is mandatory. Thus, the Liouville matrix M should be
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either Hermitian with M† = M or symmetric with MT = M , since these matrices
only have real eigenvalues. Furthermore, considering equation (2.22) the elements in the
Liouville matrix M have the unit of an energy due to the fact that these coefficients
occur by computing L(A). Consequently, the eigenvalues λi have the same unit. So the
eigenvalues of the Liouville matrix for an operator A(t) sort of unravel the energy areas
in which the operator A(t) seem to act on. In addition, the corresponding eigenvectors vi
hold information about the portion of operators included in the operator basis that are
connected to the oscillation with the frequency λi.

Now basically the idea is to find a suitable operator A(t) so that the eigenvalues of the
related Liouville matrix break down the energy areas connected with the band gap of
the system. Before this topic can be addressed, it is necessary to discuss a method for
building an appropriated operator basis and thus ensuring a Hermitian Liouville matrix
for the iEoM approach. In the next section conditions for obtaining a Hermitian Liouville
matrix are considered. Then the consequences for the operator basis are also discussed.

2.5 Obtaining a Hermitian Liouville matrix

As mentioned in section 2.3 it is essential for the iterated equation of motion approach
that the Liouville matrix is a Hermitian or symmetric matrix and thus has real eigenvalues.
So first we need an expression for a matrix element Mij . A convenient approach is to
choose the operator basis O as an orthonormal operator basis with respect to a given
scalar product. So the scalar product for two operators Ai, Aj ∈ O yields

(Ai|Aj) = δij . (2.33)

Due to this orthonormal relation and equation (2.22) it is possible to calculate the matrix
element Mij as the scalar product of an operator Ai with the Liouville operator L(.) of
an operator Aj

Mij = (Ai|L(Aj)) . (2.34)

Now the task is to specify the scalar product. For finite local Hilbert spaces the scalar
product should be the Frobenius scalar product (A|B), which was already proposed in
Ref. [18] and applied in Ref. [19, 20]. The Frobenius scalar product can be interpreted as
the high-temperature limit T → ∞ of the thermal expectation value

(A|B) = lim
T→∞

〈A†B〉 = lim
T→∞

Tr
(
ρA†B

)
(2.35)

in the canonical ensemble. The density matrix operator

ρ =
e−βH

Tr (e−βH)
(2.36)

with the Hamiltonian H changes for a vanishing inverse temperature β to

lim
β→0

ρ = N1 (2.37)
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2.5 Obtaining a Hermitian Liouville matrix

where N takes care of normalization by

N :=
1

Tr (1)
=

1

d
(2.38)

with the dimension d. So we are looking at a maximally disordered system where each
state is equally likely with the probability of 1/d. Thus, we obtain the Frobenius scalar
product which reads

(A|B) = N Tr
(
A†B

)
. (2.39)

The next step is to show that with this definition of the scalar product it is possible to
create a Hermitian or symmetric Liouville matrix ensuring

Mij =M∗
ji . (2.40)

Starting with the equation (2.34) for the Matrix element the proof is as follows

Mij =(Ai|L(Aj)) = N Tr
(
A†

iL(Aj)
)
= N Tr

(
A†

i [H,Aj ]
)

(2.41a)

=N Tr
(
A†

i (HAj −AjH)
)

∗
= N Tr

(
Aj

(
A†

iH −HA†
i

))
(2.41b)

=N Tr
(
Aj (HAi −AiH)†

)
= N Tr

(
AjL†(Ai)

)
(2.41c)

∗
=(L(Ai)|Aj) = (Aj |L(Ai))

∗) =M∗
ji . (2.41d)

The steps, denoted with ∗
=, mark where the cyclic property of the trace is used. So

with the equation (2.41) we can prove that the Liouville matrix is self-adjoint M = M†

Moreover with the underlined steps of equation (2.41) and the definition(
L† (Ai) |Aj

)
:= (Ai|L (Aj)) = (L(Ai)|Aj) (2.42)

it follows that the Liouville operator

L = L† (2.43)

itself is self-adjoint. Hence, it is possible to construct a Hermitian Liouville Matrix with
real eigenvalues assuming an operator basis which is orthonormal with respect to the
Frobenius scalar product. The next step is to build such an orthonormal operator basis.
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2.6 Approaches to determine the operator basis

Now that we are aware of the demands on an operator basis discussed in section 2.5 which
leads to a Hermitian Liouville Matrix with real eigenvalues, we take a closer look how to
build an orthonormal operator basis meeting this demands. Therefore, we visit different
approaches to determine an operator basis {Ai} done by former studies concerning an
iterated equation of motion approach.

Starting which the so called m-loop approach used in e.g. [35–37]. Basically the idea
is to use the Liouville superoperator L(.) to generate new operators which then are
added to the operator basis. The operator basis after each loop m will be denoted with
Om. As a starting point to determine the operator basis Om for A(t) the operator A0

is used corresponding to the operator A(t) in the Schrödinger picture. The operator
A0 is inevitably a part of the operator basis, because without it the initial condition
A(t = 0) = h0(t = 0)A0 mentioned in the section 2.3 cannot be fulfilled. So we start the
calculation with the operator basis O0 only containing {A0}. By calculating the Liouville
superoperator for all operators in the operator basis km ≥ 0 new operators rise. Therefore,
the operator expansion reads

L(O0)−→ A(t) =

k1∑
i=0

hi(t)Ai (2.44)

after the first loop. In the m-loop approach it is necessary to effectively apply the Liouville
superoperator m+ 1 times to the operator basis. But operators rising in the last loop for
the first time are neglected and only the projection of each onto the operators already
contained in the operator basis is kept to achieve a closed differential equation system
for the prefactors hi(t). In general the number of operators in the basis for a m-loop is
f = 1 +

∑m
i=1 ki and so the final operator expansion for A(t) results in

A(t) =

f−1∑
i=0

hi(t)Ai (2.45)

with the operator basis Om = {A0, . . . , Af−1}. To obtain the solution for the time depen-
dent coefficient vector h(t) = (h0(t), h1(t), . . . hf−1(t))

T in this approach it is necessary
to determine the matrix elements Mij via a coefficient comparison.

In contrast to the previous considerations about the Frobenius scalar product, the Liouville
matrix here is not necessarily a Hermitian matrix. One problem lies in the assignment
of new operators after an application of L (.). This happens since second quantization
operators can be written in various forms. Therefore, to emphasize the problem that arise
with the m-loop approach, let us consider that e.g. the operator d†i,↓ creating a doubly
occupied site at the position i in second quantization is already part of Om. Furthermore,
with the anticommutator for Fermions the operator d†i,↓ can be written as

d†0,↓ = f †i,↓f
†
i,↑fi,↑ = f †i↓ − f †i↓fi↑f

†
i↑ . (2.46)
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2.6 Approaches to determine the operator basis

So let the right-hand side of equation (2.46) appear after an application of L (.) in the
m+ 1-loop the assignment to two new operators would be incorrect, because the operator
on the left-hand side is already contained in the operator basis. So this assignment would
result in a non-Hermitian Liouville matrix. Of course in this example it is not so difficult to
distinguish between old and new operators, but for operators containing more monomials
this can become a nontrivial task. Furthermore, it is assumed that an arbitrary operator
Ai of the operator basis have a form of

Ãi =

n∏
j

Fαj (2.47)

Ai = aiÃi (2.48)

with Fαj ∈ {f †αj , fαj} denoting creator or annihilator for a Fermion with a full set of
quantum numbers αj . Altogether an operator Ai consists of a product of n Fermionic
operators and a prefactor where the choice of the prefactor ai is not defined by the m-loop
approach. But this choice has a major influence on the appearance of the Liouville matrix
e.g. whether the matrix is Hermitian [38]. Basically the m-loop approach without any
modification is in general not convenient to determine the operator basis suited for our
purpose.

Another idea is to build an orthonormal operator basis beforehand with respect to the
Frobenius scalar product described in section 2.5. There, the operators can have a slightly
different form as in equation (2.48), where the factors Fαj are now not only creators or
annihilators, but instead Fαj are a superposition of them. For example an operator Ai

can have the following form

Ai = aiÃi = ai

(
f †αj

fαj
− 1

2

)(
f †αk

+ fαk

)
. . . . (2.49)

Now the prefactors ai are determined by requiring orthonormality so that

(Ai|Aj) = aia
∗
j (Ã|Ã) = δij (2.50)

is orthonormal. This approach ensures a Hermitian Liouville matrix as shown in equa-
tion (2.41). With this approach it is possible to select operators by means of their
importance for the time evolution for different parameter regimes. This approach is used
e.g. in Ref. [19] by dividing the Liouville operator L of the Hubbard model into a hopping
L0(.) = [Ht, A] and an interaction part Lint(.) = [Hint, A]. For a dominating interaction
part new operators are determined through Lint(.) and vice versa for the kinetic hopping
part with L0(.). To ensure the operators’ orthonormality a Gram-Schmidt processes is
used before adding them to the operator basis. During the Gram-Schmidt processes,
many scalar products are calculated with operators in the form as in equation (2.49).
To calculate a scalar product of two arbitrary operators A, B composed of Fermionic
operators {f †αj , fαj} by the means of

(A|B) = N Tr
(
A†B

)
(2.51)
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many traces of a product of Fermionic operators must be calculated. For beforehand
constructed general operators this can be a non-trivial task and is discussed in detail in
Ref. [38].

Here, we try to combine these to approaches. So the operator basis is not constructed
beforehand, but instead build with a m-loop approach. Since all operators should be
orthonormal concerning the Frobenius norm, we thus avoid the problem of ambiguity of
the operators. Of course a Gram-Schmidt processes can be used to ensure orthonormality
of the new operators to all former operators in the operator basis. But this involves
calculations of many elaborate traces especially for high loops. Therefore, this is not a
feasible option. To avoid this problem new operator rising in the m-loop approach need
to be orthonormal by construction. The aim of the following paragraphs is now to define
an operator form to solve this issue.

We start again with scalar product of two operators A and B, but now we presume that
they act on separable Hilbert spaces HA and HB. Therefore, the trace over the complete
Hilbert space H = HA ⊗HB in the Frobenius norm can be split up according to

(A|B) = NH TrH
(
A†B

)
= NHA

TrHA

(
A†

)
NHB

TrHB

(
B

)
(2.52)

where TrHx(.) refers to the trace over Hx with the related inverse dimension NHx . As a
result of dealing with operators consisting of Fermionic operators acting only on a certain
site, each operator has a finite and well separable Hilbert space. Hence, it is possible to
split the trace into calculations of a scalar product as in equation (2.52) every time. This
allows us to make a statement about the required shape of the operators in the operator
basis to fulfill the orthonormal condition in equation (2.33).

First we assume that it is possible to find local operators ôjn consisting of a linear
combination of Fermionic operators {f †αj , fαj} which act all on the same local Hilbert
space HL

d for a single site j with the dimension d and satisfy the relations

(ôjn |ôjm) =
1

d
TrHL

d

((
ôjn

)†
ôjm

)
= δnm (2.53)

(1j|ôjm) = 0 . (2.54)

Here 1j marks the identity for the local Hilbert space HL
d of the site j. Hence, the set of

these local operators {1j , ô
j
1 , . . . , ô

j
n } builds an orthonormal operator basis for the site j

we can combine these type of operators for all different sites which yield advantageous
operators of the form

Ai =

n∏
j

R̂Ai
j (2.55)

where R̂Ai
j ∈ {1j , ô

j
1 , . . . , ô

j
n , } denotes an orthonormal operators for a site j and with

the product going over all sites n of the system. So looking one more time on a scalar
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2.6 Approaches to determine the operator basis

product of two operators A and B which possessing now the form of equation (2.55).
Therefore, the scalar product reads

(A|B) = N TrH


 n∏

j

R̂A
j

†
n∏
i

R̂B
i

 (2.52)
=

n∏
i

1

d
TrHL

d

((
R̂A

i

)†
R̂B

i

)
(2.56)

(2.53)
=

{
1 if R̂A

i = R̂B
i ∀ i

0 otherwise
(2.57)

where in the first step the trace is divided into the product of all traces over the local
Hilbert spaces of each site according to (2.52) and finally the orthonormalily relation
between two local operators of (2.53) is used. Apparently the scalar product of two
operators which are constructed as in equation (2.55) results in either one if all their
factors of one site operators R̂X

i are identical thus the operators itself are exact the same
or zero if already two factors on a site i differ from each other. So the advantage of these
operators is that they fulfill the orthonormal relation in equation (2.33) by construction.
Henceforth, only factors R̂A

j in the product of equation (2.55) which are different from
the identity 1 on a site are written down. Basically an operator acting on three different
sites i, j and k would be noted as

Ai = R̂A
i R̂A

j R̂A
k . (2.58)

Referring back to the m-loop approach we now have a well-defined operator form and
therefore avoid the possible mistakes in the assigning of the operators after a loop since
resulting operators have a form like in equation (2.58). Furthermore, by calculating the
Liouville superoperator for each operator in the set {ôj1 , . . . , ô

j
n } the Liouville operator

of an arbitrary operator in the form of equation (2.58) can be calculated easily like the
following example shows with the operator of equation (2.58)

L (Ai) =
[
ôimô

j
n ô

k
o ,H

]
=

[
ôim,H

]
ôjn ô

k
o + ômi

[
ôjn ,H

]
ôko + ôimô

j
n

[
ôko ,H

]
(2.59)

= L
(
ôim

)
ôjn ô

k
o + ôimL

(
ôjn

)
ôko + ôimô

j
n L

(
ôko

)
. (2.60)

So the Liouville superoperator breaks down by applying a commutator identity into
many Liouville superoperators of local operators. Although the procedure is fairly
straightforward, an annotation must be made. In the case that a Liouville superoperator
L(.) yields local operators on other sites which are already present in the whole operator,
they need to be simplified. For example let L

(
ôim

)
has a part with an operator acting on

the site k

L
(
ôim

)
= aôin ô

k
m + . . . (2.61)

with an arbitrary prefactor a. Consequently, the underlined term of equation (2.60) has
two operators acting on the same site k

L
(
ôim

)
ôjn ô

k
o = aôin ô

k
m ô

j
n ô

k
o + . . . . (2.62)
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2 Theory

Since these operators, when acting on different sites and thus acting on different subspace
of the Hilbert space, (anti-)commute with each other pending on whether their properties
are Fermionic or Bosonic. As a result, the operator of equation (2.62) can be written so
that the two local operators acting on the same site are side by side, possibly resulting in
a change in the overall sign of the operator

aôin ô
k
m ô

j
n ô

k
o = (−)aôin ô

j
n ô

k
m ô

k
o . (2.63)

Furthermore, products of two local operators acting on the same site can be written as a
superposition of the orthonormal operator basis for a single site {1k, ô

k
1 , . . . , ô

k
n }

ôkm ô
k
o = b01k +

∑
x

bxô
k
x (2.64)

with arbitrary prefactor bx. So after inserting equation (2.64) into equation (2.63) only
the sum of operators in form of equation (2.55) remains which all fulfill the relation of
equation (2.57). Therefore, the Liouville superoperator L (.) of the operator Ai possesses
the following form

L (Ai) = (−)ab0︸ ︷︷ ︸
αj

ôin ô
j
n︸ ︷︷ ︸

Aj

+
∑
x

(−)bia︸ ︷︷ ︸
αj

ôin ô
j
n ô

k
x︸ ︷︷ ︸

Aj

+ · · · =
∑
j

αjAj . (2.65)

where all factor which occur during all steps (2.62)-(2.64) are merged into one prefactor
αj for the new operator Aj . Referring back to equation (2.34), it is obvious that the
prefactors αj corresponds to the matrix elements

Mji = (Aj |L (Ai)) = αj (2.66)

of the Liouville matrix. Another important aspect in order to ensure the correct sign
of the matrix elements is to order all local operators of an entire operator Ai towards a
certain rule e.g. in one dimension in ascending order corresponding to the sites.

In summary, to calculate the Liouville superoperator L (.) of an operator Ai these steps
are followed. First, insert for each local operator ôin in Ai the corresponding precalculated
L
(
ôin

)
as shown in equation (2.62). Then sort in the new operators all local operators

towards the predefined rule, bearing in mind that those commutations can lead to a change
in the sign. After that, if two local operators act on the same site, they are simplified
with the predefined rules as in equation (2.64). The result is a sum of operator Aj with
prefactors αi. In the m-loop approach the operators then are added to the operator basis
if they occur the first time. Now that we have discussed all the steps to determine an
orthonormal operator basis for the iterated equation of motion approach in this thesis,
figure 2.9 shows concludingly a scheme of the m-loop approach with unambiguous and
orthonormal operators Ai to calculate a Hermitian Liouville matrix Mm of the m-th
loop.

22



2.6 Approaches to determine the operator basis

A0

Ai with known L (Ai): Ai

A0, {aj , Aj} A0

initial operator: A0

{Aj}

L (Ai) := {αj , Aj}

calculate L (.) for initial operator A0 in OB set new operators with L (.)

1-loop O1

Ai with unknown L (Ai): Ai

{Ai} {Aj}
m-loop Om1

{Aj , {αk, Ak}}

Mm(A0)

2

3

4

calcuate for each {Aj} in OB L (.) and so generate new operators Ak

Add new operators {Ak} to {Aj} in OB if Ak /∈ OB and add {Aj} to {Ai}

calcuate for each {Aj} in OB L (.) and build Liouville matrix with all αi

3 2

4

1

2

Figure 2.9: Scheme of the operator basis expansion as it is done in the m-loop approach
with the unambiguous and orthonormal operators Ai. It is possible to determine the
operator basis Om together with the corresponding Liouville matrix Mm in the m-th
loop for the iEoM approach by following the simple steps 1-4. Whereby steps 2-3 are
repeated until the desired number of loops m is reached.
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3 Methods

With this chapter all tools will be provided to use the m-loop approach displayed in
figure 2.9 to determine an orthonormal operator basis Om for the iEoM approach and
build the corresponding Liouville matrix Mm for an operator A(t) and finally determine
the energy gap for single charge excitation of the given Hamiltonian in equation (2.14).
By combining all aspects of the former chapter, the first aspect we have to address is the
choice of the operator A(t) providing insides in the energy gap for single charge excitation
of the system at half-filling. Then we have to tackle the choice of the local operators
ôin so that they form an orthonormal set on a local i relative to the Frobenius scalar
product. Furthermore, two different implementations of the Frobenius scalar product
are discussed which lead to two different sets of local operators and some restrictions
regarding the Liouville operator. Moreover, one of the implementations has an advantage
so that the algorithm discussed at the end of section 2.6 used to determine new operators
can be adjusted. Then another representation, the momentum space representation,
for the operators Ai is introduced which yields certain advantages over the real space
representation used so far. At that point the Lanczos algorithm is presented as a method to
study extreme eigenvalues of large matrices. Since large Liouville matrices are unavoidable
for whichever operator representation in higher loops, this method is very valuable for this
thesis. Closing this chapter, a detailed procedure for calculating the energy gap is given
and a specific form is defined in which the results are presented in the next chapter.

3.1 Considerations for the initial operator

So we are looking for an operator that can be assigned to resolve a specified energy area
of the given system. For the considered system at half-filling as described in section 2.1
the energy gap ∆ for single charge excitation is the desirable parameter to be determined.
Hence, we are interested in the distance between LHB and UHB as shown in figure 2.2.
With the iEoM approach providing a method to resolve the energy range of an operator
A(t) if a Hermitian Liouville matrix is used, it appears convenient to consider the time
evolution of an operator inducing a single charge excitation for this purpose. Here at
first only an excitation as a result of removing one electron from the half-filled case is
treated. The operator for such a process is for example h†iσ = fiσ(1− n̂iσ̄) which creates
a single charge excitation in the form of a hole by removing an electron with spin σ on
a single occupied site i. This process correspond to an excitation in the lower Hubbard
band. Of course, an operator d†iσ = f †iσn̂iσ̄ creating a doubly occupied site by adding an
electron with spin σ on a single occupied site i can be chosen instead of creator of a hole.
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3.1 Considerations for the initial operator

This process describes an excitation in the upper Hubbard band. Due to particle-hole
symmetry it is sufficient to treat only one type of single charge excitation.

The spin σ has no influence, because the system does not prefer certain spin orientations.
Thus, for h†iσ(t) the spectrum of eigenvalues Λ(λi) = {λmin, . . . , λmax} for the corresponding
Liouville matrix lie in the range of the energy spectrum of the LHB, so the idea. Therefore,
the energy gap ∆ in this picture is ∆ = λmin(LHB) + λmin(UHB) = 2λmin(LHB) due to
the particle-hole symmetry.

A distinction regarding the size of the used operator basis O in the iEoM approach must
be made. Since in iEoM approach, the Liouville matrix for h†iσ(t) is only determined for
an operator basis Om which is built with the m-loops approach, the result is only an
approximation for h†iσ(t) and higher m leads to an improved accuracy. As a result, the
lowest eigenvalue λmmin also depends on m and so only yields an estimation for the energy
gap ∆m of the system. Due to the fact that the spectrum of the eigenvalues Λ(λmi ) lays
always inside the band and the lowest eigenvalues λmmin only approaches the real bound of
the band with each loop m, 2λmmin serves as an upper bound for the true energy gap ∆
and we expect a behavior as shown in figure 3.1 for increasing m.

LHB∆/2

U/2

Λ(λm
i )

λm
min

∆m/2

λm+1
minλm+2

min

ρ(E)

E0

Figure 3.1: Scheme of the behavior of the spectrum of the eigenvalues Λ(λmi ) for the
Liouville matrix in an iEoM m-loop approach. Where the initial operator h†iσ induces
a single charge excitation in the lower Hubbard Band LHB in form of a hole. The
calculated energy gap for charge excitation ∆m approaches for increasing m the true
energy gap ∆ as an upper bound. In the language of one-particle green’s function as
shown in figure 2.2 processes in the LHB are of course mirrored along the vertical axe [39].
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3 Methods

3.2 The local basis choices for iterated equation of motion
approach

So now that the initial operator in form of a creator of a hole h†iσ is selected we can turn
to the issue of choosing a local orthonormal operator basis. Thereby the choice of the
local Hilbert spaces HL

d with the dimension d has an impact on the local operator basis
so its choice is crucial. One option is to choose a four-dimensional local Hilbert space HL

4

without any restrictions to the spin configurations so that all four states for a single site
| 〉, |↑〉, |↓〉 and |↑↓〉 are allowed as done in previous works where a fermionic systems is
examined with the iEoM approach [19]. Here it should be noted that with this choice
of the local Hilbert space, it is not possible to incorporate the half-filling state of the
whole system into the iEoM approach. The proof for a Hermitian Liouville matrix of
equation (2.41) is not possible if states are weighted according to a density matrix ρ. As a
result, all four states are equally weighted in the local Hilbert space, which is an argument
against this specific choice. Nevertheless, the HL

4 case is considered here. Another option
is a two-dimensional local Hilbert space HL

2 with respect to the strict half filling. Then the
only allowed spin configurations are |↑〉 and |↓〉 in the HL

2 case. In the following the two
possible choices are examined towards their influence on the local orthonormal operator
basis starting with the four-dimensional local Hilbert space HL

4 .

Four-dimensional local Hilbert space HL
4

Since the local Hilbert space consists of four different stats with the spin configurations
| 〉 , |↑〉 , |↓〉 , |↑↓〉 we need sixteen local operators ôin to describe all possible changes of the
local states. The table table 3.1 contains the first ansatz for the operator basis. Since the
operator are neither orthogonal nor normalized, they are referred as õin and chosen such
that the transition element is 〈.| õin |.〉 = 1.

Table 3.1: All local operators õin which have an transition element 〈.| õin |.〉 = 1 are listed.
For the HL

4 case these operators form an operators basis for a single site i. Whereas the
orthonormality of the operators õin with respect to the Frobenius scalar product is not
guaranteed at first. Operators that violate the required orthogonality are marked in red.

| 〉 |↑〉 |↓〉 |↑↓〉
〈 | 1 fi,↑ fi,↓ fi,↓fi,↑
〈↑| f †i,↑ n̂i,↑ σ+i = f †i,↑fi,↓ di,↓ = fi,↓f

†
i,↑fi,↑

〈↓| f †i,↓ σ−i = f †i,↓fi,↑ n̂i,↓ di,↓ = fi,↓f
†
i,↑fi,↑

〈↑↓| f †↓f
†
↑ d†↓ = f †↓f

†
↑f↑ d†i,↑ = f †i,↑f

†
i,↓fi,↓ n̂i,↓n̂i,↑

Some local operators in table 3.1 marked in red not meet the orthogonality conditions of
equation (2.53) for the local orthonormal operator basis. Furthermore, all operators of
table 3.1 except 1 are not normalized and most important the initial operator h†iσ is not
yet part of the local operator basis, but this happens naturally in the process by satisfying
the demands on a local orthonormal operator basis. Here are two examples for operators
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3.2 The local basis choices for iterated equation of motion approach

of table 3.1 violate both orthogonality and normality. This is corrected in the following
leaving only local operators ôin that are completely orthonormal.

operator: n̂i,↑ orthogonality: (1|n̂i,↑) =
1

4
TrHL

4

(
n̂i,↑

)
=

1

2
6= 0 (3.1a)

n̂i,↑ ⇒ n̂i,↑ −
1

2
(3.1b)

normality: (n̂i,↑ −
1

2
|n̂i,↑ −

1

2
) =

1

4
6= 1 (3.1c)

⇒ ôin = 2

(
n̂i,↑ −

1

2

)
(3.1d)

operator: f †i,↑ orthogonality: (f †i,↑|d
†
↑)

(2.6)
= (d†i,↑ + h†i,↑|d

†
i,↑) 6= 0 (3.2a)

f †i,↑ ⇒ f †i,↑ − d†i,↑ = h†i,↑ (3.2b)

normality: (h†i,↑|h
†
i,↑) =

1

4
6= 1 (3.2c)

⇒ ôin = 2h†i,↑ (3.2d)

After checking, the orthonormality for all operators of table 3.1, the local orthonormal
operator basis reads as in table 3.2. To improve readability, the operators are used here
in the non-normalized form! Of course, the normalization factor N of a non-normalized
local operator ôin can be simply determined by means of

N =

√
1

(ôin |ôin )
=

√√√√ d

TrHL
d

(
(ôin)

† ôin
) . (3.3)

Table 3.2: All local operators ôin which in the HL
4 case form an orthonormal operators

basis with respect to the Frobenius scalar product for a single site i. For readability
reasons, the operators ôin are presented without their normalization factor and is
determined by equation (3.3).

1 nui =
(
ni,↓ −

1
2

)(
ni,↑ −

1
2

)
σ+i = f †i,↑fi,↓ fi,↓fi,↑

ñi,↓ =
(
ni,↓ −

1
2

)
ñi,↑ =

(
ni,↑ −

1
2

)
σ−i = f †i,↓fi,↑ f †i,↓f

†
i,↑

d†i,↓ = f †i,↓f
†
i,↑fi,↑ d†i,↑ = f †i,↑f

†
i,↓fi,↓ h†i,↓ = fi,↓fi,↑f

†
i,↑ h†i,↑ = fi,↑fi,↓f

†
i,↓

di,↓ = fi,↓f
†
i,↑fi,↑ di,↑ = fi,↑f

†
i,↓fi,↓ hi,↓ = f †i,↓fi,↑f

†
i,↑ hi,↑ = f †i,↑fi,↓f

†
i,↓

Now we only need to calculate the Liouville operator for all local operators ôin in table 3.2
and determine the result of the product if two local operators of table 3.2 act on the same
site. Only an example for operator h†↑ will be shown here and the other results are listed
in the appendix A. Furthermore in the example the Hamiltonian for the Liouville operator
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3 Methods

consists only of the simple DO NN-hopping T0 (2.7b) on a one-dimensional chain and the
interaction part Hint (2.3c). Again the normalization factor N is omitted.

Liouville operator: L
(
h†i,↑

)
= [T0, h

†
i,↑] + [Hint, h

†
i,↑]

(3.4a)

[Hint, h
†
i,↑] =

U

2
h†i,↑ (3.4b)

[T0, h
†
i,↓] = t0

(
−fi,↓fi,↑d

†
i±1,↓ − σ−i h

†
i±1,↑ + ñi,↓h

†
i±1,↑ −

1

2
h†i±1,↑

)
(3.4c)

simplification rules:

h†i,↑hi,↑ = nui − 1

2

(
ni,↑ −

1

2

)
− 1

2

(
ni,↓ −

1

2

)
+

1

4
h†i,↑di,↓ = −fi,↓fi,↑ (3.5a)

h†i,↑

(
ni,↑ −

1

2

)
=

1

2
h†i,↑ h†i,↑n

u
i = −1

4
h†i,↑ (3.5b)

h†i,↑ñi,↓ = −1

2
h†i,↑ h†i,↑σ

+
i = h†i,↓ (3.5c)

Combining all these aspects we are able to calculate the Liouville matrix with the m-loop
approach described in section 2.6 and furthermore determine its eigenvalues. Now that
we are capable of building the Liouville matrix for the local operator basis in the HL

4 case
we turn towards the local orthonormal operator basis for the HL

2 case.

Two-dimensional local Hilbert space HL
2

To identify the operators which are part of the orthonormal operator basis for the two-
dimensional local Hilbert space HL

2 , we resort to the already orthonormal local operators
ôin of the HL

4 case from table 3.2. Therefore the local operators of table 3.2 are categorized
in different groups Qi

xy where x and y denote the number of DOs after and before
application of the operator on a site i. There are four different groups since on a local
site there can be ether one or zero DOs. In table 3.3 the operators are listed in their
respective group, though some operators appear due to their ambiguity in more than
one group simultaneously. It is necessary for each local operator in the two-dimensional
Hilbert space that a clear classification in these different group exists. This is because
only operators belonging to the groups Qi

00 and Qi
10 have an effect on half-filling whereas

operators in Qi
0,1 and Qi

1,1 vanish for half-filling. Of course, the identity is an exception
regarding this classification. So the operators nui , ñi,↑, ñi,↓ have a part in Qi

00 as well as
in Qi

11. We are only interested in the Qi
00 part. For nui it is quite obvious that

nui =

{
1
41 if nu ∈ Qi

11

−1
41 if nu ∈ Qi

00

(3.6)
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3.2 The local basis choices for iterated equation of motion approach

Table 3.3: The local operators ôin from the HL
4 case, sorted into four different groups

Qi
xy, where x indicates the number of DOs after and y before application. Due to

ambiguity, some operators appear in more than one group.

Qi
00: 1 nui ñi,↑ ñi,↓ σ+i σ−i

Qi
10: d†i,↓ h†i,↓ d†i,↑ h†i,↑

Qi
01: di,↓ di,↑ hi,↓ hi,↑

Qi
11: 1 nui ñi,↑ ñi,↓ fi,↓fi,↑ f †i,↓f

†
i,↑

since this is the operator in the interaction part of the Hamiltonian in equation (2.3). For
the other two operator ñi,↑ and ñi,↓ we express them as a linear combination of two new
operators

n̄i = ni,↑ + ni,↓ − 1 σzi = ni,↑ − ni,↓ (3.7)

where n̄i measures the deviation towards half-filling and σzi measures the spin orientation
regarding the axis of quantization. With these operators the old operators read

ñi,↑ =
1

2

(
n̄i + σzi

)
ñi,↓ =

1

2

(
n̄i + σzi

)
. (3.8)

The new operators have the advantage that they can be uniquely assigned to a group.
The operator n̄i only gives a non-zero result when applied to a site i with a DO and is
therefore a part of Qi

11. For the operator σz the opposite is true and so σz ∈ Qi
00. As a

result the operator basis for the two-dimensional local Hilbert space is listed in table 3.4
where the normalization factor N is left out to increase the readability. The normalization
factor can be calculated again via equation (3.3). Whereby the Frobenius norm is for the
two dimension Hilbert space. For example in equation (3.9b) the normalization factor
of h↓ changes compared to the previously for the HL

4 case in equation (3.2d) calculated
factor.

operator: h†i,↑ normality: (h†↓|h
†
↓) =

1

2
6= 1 (3.9a)

⇒ f̃i =
√
2h†↓ (3.9b)

Furthermore, the two-dimensional local Hilbert space has also some restrictions regarding

Table 3.4: All local operators ôin which in the HL
2 case form an orthonormal operators

basis with respect to the Frobenius scalar product for a single site i. Normalization is
omitted here.

1 σz σ+ σ−

d†↓ h†↓ d†↑ h†↑

the Liouville operators and simplification rules of operators in the new orthonormal
operator basis. Operators in the operator base for the iEoM approach which partly consist
of local operators in the groups Qi

11 or Qi
01 have a Frobenius norm with itself equals zero
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3 Methods

and therefore for those operators every matrix element is Mij = 0. For example let us
consider an operator A = h†i,↑σ

+
j n̄k. When the Frobenius norm with itself is calculated

(A|A) = N Tr
((

h†i,↑σ
+
j n̄k

)†
d†i,↑σ

+
j n̄k

)
= N Tr

(
n̄kσ

−
j hi,↑h

†
i,↑σ

+
j n̄k

)
(3.10)

(2.52)
=

1

8
TrHL

2

(
hi,↑h

†
i,↑

)
TrHL

2

(
σ−j σ

+
j

)
TrHL

2

(
n̄kn̄k

)
= 0 (3.11)

the result is zero. The reason is the underlined trace with the operator n̄k ∈ Qi
11 since n̄k

applied on a half-filled state is always zero as examined before. Consequently, operators
in Qi

11 and Qi
01 cannot be a part of the operator basis for the iEoM approach. So far in

the used m-loop approach only the Liouville operator is responsible for new operators.
But now with condition above, parts of the Liouville operators of some local operators
need to be neglected. For example L

(
d†i,↓

)
in equation (3.4c) the underlined operator

fi,↓fi,↑ is part of Qi
1,1 and therefore the new operators fi,↓fi,↑h

†
i±1,↑ have no effect when

using the two-dimensional local Hilbert space. Furthermore, all Liouville operators in
appendix A produce for operators that are not part of the group Qi

1,0 new operators terms
with partly local operators belonging to prohibited groups. Of course, these new operators
also cannot be a part of the operator basis. In contrast, make the same statement about
operators that rise from these neglected operators in the next loop is not possible without
further consideration. Since in the first place, with all simplification rules in mind, it is not
clear why a Liouville operator for a forbidden operator cannot produce allowed operator
terms. Therefore, we start the considerations with an operator Q partly consisting of local
operators which are part of Qi

11 or Qi
01. Furthermore, we introduce the state of half-filling

|HF〉 where each site in the system is only occupied with one electron in the state spin up
or spin down. Applying the operator Q on |HF〉 in the Schrödinger picture the result

Q |HF〉 = 0 (3.12)

is trivial. The next step is to apply the Liouville operator to the state of half-filling

L (Q) |HF〉 = [H,Q] |HF〉 = HQ−QH |HF〉 = 0 (3.13)

where equation (3.12) and the fact that the Hamiltonian only contributions, if at least
one DO is in the system, are used to show that also the Liouville operator is equal to zero
when applied to |HF〉. Consequently, all operators partly consisting of local operators
that occur during a loop can be taken form the operator basis for an iEoM approach that
uses a Frobenius norm assuming a two-dimensional local Hilbert space. This fact allows
some modifications to the calculation of new operators for the operator basis as well as
the representation of those operators.
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3.3 Modifications to operator representation for the two-dimensional local Hilbert space

3.3 Modifications to operator representation for the
two-dimensional local Hilbert space

Here we propose a new representation of the operators and show how that simplifies the
process of a loop to determine new basis operators compared to the four-dimensional
local Hilbert space in the iEoM approach. As already indicated, the operators for the
two-dimensional local Hilbert space consist only of local operators from the introduced
groups Qi

10 and Qi
00. The group Qi

10 consists of all operators creating a DO on a site d†↓,
d†↑, h

†
↓ and h†↑ and for the group Qi

00 these are spin operators on a site σz, σ−, σ+ and
the unitary 1.

The Liouville operators applied to operators from the group Qi
00 do not have a contribution

since they produce only operators partly consisting of local operators from the prohibited
groups Qi

11 or Qi
01 therefore it follows that

L
(
Qi

0,0

)
= 0 . (3.14)

With this observation we can completely neglect terms where the Liouville operator is
applied to a local operator L

(
ôin

)
with ôin ∈ Qi

0,0 when calculating the Liouville operator

as described in section 2.6. Here, a short example for an operator A = Qi
10Q

j
00Qk

00 is
given

L (A) = L
(
Qi

10Q
j
00Q

k
00

)
(3.15)

(2.60)
= L

(
Qi

10

)
Qj

00Q
k
00 +Qi

10L
(
Qj

00

)
Qk

00 +Qi
10Q

j
00L

(
Qk

00

)
(3.16)

(3.14)
= L

(
Qi

10

)
Qj

00Q
k
00 . (3.17)

So only Liouville operators which belong to the local operators of the group Qi
10 are of

importance. All those Liouville operators shown explicit in appendix A have a certain
pattern, which is that an Qi

10 operator hops to another site leaving an operator Qi
00 on

initial site and depending on the Hamiltonian also on the sites on a path connecting initial
and final site. So a Liouville operators of Qi

10 can have the following form

L
(
Qi

10

)
= . . .Qi+1

10 Qi
00 +Qi+2

10 Qi+1
00 Qi

00 . . . . (3.18)

After a loop two operators can be still acting on the same site. In contrast to the case in
which we consider a four-dimensional local Hilbert space it is not necessary to keep track
of the sign if these two operators are commutated in such a way that they stand side by
side as in equation (2.63). This results from the fact that all operators of the group Qi

00

at different sites commute with each other due to their bosonic properties and there is
only one operator of the group Qi

10 which has fermionic properties. So the only necessary
commutation rules are[

Qi
00,Q

j
00

]
i 6=j
= 0

[
Qi

10,Q
j
00

]
i 6=j
= 0 . (3.19)
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Furthermore for two operators acting on the same site the idea for simplification rules is
the same as in equation (2.64). The simplification rules vary between the different local
Hilbert spaces. Again for the two-dimensional local Hilbert space simplification rules only
between operators of Qi

00 and Qi
10 are of interest. In general simplifying an operator of Qi

10

with operator of Qi
00 results in either an operator Qi

10 or the term vanishing completely.
While the result between two operators Qi

00 acting on the same site is either again part of
Qi

00 or vanishes.

Combining all these results both for the Liouville operator and the simplification rules
in the two-dimensional local Hilbert space we can record that the operators in the iEoM
approach consist of one operator from Qi

10 and a series of Qi
0,0 operators. Provided, of

course, that the starting operator is from the group Qi
10. So an arbitrary operator A for

the two-dimensional local Hilbert space looks like

A = Qk
10

n∏
i=0

Qi
00 | k 6= i (3.20)

where the number of Qi
00 operators n has an upper limit in the amount of loops done.

Since all operators commute with each other we place the Qi
01 operator up front so it

becomes the head operator of the queue of Qi
00 operators.

Now a loop in this new setting consists only of applying the Liouville operator on the
head operator and then simplify all operators acting on the same site instead of doing this
for all local operators in the entire operator. This decreases the amount of new operators
rising in a new loop significantly and therefore also the dimension of the Liouville matrix
to be diagonalized for the system. All necessary Liouville operators and simplification
rules are listed in appendix B. In the next section another approach is presented to reduce
the amount of operators independent of the local Hilbert space used.

3.4 Momentum space representation of the operators

In this section we present another representation for the operators used in the iEoM
approach. In the previous chapters every operator is in its real space representation where
operators used are a cluster of local operators located relative to the vector l on the
lattice to which to the initial operator, the creator of a DO, is applied. Now due to the
translation invariance of the system, the operators can be modified with the aid of the
Fourier transform so that they act in the momentum space and have the following form

Ak =
1√
N

∑
l

Aleikl (3.21)

where k is a momentum vector in the first Brillouin zone and N is the number of unit
cells in the crystal and the lattice constant set to unity. First, it is necessary to show that
this representation does not change the consideration concerning the operator basis for
the iEoM approach in section 2.6. Therefore, each operator in the operator basis has to
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be orthonormal with respect to either one of the two Frobenius norms by construction.
So a general Frobenius norm between two operators Ak and Bk′ in the momentum space
representation yields

(Ak|Bk′) = (
1√
N

∑
l

Aleikl| 1√
N

∑
l′

Bl′eikl′) (3.22)

=
1

N

∑
l,l′

(Al|Bl′)e−ikleikl′ . (3.23)

From equation (2.57) it is known that only A = B and l = l′ to yiel a non-zero result.
In the case A = B the Frobenius norm (Al|Bl′) = δl,l′ and equation (3.23) is further
simplified to

=
1

N

∑
l

e−i(k−k′)l = δkk′ . (3.24)

In the last step the orthogonality relation∑
l

e−i(k−k′)l = Nδkk′ (3.25)

is used to receive the final result

(Ak|Bk′) =

{
1 if A = B ∧ k = k′

0 otherwise
. (3.26)

Hence, operators of the form of equation (3.21) fulfill the orthogonality relations under
the Frobenius norm and therefore the use of the momentum space representation for the
operators in the operator basis is also possible for the iEoM approach. The next steps
show how the Liouville operator is calculated and further how a matrix element can be
determined for this operator representation. Because of the bilinearity of the Liouville
operator, the Liouville operator is calculated for an operator Ak in this representation
with the same effort as for an operator in its real space representation Al. So the Liouville
operator for Ak reads

L (Ak) =
1√
N

∑
l

L (Al) eikl. (3.27)

For a better understanding regarding the benefits of this representation, let the Liouville
operator L (Al) have the partial result

L (Al) = αAl+δ + βAl . . . . (3.28)

which the prefactors α and β and the shift δ acting on all local operators in the cluster
of Al. In the real space representation the operator Al+δ is part of the operators
that are added to the operator basis Om in the m-loop approach. In contrast, in the
momentum space representation when the Liouville operator of equation (3.28) is inserted
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in equation (3.27)

L (Ak) =
1√
N

∑
l

(αAl+δ + βAl) eikl + . . . (3.29)

=
1√
N

∑
l

αAl+δeikl + β
1√
N

∑
l

Aleikl

︸ ︷︷ ︸
Ak

(3.30)

l′=l+δ
=

1√
N
α
∑
l′

Al′eik(l′−δ) + βAk + . . . (3.31)

= αeikδ 1√
N

∑
l′

Al′eikl′

︸ ︷︷ ︸
Ak

+βAk + . . . (3.32)

=
(
αeikδ + β

)
Ak + . . . (3.33)

the result is not a new operator but rather the same operator with a prefactor depending
on the shift δ which occur in the Liouville operator of the real space representation in
equation (3.28). The advantages are obvious, although we take along all operator on the
lattice in form of Al in the sum of equation (3.21), the operator basis of the momentum
space representation not grow as much as in the real space representation, because known
shifted operator are not added to the operator basis. Thus, the diagonal matrix element
Mii for the operator Ak in the Liouville matrix in the momentum space representation
yields with equations (3.23) and (3.29)

Mii = (Ak|L (Ak)) = αeikδ + β . (3.34)

While in the real space representation the diagonal element is only β and the factor α is
only in non-diagonal entries in the submatrix between all shifted Al operators used in the
operator basis Om. This submatrix is reduced in the momentum space representation only
to the factor αeikδ depending on the momentum vector k. As a result the Liouville matrix
in its momentum representation is significant smaller for higher loops and moreover its
information content is higher. Since all possible shifts of an operator Al are represented
in the Liouville matrix due to the representation in equation (3.21). In summary, the
momentum representation of the operators fulfills all claims for being used in the iEoM
approach and furthermore possesses some advantages towards the real space representation.
Nevertheless, in the end it is necessary to calculate for every Liouville matrix, despite its
representation, the lowest eigenvalue to determine to energy gap. The next section presents
a method how this is still possible for a Liouville matrix with increasing dimensions which
occur at higher loops in the iEoM approach.

34



3.5 Matrix diagonalization via Lanczos algorithm

3.5 Matrix diagonalization via Lanczos algorithm

Regardless the used dimension of the local Hilbert space and the different representation
for the operators in the operator basis, with each iteration step the amount of operators
in the operator basis will increase continuously. Of course, this depends on the number
of operators created by the Liouville operator. Some representations damp this effect
but ultimately the amount of operators is too large and thus a full diagonalization of the
Liouville matrix will be not feasible for higher iteration steps. Additionally, this effect is
enhanced for large Liouville operator in terms of the numbers of new operators generated.
Fortunately, only the lowest eigenvalue is of interest to determine the energy gap. Hence,
the Liouville matrix is constructed to be a Hermitian matrix the Lanczos algorithm [40] is
well suited to determine the lowest eigenvalue of the Liouville matrix.

The Lanczos algorithm is an effective method for large sparse matrices to determine
extremal eigenvalues and their associated eigenvectors of a given matrix. Thereby the
given matrix M with the dimension n× n is reduced to tridiagonal matrix T with the
dimension m×m [41].

T ∈ Cm×m with m < n (3.35)

Since m is much smaller than n and T has a tridiagonal shape, not much effort is required
to transform T into its eigensystem. The resulting extremal eigenvalues of T give an
estimation of M’s extremal eigenvalues, where the estimation becomes progressively more
accurate with higher m [41]. At the beginning of he Lanczos algorithm, a start vector s
must be selected, for which the m-dimensional Krylov subspace

Km (s) = span
(
s,Ms, . . . ,Mm−1s

)
(3.36)

is formed. Although we are not interested in the time evolution of the start operator in
the iEoM, it is appropriated to use the initial condition of equation (2.27) as a start vector
for the Lanczos algorithm

s := h(t = 0) (3.37)

to ensure that the initial conditions (2.27) could be realized if needed. During the Lanczos
algorithm an orthonormal basis for the Krylov subspace is build starting with the first
basis vector

q1 =
s

||s||
(3.38a)

of Km. After that the algorithm generates further basis vectors by using the following
steps

αi = q†jMqj (3.38b)
rj = Mqj − αjqj − βj−1qj−1 (3.38c)

βj =

{
||rj || if j ≥ 1

0 otherwise
(3.38d)
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Furthermore, a normalization is performed
qj+1 =

rj
||rj ||

. (3.38e)

So at the end the all basis vectors qj , j ∈ {1, . . . ,m} created by the Lanczos algorithm
(3.38) are all orthonormal

q†i qj = δij (3.39)

and span the Krylov subspace Km. It is possible to transformation matrix M with the
unitary transformation determine by the matrix

Q =
(
q1 · · · qF

)
(3.40)

where its columns are the vectors qi calculated by the algorithm, into a tridiagonal matrix
with the dimension m×m

Q†MQ = T =



α1 β1 0 · · · 0

β1 α2 β2
. . . ...

0 β2 α3
. . . . . .

. . . . . . . . . . . . 0
... . . . . . . αm−1 βm−1

0 · · · 0 βm−1 αm


. (3.41)

The final step is to find the eigensystem for the matrix T with the eigenvalue λ̃j and
eigenvectors w. As mentioned above the extremal eigenvalues of λ̃j are equal to the
extremal eigenvalues λ of the input matrix M with an accuracy depending on the dimension
of the used Krylov subspace. To obtain the eigenvector vj to the extremal eigenvalue λj
of M the m-dimensional eigenvector wj needs to be transformed into n-dimensional one
with the transformation

vj = Qwj . (3.42)

Of course, depending on the chosen dimension m of the Krylov subspace finding the
eigensystem for T can take some time but still it is significant faster than a full diagonal-
ization of M. In addition, a relative small dimension of the Krylov subspace is sufficient
to achieve reasonable accuracy for the most extreme eigenvalue of M. Considering that
we only need to calculate the lowest eigenvalue of the Liouville matrix when we calculate
the energy gap, thus the Lanczos algorithm is capable of completing this task within a
reasonable time compared to a full diagonalization.
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3.6 Addressing calculation of the energy gap and presentation
of the results

In this section address the presentations of the results which will be mostly used for all
following results in the chapter 4. In general all Hamiltonians which are used in this thesis
are of the following form

H =
∑
i

Ti +Hint (3.43)

consisting of various hopping terms Ti and finally the interaction part Hint. The issue which
initial operator A0 resolves the energy spectrum of the energy gap for charge excitation
is already solved in section 3.1. Therefore, the following paragraphs are addressing
Liouville matrices M where the initial operator A0 is a local operator creating a charge
excitation A0 ∈ {d†i,↑, d

†
i,↓, h

†
i,↑, h

†
i,↓} on a site i in the real space representation. Of course,

in the momentum space representation A0 is an operator creating a charge excitation
A0 ∈ {d†k,↑, d

†
k,↓, h

†
k,↑, h

†
k,↓} with momentum k. With this restriction regarding the initial

operator, it is possible to make a statement about the Liouville matrix by analyzing
the calculations done of the Liouville operator for each local operator in appendix A
respectively in appendix B. Whether Ti it is just simple NN-hopping T0 or more complex
spin dependent NNN-hopping T ′

s, the Liouville operator [Ti, . ] of a local operator includes
not itself. Consequently, since diagonal entries

Mii = (Ai|L (Ai)) (3.44)

are only non-zero if the Liouville operator of an operator yields the same operator with any
prefactor. Therefore, the Liouville operator [Ti, . ] is responsible for off-diagonal elements.
Exceptional cases are possible for operators in the momentum space representation, but
they are initially left out in these considerations. In contrast to this the commutator of
[Hint, . ] with a local operator A0 ∈ {Qi

10,Qi
01} creating or annihilating DOs generates

only the same local operator with a prefactor, where the prefactors are for an operator Qi
10

equal to U/2 and for an operator Qi
01 equal to −U/2 as shown in appendix A. Furthermore

[Hint, . ] = 0 for any local operator ôin ∈ {Qi
00,Qi

11} which not change the numbers of
DO. Apparently the part of the Liouville operator with [Hint, . ] take a huge part for the
diagonal entries of the Liouville matrix. Since for any operator Ai applies [Hint, Ai] = aiAi.
For the approach where a two-dimensional local Hilbert space is considered, the prefactors
ai for every operator are equal to U/2 since as discussed in section 3.3 the operators Ai

consist only of one Qi
10 operator and a queue of non-contributing Qi

00 operators regarding
[Hint, . ]. As well, all prefactors ai for four-dimensional local Hilbert space are also equal
to U/2. This is proven via the following brief considerations. New operators rise with the
commutator [Ti, . ] but since every Ti conserves the number of DOs in the system, the
effective number of DO created by any new operator is the same as the initial operator
ergo one. Therefore, the commutator [Hint, . ] with every operator in the operator basis
yields U/2 and thus the same as the initial operator. As a consequent, regardless of the
local Hilbert used, Liouville matrices for an initial operator A0 ∈ Qi

10 can be represented
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in a certain form, which is examined below. Henceforth, a Liouville matrix for an initial
operator A0 and a Hamiltonian H in the m-th loop will be denoted as Mm

H(A0). To
simplify things here the operator h†i,↑ is used as the initial operator A0. It follows with the
previous considerations that for the operator h†i,↑ the Liouville matrix can be written as

Mm
H(h†i,↑) = Mm∑

Ti
(h†i,↑) + Mm

Hint(h
†
i,↑) = Mm∑

Ti
(h†i,↑) +

U

2
1 . (3.45)

Consequently, it is possible to calculate only the eigendecomposition for the matrix
Mm∑

Ti
(h†i,↑) and determine the eigenvalues λ̃mi of Mm

H(h†i,↑) with the corresponding eigen-
values λmi of Mm∑

Ti
(h†i,↑) via

λmi = λ̃mi − U

2
⇒ λ̃mi = λmi +

U

2
. (3.46)

Here, the corresponding eigenvectors vi and v∗
i are identical for both matrices. Assuming

that every hopping amplitude ti of the terms Ti can be reduced to a linear ratio with an
initial hopping amplitude t there is only a linear t dependence in the matrix Mm∑

Ti
(h†i,↑).

Therefore the eigenvalues λmi are calculated in units of t, which can be direct translated into
units of the bandwidth of the interaction-free Hubbard model W = 2zt to allow comparison
between different dimensions later on. Then, to calculate λ̃mi via equation (3.46), a ratio
between W and U needs to be defined. So the energy gap for single charge excitation ∆
in which we are interested in is derived from the lowest eigenvalue λmmin of Mm

H(h†i,↑) for
which applies

∆ ≤ ∆m = 2λ̃mmin = U + 2λmmin with λmmin < 0 . (3.47)

As mentioned in section 3.1 it is only possible to calculate an upper bound ∆m for the
energy gap ∆ with the eigenvalue λmmin But it is possible to estimate the true value of ∆,
because with each loop the upper bound ∆m approaches the true value of ∆ continuously
since λmmin is a monotonically decreasing sequence for which

λmmin > λm+1
min (3.48)

holds. Furthermore, the difference between two sequence elements is

|λm+1
min − λmmin| < |λmmin − λm−1

min | . (3.49)

therefore the sequence is bounded form below with the lower bound

lim
m→∞

λmmin = λ̄min . (3.50)

It follows that for m→ ∞ the calculated energy gap ∆m becomes equal to the real energy
gap ∆

lim
m→∞

∆m = lim
m→∞

(U + 2λmmin) = U + 2λ̄min = ∆ . (3.51)

38



3.6 Addressing calculation of the energy gap and presentation of the results

Consequently, by determine the lower bound λ̄min the energy gap ∆ can be calculated via
equation (3.51) for different interaction strength U . Of course, bearing in mind that a
higher m is correlated to an exponential increase in the size of the Liouville matrix. In
the m-loop approach after a considerable m the computational effort to determine both
the Liouville matrix Mm

H (.) and the eigenvalue λmmin as well as the storage of the Liouville
matrix become a problem. Therefore, one possibility is to extrapolate the value of the
lower bound λ̄min with values of λmmin for computable m. Whereby the function for the
extrapolation still has to be examined first. If it is possible to determine λ̄min, a critical
interaction strength Uc at which the energy gap ∆ is expected to open can be calculated
by setting the energy gap ∆ in equation (3.51) to zero. Thus, the critical interaction
strength Uc is determined by

Uc = −2λ̄min . (3.52)

Now all details for the use of the iEoM approach in the t-J model are clarified. In the
following chapter the progress is presented which is made in this thesis for determining
the critical interaction strength Uc for single charge excitation with the iEoM approach in
the different local Hilbert space cases and different models.
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In the following chapter first calculations with the iterated equation of motion approach
are presented. At the beginning calculation are done for a simple hopping of a hole on
a one-dimensional chain for both local Hilbert spaces. With this we first get insights
into how the approach works and test whether the assumption of section 3.1 holds that
it is possible to calculate the band gap ∆ with a Liouville matrix built for a creation
operator of a hole. Also in one dimension comparing analytic solutions and the solutions
given by the iEoM approach is possible, so that a statement about the performance of
the iEoM can be made. Further optimizations concerning the operator basis will be
discussed. Furthermore, the simple hopping is extended to two dimensions and applied
two a two-dimensional square lattice. At the end all the knowledge that we achieved
within this thesis towards the iEoM approach is applied to calculate the critical interaction
strength Uc for the energy gap for single charge excitation in a t-J model at half-filling
and in the limit of 0 < J � T � ∆ via the iEoM approach for both on a one-dimensional
chain and on a two-dimensional square lattice. All following values for λmmin are calculated
with the Lanczos algorithm of section 3.5 unless otherwise specified.

4.1 Simple one-dimensional approach

At first, we start with simple Hamiltonian in one dimension and use the operator h†i,↑ in
the real space representation as the initial operator to build the operator basis and the
corresponding Liouville matrix. The Hamiltonian defining the Liouville operator is

H1D = T0 +Hint (4.1)

where T0 is the nearest neighbor hopping of a DO on a one-dimensional chain and Hint
is the interaction term. Other terms of the complete Hamiltonian of equation (2.14) are
not of interest at first since this serves only as a testbed for the method and moreover
the other terms of equation (2.14) apply only partially for the one-dimensional chain
and need further evaluation. As discussed in section 3.6, it is only necessary to build
the Liouville matrix Mm

T0
(h†i,↑) and use the Lanczos algorithm of section 3.5 to calculate

the lowest eigenvalue λmmin for differences loops m, since this will resolve the energy
gap as described in section 3.1. The value λm=0

min is trivial and equals zero in the real
space representation for each local Hilbert space choices, since the Liouville operator of
h†i,↑ does not reproduce itself. Therefore, m = 0 is left out in the results for the real
space representation. In section 3.2 the two different choices of local Hilbert spaces were
presented, a four-dimensional HL

4 and a two-dimensional HL
2 local Hilbert space both

having an orthonormal local operator basis with respect to the Frobenius scalar product.
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4.1 Simple one-dimensional approach

Even though the final aim is to describe a system at the vicinity of half-filling, the HL
4 case

should not be dropped, despite the fact that in the HL
4 case all four local spin configuration

are equally likely. It rather serves as example what happens if half-filling is not considered
properly. So results for the simple model of equation (4.1) in the HL

4 case are presented
along with the results for the HL

2 case in the following and are compared to each other to
a limited extent. Concluding, results generated with the HL

4 case are finally discussed in
more detail in section 4.3 After that, the HL

4 case is dropped. We start with the results
for the simple model if the iEoM approach uses the HL

4 case.

Local four-dimensional Hilbert space HL
4

The figure 4.1 shows the lowest eigenvalue of the Liouville matrix Mm
T0
(h†i,↑) related

to the initial operator h†i,↑ acting on the local four-dimensional Hilbert space HL
4 for

different amounts of loops m. In addition, the corresponding number of operators used
to build the matrix Mm

T0
(h†i,↑) are also shown in figure 4.1. If the eigenvalues λmmin in
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Figure 4.1: Results for the Hamiltonian of (4.1) on a one-dimensional chain with HL
4 .

Lowest eigenvalues λmmin of the Liouville matrix Mm
T0
(h†i,↑) and the size of the correspond-

ing operator basis Om for the m-loop are shown.

figure 4.1 are considered, the predicted convergence of λmmin to a λ̄min cannot be observed
up to the highest possible loop for the HL

4 case. It rather seems that the values of λmmin
increases nearly linearly in the observed range of figure 4.1. Since we are limited in the
computational power higher loop result were a convergence of λmmin could take place are
not feasible. The problem becomes apparent when the amount of operators for each loop
in figure 4.1 are studied. The exponential increase with each loop is clearly shown in
figure 4.1 and already for m = 7 the numbers of operator which have to be calculated is
expected to be around 107 operators. This leads us to the limits of the computational
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power and storage used here. Therefore, the next loop step is already not feasible and at
first it is not possible to make a statement for higher loops regarding λmmin. As mentioned
before the HL

4 represents not the corrected local Hilbert space for the actual problem.
The observation of a non-convergence behavior is likely due to this reason. But what
exactly causes this behavior cannot be deduced from the results shown in figure 4.1 alone.
In the next step the iEoM approach is now applied with the initial operator acting on the
two dimension local Hilbert space HL

2 so a first comparison of the two local basis choices
is possible.

Local two-dimensional Hilbert space HL
4

Here, the iEoM approach is applied to the Hamiltonian of equation (4.1) with respect to
the two-dimensional Hilbert space HL

2 . The Liouville matrix Mm
T0
(h†i,↑) is calculated for

with different numbers of loops m and the numbers of operators rise during this process
are recorded and displayed together with the lowest eigenvalues λmmin in figure 4.2. In
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Figure 4.2: Results for the Hamiltonian of (4.1) on a one-dimensional chain with HL
2 .

Lowest eigenvalues λmmin of the Liouville matrix Mm
T0
(h†i,↑) and the size of the correspond-

ing operator basis Om for the m-loop are shown.

contrast to case of a four-dimensional local Hilbert space HL
4 , the lowest eigenvalues λmmin

show convergence behavior in the case for a two-dimensional local Hilbert space HL
2 as

described in section 3.1. Furthermore, the feasible loops are higher since with each loop
numbers of operators in figure 4.2 not rise as quickly as in figure 4.1 Therefore, in the
case of HL

2 it is possible to build Liouville matrices up to 11-loops but then the numbers
of operators reach also the critical area where the numbers of operators exceed the 107

threshold. This is easy to comprehend, since for the HL
2 case the Liouville operator of the

head operator only can generate new operators as discussed in section 3.3 in contrast to
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the HL
4 case where every local operator can produce new operators. Now that this has

been clarified, we turn to the determination of the lower bound λ̄min and further receive
via equation (3.52) a value for the critical interaction strength Uc. Here the objective is to
find an asymptotic function which has a sufficient predictive power to estimate values of
λmmin for loops m which are not feasible to calculate with the available calculation power.
Once such a function is found the position of the horizontal asymptote of function give a
solid estimation for the value of λ̄min. Here, different empirical asymptotic functions X
with three degrees of freedom were tested. The measure of the predictive power is based
on the absolute differences

δX = |λ̄X̃min − λ̄X̄min| . (4.2)

The value λ̄X̃min thereby is determined by using only the values of λmmin within the first
three loops m to determine the function f . Where in the calculation of λ̄X̄min only the
values of λmmin within the last three possible loops m are used to determine the function
X. In following illustration or tables the corresponding functions are label with f̃ and
f̄ . The absolute difference |λ̄X̃min- λ̄X̄min| not only gives a measurement for the predictive
power but also an estimation for the uncertainty with respect to λ̄Xmin if the parameters of
the function f are determined with a least squares method taking the values of λmmin in all
calculated loops m into account. The uncertainty for the values λ̄Xmin which is determined
with the function X is estimated to be around two times the value of the difference δX

∆λ̄Xmin = 2δX = 2|λ̄X̃min − λ̄X̄min| . (4.3)

Of course, this estimation of the uncertainty only makes sense if more than three values
of λmmin are available. Empirical attempts showed that a general rational function in the
form of

f(x) =
a

(x− b)2
+ c (4.4)

provides a lower value of δX with calculated values of λmmin than e.g. exponential or other
rational functions. In table 4.1 and table 4.2 also the results of the functions

g(x) = ae−bx + c h(x) =
a

x− b
+ c (4.5)

are given as a reference for this matter. Whereby for all functions the parameter c
in equation (4.4) gives the position of the horizontal asymptote, therefore the value
of c corresponds to the required value −λ̄Xmin which can be used to determine Uc via
equation (3.52). In figure 4.3 calculated values of λmmin are shown together with the LS fit
f for all values. Furthermore, the functions f̃ and f̄ to estimate the uncertainty are also
shown.

43



4 Results

1 2 3 4 5 6 7 8 9 10 11
m

1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

−λ
m m

in
/t

f

f̃

f̄
λmmin

Figure 4.3: Results for the Hamiltonian of (4.1) on a one-dimensional chain with HL
2 .

Lowest eigenvalues λmmin of the Liouville matrix Mm
T0
(h†i,↑) for the m-loop are shown.

Also, three LS fits are displayed where f uses all values of λmmin and f̃ and f̄ use the
results of the first respectively the last three loops.

The parameters calculated for the corresponding fit of figure 4.3 and the parameters of
the other in figure 4.3 not shown functions of equation (4.5) are listed in table 4.1. The
resulting values of λ̄Xmin together with the values for estimating their uncertainty and the
corresponding critical interaction strengths Uc calculated with equation (3.52) are listed
in table 4.2.

Table 4.1: Parameters associated with the different functions X of equations (4.4)
to (4.5) determined with a least squares method using the values of λmmin. Where f
corresponds to the functions displayed in figure 4.3. The errors of the parameters are
determined by the least squares method.

Function X a/t b c/t

f −2.557 ± 0.007 −1.0881 ± 0.0030 2.000 61 ± 0.000 14
g −1.18 ± 0.05 0.76 ± 0.04 1.971 ± 0.005
h −0.58 ± 0.03 0.09 ± 0.04 2.042 ± 0.005

When the results in table 4.2 are compared it is noticeable that the function f gives
the best estimation as mentioned previously. The uncertainties in the results with f
are significantly smaller than for the other functions tested. So the function f provides
the most reliable results among the studied functions. This still holds true in further
calculations but here is not explicitly re-examined in this way afterwards. Therefore, f
is the only function used for further results. Furthermore, it shows, already with only
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Table 4.2: The values of λ̄Xmin associated with the different function of equations (4.4)
to (4.5). Where f corresponds to the functions displayed in figure 4.3 and the values of
Uc/W are calculated via equation (3.52) with W = 4t in one dimension. The values λ̄X̃min
and λ̄X̄min are determined using only the results of the first respectively the last three
loops. With equation (4.3) the uncertainty for λ̄Xmin is determined.

Function X −λ̄X̃
min/t −λ̄X̄

min/t −λ̄X
min/t Uc/W

f 2.003 2.000 2.001 ± 0.005 1.0003 ± 0.0024
g 1.914 1.993 1.97 ± 0.16 0.98 ± 0.08
h 2.096 2.007 2.04 ± 0.18 1.02 ± 0.09

the bare necessary loops like used in the function f̃ the calculated value of −λ̄min only
changes for higher used loops only in the order of 1 · 10−3 This effect also can be observed
qualitatively in figure 4.3, because all shown functions show a strong overlap, even if
they only use the first three loops like f̃ . The result from this analysis is that the value
for the critical interaction strength Uc for the HL

2 case with the simple Hamiltonian of
equation (4.1) can be determined with a LS fit of the function f to calculated values of
λmmin. The result for Uc is already listed in table 4.2 and reads

UC

W
= 1.0003 ± 0.0024 . (4.6)

This result is in perfect agreement with results for the half-filled chain in the limit of
strong interaction [25] where the energy gap in zeroth order noted as

∆(U/t → ∞) = U − 4t⇒ Uc/W = 1 . (4.7)

To study the energy gap in higher orders the simple model of equation (4.1) will be
extended in section 4.6 but for now the results with the simple model in the HL

2 case are
sufficient.

The results obtained with the HL
2 case are in line with the expectations while the observed

non-convergence behavior for the HL
4 case is only answered with a not suitable Hilbert

space. However, this has not been discussed in detail here. The exacted issue leading
to this observation is addressed later on in the section section 4.3. While in the next
section deals with the iEoM in its momentum space representation when it is applied to
the simple Hamiltonian of equation (4.1).
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4.2 Momentum space representation for the simple
one-dimensional approach

Here, the results are presented for both the HL
2 and HL

4 case when the momentum space
representation for the creator of a hole h†k,↑ is used as an initial operator for the iEoM
approach as described in section 3.4. This time starting with the HL

2 case, since a non-
converging behavior for the HL

4 case is expected as in the real space representation. Again
as in section 4.1 the Hamiltonian of equation (4.1) is used, so this section serves as a test
for the iEoM method in its momentum representation.

Local two-dimensional Hilbert space HL
2

In this representation the operators are dependent on a momentum vector k so the
operator that is used as an initial operator is h†k,↑. This of course leads to a Liouville
matrix Mm

T0
(h†k,↑) dependent on k and consequently the lowest eigenvalue λmmin(k) also has

this dependence. We are interested in the lowest possible λmmin(k), therefore the dispersion
relation of λmmin(k) has to be examined first. The lowest value of λmmin(k) is to be expected
on a critical point in the one-dimensional Brillouin zone these are in center or at the
edges of the Brillouin zone. The figure 4.4 displays two cases of the dispersion relation
for different loops for k in the first Brillouin zone. Since with the momentum space
representation the calculation of λm=0

min is not as trivial as in the real space representation
λm=0

min (k) is also examined in figure 4.4. In the first case figure 4.4a as before the initial
operator is a creator of a hole h†k,↑ and in the second case figure 4.4b a creator of a
doubly occupied site d†k,↑ to check the particle hole symmetry of the system. A distinction
between spin orientation is not relevant, since no spin type is preferred by the Hamiltonian
of equation (4.1).

(a) Initial operator: h†
k,↑
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Figure 4.4: Dispersion relation of the lowest eigenvalue λmmin(k) is displayed in the first
Brillouin zone for different loops and initial operators. The Hamiltonian (4.1) is used
and the local operators act on HL

2 . In figure 4.4a the initial operator is a creator of a
hole h†k,↑ and in figure 4.4b the creator of a double occupation d†k,↑.
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4.2 Momentum space representation for the simple one-dimensional approach

The first observation is that for the creator of a hole the lowest value of λmmin(k) is located
in the center of the Brillouin zone at k = 0. Whereas the lowest value for the creator of a
doubly occupied site is located at the edges of the Brillouin at k = ±π. While the lowest
values of λmmin(k) in each dispersion have the same value and the dispersion relation of
a doubly occupied site is shifted by a value of π compared to the one of a hole. Hence,
the particle hole symmetry can also be observed in the results. Furthermore, regardless
of the value of the momentum vector k a convergence of λmmin(k) for increasing m is
already apparent in figure 4.4 but is investigated later on in detail. Another observation
is that the dispersion relation flattens with each higher loop m. As a result differences in
λmmin(k) for different momentum direction k start to vanish for higher values of m and
therefore no orientation of k stands out in higher loops. The next step is to determine
λ̄fmin for the momentum representation. Though for higher values of λmmin(k) the value
of k seems to have no influence, here the k is chosen to be the value where the lowest
value of the dispersion is located for low values of m. In figure 4.5 values of λmmin(k)
are shown for different loops m together with the fit for f and the two functions f̃ and
f̄ which estimate the uncertainty for λ̄fmin. As the initial operator servers the creator
of a hole h†k,↑. Consequently, the value of k is chosen to be k = 0. Since the value of
λmmin(k = 0) for the loop m = 0 is relatively far away from the other values, it is not be
taken into account to determine λ̄min as in the real space representation. Furthermore, to
simplify the comparison between momentum and real space representation the results of
the real space calculation displayed in figure 4.3 are also a part of figure 4.5. In figure 4.5
the logarithmic scale for the numbers of operator is omitted in favor for a more visible
comparison between the two approaches.
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Figure 4.5: Results for the Hamiltonian of (4.1) on a one-dimensional chain with HL
2 ,

one in real space and the other in momentum space(k-space). Lowest eigenvalues λmmin
of the Liouville matrices Mm

T0
(h†i,↑) and Mm

T0
(h†k=0,↑) and the size of the corresponding

operator basis Om for the m-loop are shown. Also, three LS fits for each representation
are displayed where f uses all values of λmmin and f̃ and f̄ use the results of the first
respectively the last three loops.
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Starting with the comparison of the numbers of operators in each representation. As
expected, the amount of operators in the momentum space representation is significant
reduced compared to the real space representation. The operator basis in the real space is
almost twice the size and therefore the Liouville matrix in real space representation is nearly
four times the size than in the momentum space representation. As expected, the lowest
eigenvalues λmmin show the already in figure 4.4 indicated convergence behavior. Despite
the smaller operator basis and Liouville matrix in the momentum space representation
the corresponding lowest eigenvalues λmmin converges more rapidly than in its real space
representation since λmmin(k = 0) < λmmin holds in every loop m. Assuming that both λmmin
converge toward an equal λ̄min. In the following this assumption is check by using again
as in section 4.1 a LS fit with the function f of equation (4.4) to determine λ̄fmin. Also
for the estimation of the uncertainty of λ̄fmin in the momentum space representation the
functions f̃ and f̄ are considered as previously discussed. The results received with each
fit in figure 4.5 are listed in the table 4.3. The parameters for the real space representation
are the same as in 4.2.

Table 4.3: With a least squares method calculated values for λ̄fmin associated with
the function of equation (4.4). The values corresponds to the functions displayed in
figure 4.5 and the values of Uc/W are calculated via equation (3.52) with W = 4t in one
dimension. The values λ̄f̃min and λ̄f̄min are determined by a LH fit using only the results
of the first respectively the last three loops. With equation (4.3) the uncertainty for
λ̄fmin is determined.

representation −λ̄f̃
min/t −λ̄f̄

min/t −λ̄f
min/t Uc/W

real space 2.003 2.000 2.001 ± 0.005 1.0003 ± 0.0024
k-space 1.9992 2.000 1.998 ± 0.016 0.999 ± 0.008

The first noticeable observation is that both calculated critical interaction strengths
Uc of in each representation in table 4.3 are close to equal. The absolute difference
between the two resulting critical interaction strength is only ∆Uc/W = 14 · 10−4 with
is smaller than the uncertainty in both values. Therefore, the result obtained with
the momentum space representation is in perfect agreement with the result of the real
space representation. Consequently, the momentum space representation is better suited
than the real space representation since it requires fewer operators for the same result.
Another observation concerning the uncertainties in the different results. Compared to
the real space representation, the value of the uncertainty of Uc in the momentum space
is more than three times as big. Furthermore, already in figure 4.5 slight deviations of
the determined functions f̃ and f̄ from the calculated values of λmmin can be noticed in
the momentum space representation. This suggests that the used empirical function of
equation (4.4) is not as fitting for the momentum space representation as for the real
space representation. Despite this, the function f is still the most fitting function among
the other function used and the increase in the uncertainty is not so high that this become
a problem. Hence, the empirical function in equation (4.4) is still sufficient to determine
Uc in the momentum space representation.

48



4.2 Momentum space representation for the simple one-dimensional approach

Local four-dimensional Hilbert space HL
4

Now turning to the more so far problematic HL
4 case. As in the first case, the dispersion

for λmmin(k) is displayed in figure 4.6, when h†k,↑ respectively d†k,↑ is used as an initial
operator. Again the spin orientation is not relevant, and we expected the lowest value of
λimin(k) at critical point in the Brillouin zone. The first noticeable point concerning the
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Figure 4.6: Dispersion relation of the lowest eigenvalue λmmin(k) is displayed in the first
Brillouin zone for different loops and initial operators. The Hamiltonian used is from
(4.1) and the local operators act on HL

4 . In figure 4.4a the initial operator is a creator of
a hole h†k,↑ and in figure 4.4b a creator of a double occupation site d†k,↑. Up to m = 3
also results of an exact diagonalization ED are displayed.

two dispersion relations in figure 4.6 is that again no convergence can be observed. While
the observation that the dependence of λmmin(k) on the momentum vector k decreases
with each loop, for both the HL

2 and the HL
4 case applies. Also, the shift of π between

the two different dispersion relations and therefore the particle-hole symmetry like in the
HL

2 can be observed. Whereas the associated value of k for the lowest value of λmmin(k) is
not constant with each loop like in the HL

2 case, even though the position is still either
k = 0 or k = π. This observation is due to the fact that in the operator basis for both
h†k,↑ and d†k,↑ there are also operators from the respective other. Where in the HL

2 case
these operators are strictly separated form each other. Therefore, for further examinations
in the momentum space for the HL

4 we use the results of the HL
2 case where the lowest

value for h†k,↑ is located at 0 and for d†k,↑ at π. Furthermore, figure 4.6 also shows results
where the eigenvalue λimin(k) are calculated with an exact diagonalization ED of the
Liouville matrix, since the values λm=2

min (k) calculated with the Lanczos algorithm show
an unusual behavior for the loop m = 2 which is the formation of local extrema in the
areas between the characterisitic points of the Brillouin zone. Compared to the solution
with ED the Lanczos algorithm is not able to calculate the correct lowest eigenvalue with
the initial vector of equation (3.37). That suggests again that this problem rises due to
the operator basis contains both types of operators h†k,↑ and d†k,↑. The figure 4.7 displays
the difference between the momentum and real space representations for the creator of
a hole, showing in each case the size of the operator basis as well as the corresponding
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Figure 4.7: Results for the Hamiltonian of (4.1) on a one-dimensional chain with HL
4 ,

one real space and the other in momentum space(k-space). Lowest eigenvalues λmmin
of the Liouville matrices Mm

T0
(h†i,↑) and Mm

T0
(h†k=0,↑) and the size of the corresponding

operator basis Om for the m-loop are shown.

lowest eigenvalues λmmin in each loop m. The figure 4.7 illustrates once again the lack of
convergence in λmmin for the HL

4 case. Nevertheless, λmmin(k = 0) is always higher than
λmmin in the real space representation which also observed for the HL

2 case indicates that
the momentum representation holds more information regarding the energy gap. One
exception is the loop m = 2 where λmmin(k = 0) > λmmin. This is the result of the fact
that the lowest λmmin(k) is not at k = 0, but at k = π, as shown in figure 4.6a, which was
already discussed above. For other loops, a different k position of the lowest value also
applies, but since the k dependence is reduced for higher loops, this is only observed at
m = 2. Another observation regards the size of the operator basis. The size of operator
basis in the momentum representation is still lower than in its real space representation.
But where for the HL

2 case the difference was a factor that was approximately equal to 2
between the two representations for the loops observed, the factor for the HL

4 case is only
approximately 1.5.

So for the HL
4 case the advantages of the momentum representation regarding the size of

the operator basis is not high as in the HL
2 case. After all, the results obtained by the

approach with HL
4 in the two representations still contradict both the results of the HL

2

case and the predicted behavior of λmmin described in section 3.1. This discrepancy demands
further detailed investigation of the HL

4 results which is part of the next section.
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4.3 More detailed treatment of the results for the
four-dimensional local Hilbert space

In this section we seek for a better understanding of the observation obtained for the
HL

4 case. In contrast to the HL
2 case the HL

4 case did not show any of the predicted
convergence behavior for the lowest eigenvalue λmmin of the Liouville matrix in real space
as well as in momentum representation for the simple Hamiltonian in equation (4.1).

First we look at the conceptual differences between the HL
2 and HL

4 cases. If we recall
section 3.2, there is one major difference between the two different case in the operators
used which results from the choice of the local Hilbert space. While in the HL

4 case
operators all local operators are allowed due to the fact that all possible states are taken
into account, local Operators of the groups Q10 and Q11 are neglected in the HL

2 case
due to the only two possible states in the half-filled system. So in the HL

4 case operators
occur describing processes which are not possible in the half-filled case. This process are
in the following labeled as virtual processes. The results of these virtual process are still
the same as the initial operator of example for h†i,↑ effectively inserting a DO in the form
of a hole in the system. But they require already DOs in the system to yield a non-zero
result, which is not the case for half-filling. As a result the operators in the HL

4 case
can be further categorized based on the number u how many DOs they required. Of
interest is now the share of operators with different u in the operator basis for various
amount of loops m. The figure 4.8 shows this relation for the results of figure 4.8 for
both representations. With figure 4.8 it becomes apparent that already after the second
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Figure 4.8: Ratio between the number of operators with a certain u and the size of
the operator basis Om for different loops m. The operators correspond to those used in
figure 4.7.
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loop operators describing virtual processes (u > 0) are dominant in the operator basis for
the HL

4 case in both representations. Whereby in the momentum space representation
the share of operators with higher u value are slightly higher than in the real space
representation. With these results the missing convergence in the HL

4 can be interpreted
in such a way that with each loop new energy areas connected to the process of inserting
an DO in a System where already u DOs are presented. Since with each further loop
new operator occur connected to the next higher energy area it is not possible that λmmin
convergences. It was not possible to find a subspace in the Liouville matrix where only
operators with u = 0 contribute. Instead, a convergence behavior for λmmin in the HL

4 case
could be achieved by dropping simply all operators with u > 0 of the operator basis. This
is approach only serves as a confirmation that those virtual operators take responsibility
for the missing observation of the convergence behavior of λmmin in the HL

4 case and should
not be considered here to determine an Uc. Since the Frobenius scalar product for the HL

4

cases takes not the strict half-filled disordered system into account. So for this purpose
the HL

2 case should be used instead. Now the issue of whether to use the HL
4 or the HL

2

case is resolved, but for now the HL
4 case is not closed yet. Instead, another analysis

possible with the iEoM approach is presented with the results of the HL
4 case.

So far only the eigenvalues of the Liouville matrix are used but it is also possible to take
the eigenvectors vi to all corresponding eigenvalues λi of the Liouville matrix into account.
As a consequence, an exact diagonalization ED of the Liouville matrix is necessary, which
limits the amount of possible loops m since ED is not as feasible for large matrices
as the Lanczos algorithm. When looking at equation (2.20) and equation (2.32), the
eigenvectors vi together with the coefficient αi contain information about the amplitude
of each oscillation with corresponding eigenvalue λi for each operator in the operator basis.
Therefore, it is possible to assign an eigenvalue λi to certain operators in the operator basis
according to the corresponding eigenvector. Thereby the absolute square of an element i
of an eigenvector vi serves as a measure of the share of the operator Ai. Furthermore,
the coefficients αi can be determined with the eigenvector vi and the initial condition in
equation (2.27) for the iEoM approach The square of αi can be interpreted as a weight of
an eigenvalue λi towards the time evolution of the operator A(t). If the coefficient αi is
zero, the corresponding eigenvalue λi has a vanishing contribution for the time evolution
of the operators A(t). Where αi is calculated via

αi = h(t = 0) · vi . (4.8)

In the following figure 4.9 α2
i is shown for all λi for different amount of loops m and in the

two representations with a creator of a hole h†i,↑ being the initial operator. Because some
eigenvalues are degenerated or tend to be real close together, a histogram is used for better
illustration with the width of the bins being 0.1t. For the momentum representations
the initial operator is h†k=0,↑, since for the band gap in the HL

2 case, the best result is by
k = 0. The results in the real space representation in figures 4.9a-4.9d are all symmetric
around zero and show the following behavior. The weights accumulate for values of λi in
the area around −2t respectively 2t for increasing number of loops. For even-numbers of
the loop m also a peak is found at λi = 0. Where in higher loops all other eigenvalues
|λi| > 2t have a nearly vanishing weight. So the weight α2

i of the eigenvalues which result
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Figure 4.9: The coefficients for the initial condition of the iEoM approach α2
i for all

eigenvalues λi of the Liouville matrix for different loops m for the HL
4 case together with

a histograms accumulating the weights α2
i of λi within a bin size of 0.1t are illustrated.

The figures 4.9a-4.9d show λi of Mm
T0
(h†i,↑) for the real space representation and figures

4.9e-4.9h show λi of Mm
T0
(h†k=0,↑) for the momentum space representation.
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in the non-convergence behavior in the HL
4 case tend to drop in the higher loops. For

the results in the momentum space representation in figures 4.9e-4.9h an almost similar
observation can be made. With the difference that here the results are not symmetric
around zero which applies for the weights α2

i as well as the eigenvalues λi. Furthermore,
the distribution of the α2

i weights is shifted so that the eigenvalues λi < 0 have higher
weights. Where the dispersion relation in figure 4.6a demands for m = 2 a shift in k to
achieve the lowest λmmin. In figure 4.9f a shift to k = π would only results in a shift of
the weighs towards higher λi. However, since the lowest weighted λi is of interest, the
observation endorses the assumption already made that the observation in figure 4.6a is
due of both operators of holes and operators of doubly occupied sites being both part
of the operator basis and k = 0 is the correct value for the creator of a hole. Despite
this, the significant weighted eigenvalues λi for higher loops are again located in the area
of −2t and for all |λi| > 2t the weights nearly vanish. These observations indicate that
the eigenvalues significantly weighted with α2

i shows a so far not detected convergence
behavior. Though, to investigate this behavior in higher loops, the problem is that the
Liouville matrix must be solved with ED, with is simply not feasible for higher loops due
to the size of the Liouville matrix. Therefore, it is not clear if these observations still
hold for higher loops. Assuming this is the case, the convergence behavior should not be
evaluated as a possibility to determine the energy gap for single charge excitation in the
half-filled case. Since the HL

4 case simply does not correctly match the physics for the
half-filled case. Rather, the presented result should demonstrate other possibilities which
can be used to in the iEoM approach to analyze the properties of the studied system.

In conclusion, the HL
4 case is not applicable to examine the problem. But a new concept

concerning the eigenvalues λi of the Liouville matrix was explored with the HL
4 case where

the eigenvalues λi were weighted with the factor αi which are connected to the initial
condition and the corresponding eigenvector vi. Henceforth, only the HL

2 case is used
to calculate the energy gap and the HL

4 case is no longer treated. But since this section
showed the necessity to look at the values of αi, the next section deals with them in the
HL

2 case.

4.4 Considering initial conditions for the results in the
two-dimensional Hilbert space

In the previous section dealt with the impact of the initial conditions in the HL
4 case

towards the eigenvalues’ contribution to the time evolution. Here the same examination
is done for the HL

2 case. The figure 4.10 shows the calculated α2
i via equation (4.8) in

dependence on the corresponding eigenvalue λi and also a histogram accumulating the
weights of α2

i within a bin size of 0.1t. Again the initial operator is a creator of a hole
h†i,↑ and in the momentum representation the operator h†k=0,↑ is chosen accordingly to
the results of the dispersion relation in figure 4.4a. The most important observation in
figure 4.10 is that in both representations the weights α2

i of λmmin is for every calculated
loop m non-zero in contrast to the HL

4 case. Therefore, the procedure for determining
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Figure 4.10: The coefficients for the initial condition of the iEoM approach α2
i for all

eigenvalues λi of the Liouville matrix for different loops m for the HL
2 case together with

a histogram accumulating the weights α2
i of λi within a bin size of 0.1t are illustrated.

The figure 4.10a shows λi of Mm
T0
(h†i,↑) for the real space representation and figure 4.10b

shows λi of Mm
T0
(h†k=0,↑) for the momentum space representation.

the energy gap, which is described in section 3.6, needs no modification in the HL
2 case

assuming that this behavior carries on for higher loops m > 5. For the real space
representation in figure 4.10a the distribution of the weighs and eigenvalues is again
symmetric around zero and for each even loop m a peak shows at zero. But furthermore
in each loop m all accumulated non-zero weights in the histogram are equal. Where with
each loop m the total weight is only distributed between m+ 1 values of λi. This also
holds for the momentum space representation although the symmetries for the eigenvalues
as well as in the accumulated non-zero weights are broken. Where the weights are shifted
in favor of the lowest eigenvalue λmmin . Thus, in the momentum space representation, the
lowest eigenvalues is therefore also the most weighted eigenvalue.

All in all the results indicates that the method in section 3.6 is the path to follow for
further energy gap calculations in the HL

2 case. Since the Lanczos algorithm is capable of
determine the eigenvector for the lowest eigenvalue λmmin , a calculation of the corresponding
α2
i can serve as a short check whether the lowest eigenvalue still has a non-zero weight in

further calculations.
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4 Results

4.5 Extension of the simple model to a two-dimensional square
lattice

In the previous section all calculations take place in one dimension and now in this section
the iEoM approach is again applied to a Hamiltonian

H2D = T0 +Hint (4.9)

which has the same form as in equation (4.1), but now the simple NN DOs hopping T0
takes place on a two-dimensional square lattice. As indicated in the previous section for
higher dimension the HL

4 case is no longer part of the calculated cases. Here only the
HL

2 case serves as a tool to determine an energy gap. The fact that a higher dimension
Hamiltonian is used has no direct influence on the approach to determine the energy gap.
Only the higher dimension most likely increases the size of the used operator basis in
each loop. Therefore, the procedure is the same as in the one-dimensional case and thus
figure 4.11 displays already both the results in the real space and the momentum space
representation. Hence, figure 4.11 shows the lowest eigenvalue λmmin of Mm

T0
(h†i,↑) and the

size of the operator basis for both representations. Again the trivial case for m = 0 is not
taken into consideration. Of course, for the momentum space representation a value for
k needs to be chosen so that λmmin(k) is minimal there. Calculation showed that in the
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Figure 4.11: Results for the Hamiltonian of (4.9) on a two-dimensional square lattice
with HL

2 , one in real space and the other in momentum space(k-space). Lowest eigen-
values λmmin of the Liouville matrices Mm

T0
(h†i,↑) and Mm

T0
(h†k=0,↑) and the size of the

corresponding operator basis Om for the m-loop are shown. Also, three LS fits for each
representation are displayed where f uses all values of λmmin and f̃ and f̄ use the results
of the first respectively the last three loops.
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4.5 Extension of the simple model to a two-dimensional square lattice

two-dimensional case for h†k,↑ the minimum is located at the center of the Brillouin zone
k = (0, 0)T and that the dispersion relation is rotationally symmetric around the center of
the Brillouin zone. The lowest point of λmmin(k) for the operator creating a doubly occupied
side d†k,↑ is located at the corner points of the Brillouin zone for example k = (π, π)T . Also,
as in the one dimension case three function are fitted to the calculated values of −λmmin(k)
in the form of equation (4.4) in which the parameters are determined by the least squares
method. The functions determined by the LS method are also displayed in figure 4.11.
As in one dimension, the uncertainty for −λ̄min is again determined with the functions f̃
and f̄ . All necessary values of f , f̃ and f̄ shown in figure 4.11 to determine Uc and the
corresponding uncertainty are listed in table 4.4 for the two different representation.

Table 4.4: With a least squares method calculated values for λ̄fmin associated with
the function of equation (4.4). The values corresponds to the functions displayed in
figure 4.11 and the values of Uc/W are calculated via equation (3.52) with W = 8t in two
dimension. The values λ̄f̃min and λ̄f̄min are determined by a LH fit using only the results
of the first respectively the last three loops. With equation (4.3) the uncertainty for
λ̄fmin is determined.

representation −λ̄f̃
min/t −λ̄f̄

min/t −λ̄f
min/t Uc/W

real space 3.56 3.64 3.58 ± 0.17 0.90 ± 0.04
k-space 3.58 3.66 3.60 ± 0.23 0.90 ± 0.06

Apparently, the iEoM approach for the simple model on a two-dimensional square lattice
for the can only reach 7 loops after that the operator basis size reaches already the critical
size. As a consequence, the difference between the last calculate value of λmmin and the
estimated lower bound λ̄min is significantly higher than before in one dimension. Therefore,
the influence of the chosen empirical function to λ̄min is higher than in one-dimension. To
assess the quality of the empirical function, we look again at the difference between the
results for λ̄f̃min and λ̄f̄min in both representations. The difference for both representations
is around an order of 7 · 10−2. This is noticeably higher than before in one dimension.
This indicates that the empirical function which already used in one dimension is not as
suitable in two dimension. However, the uncertainty in two dimension is small enough that
the function f is still sufficient to give an estimation for λ̄min. When comparing the results
for the critical interaction strength in the different representation, the absolute difference
between them is below the uncertainty for both values. Therefore, the two representations
in two dimension as before in one dimension yield identical results. But same as in one
dimension the function f tends to yield smaller uncertainties for the results with the
real space representation. Despite the slight higher uncertainty, the advantages of the
momentum space representation are clearly seen in figure 4.11. With fewer operators in
the operator basis, the lowest eigenvalues λmmin in the momentum space representation are
always nearer to the estimate value of λ̄min in each loop m. Whereby the size difference of
the operator bases is again approximately a factor of two between the two representations.
Hence, the calculated value for the critical interaction strength the simple model on a
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two-dimensional square lattice according to the momentum space representation is

Uc

W
= 0.90 ± 0.06 . (4.10)

The representation of the results as the ratio between the critical interaction strength
Uc and the bandwidth W make a comparison between the dimensions possible. Where
for the simple model in one dimension the interaction strength is equal the bandwidth
W = 4t, it might be assumed that this also apply to the simple model in two dimension
with the bandwidth W = 8t.But apparently, with the results obtained in section 4.5, this
not applies for the simple model on a two-dimensional square lattice. Instead, the band
gap starts to open already for Uc = 0.90 ± 0.06W for the simple model in two dimension.
The next step is to extend the simple model both in one and two dimension with the spin
dependent hopping described in detail in section 2.2. This is part of the next following
sections.

4.6 Spin dependent hopping on a one-dimensional chain

As we applied already the iEoM approach to a simple model both in one and in two
dimension and determined a critical interaction strength Uc for both dimension, the next
step is to expand the simple model by adding terms, which describe simple and spin
dependent next nearest neighbor hopping of a DO which are discussed in section 2.2, to
the simple Hamiltonian. In this section this is done for the one-dimensional chain. As in
section 2.2 already mentioned, not all terms of the complete Hamiltonian of equation (2.14)
are present in the one dimension. This includes the terms T ′

0 and T ′
s,0 which describe the

diagonal NNN hopping. Therefore, the Hamiltonian for spin dependent DO hopping reads
as

Heff = T0 + T ′′
0 + T ′′

s,0 +Hint . (4.11)

in one dimension. The amplitudes of the different hopping terms can be expressed in
terms of the simple hopping t0. Where the exact value for t′′ as well as t′′s is extracted
form Ref. [21] in the area of W/U = 1 with t′′ = −0.05t0 and t′′s = 0.1t0. Therefore, to
determine the critical interaction strength Uc for the spin dependent system with the
iEoM using operators in the momentum space representation, the approach is the same as
for the simple model, described in section 4.2 with one difference. Due to equation (4.11),
more terms are presented in the Liouville operator of each local operator in the HL

2 case.
As a consequence, the operator base is expected to grow faster in each loop than in the
simple case. Since new terms are presented, it seems appropriated to investigate the
dispersion relation of the lowest eigenvalue λmmin(k) of Mm∑

Ti
(h†k,↑). The figure 4.12 shows

the dispersion relation of λmmin(k) for different loop m and different initial operators h†k,↑
and d†k,↑. Comparing both dispersion relation of figure 4.12 the particle hole symmetry is
also presented within the result with the spin dependent Hamiltonian of equation (4.11).
However, the dispersion relation of the zeroth loop m = 0 takes up a large part in both
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Figure 4.12: Dispersion relation of the lowest eigenvalue λmmin(k) is displayed in the
first Brillouin zone for different loops and initial operators. The Hamiltonian (4.1) is
used and the local operators act on HL

2 . In figure 4.12a the initial operator is a creator
of a hole h†k,↑ and in figure 4.12b a creator of a double occupation d†k,↑.

figures leaving the behavior of the dispersion relation for higher loops rather hidden.
Therefore, in figure 4.13 the dispersion relation of λmmin(k) for h†k,↑ is shown for m > 0.
With figure 4.13 it is possible to see that in contrast to the simple case the value of k
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Figure 4.13: Dispersion relation of
the lowest eigenvalue λmmin(k) for
h†k,↑ and m > 0 is displayed in the
first Brillouin zone. The Hamilto-
nian (4.1) is used and the local oper-
ators act on HL

2 .

where λmmin(k) is minimal tends to move for higher loops. Where for m = 0 and m = 1
the minimal λmmin(k) is located at k = 0, the minimal splits up into two separate ones at
m = 2, which move for higher m towards k = −0.5 respectively k = 0.5. In addition, the
effect that for higher loops the dispersion relation flatters is still present. As a consequence,
it is still fine to use λmmin(k) at k = 0 to determine λ̄min but the value of λm=2

min (k = 0) is not
considered in the LS method since the effect which flatters the dispersion relation in higher
loops is not strong enough for m = 2. The figure 4.14 show the values of λmmin(k = 0) and
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Figure 4.14: Results for the Hamiltonians of (4.11) and (4.1) on a one-dimensional
chain with HL

4 , both in moment space(k-space). Lowest eigenvalues λmmin of the Liouville
matrix Mm∑

Ti
(h†k=0,↑) with Ti from the Hamiltonian (4.11) and Mm

T0
(h†k=0,↑) and the

size of the corresponding operator basis Om for the m-loop are shown. Also, three LS
fits for each result are displayed where f uses all values of λmmin and f̃ and f̄ use the
results of the first respectively the last three loops.

the size of the operator basis for the iEoM approach using the spin dependent Hamiltonian
up to a loop of m = 6. For a comparison the previous results for the simple Hamiltonian
in one-dimension are also displayed in figure 4.14. The values to determine an estimation
for the critical interaction strength Uc are listed in table 4.5 for both sets of parameters
used in figure 4.14.

Table 4.5: Values of λ̄fmin associated with the function of equation (4.4). The values
corresponds to the functions displayed in figure 4.14 and the values of Uc/W are calculated
via equation (3.52) with W = 8t in two dimension. The values λ̄f̃min and λ̄f̄min are
determined by a LH fit using only the results of the first respectively the last three loops.
With equation (4.3) the uncertainty for λ̄fmin is determined.

∑
Ti −λ̄f̃

min/t −λ̄f̄
min/t −λ̄f

min/t Uc/W

T0 1.996 2.000 1.998 ± 0.008 0.999 ± 0.004
T0 + T ′′

0 + T ′′
s,0 2.25 2.27 2.27 ± 0.04 1.13 ± 0.02

Apparently, when the two estimates of Uc listed in table 4.5 are compared to each other,
taking the terms T ′′

0 and T ′′
s,0 causes an increase in the critical interaction strength Uc/W

of around 13 % compared that of the simple model with only T0. Although, the increase
in the uncertainty again indicates that the empirical function f does not fit as well
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4.7 Spin dependent hopping on a two-dimensional square lattice

as in the simple case. But the function is retained since the uncertainty is still small.
Furthermore, the consequences for more than one hopping term in the Hamiltonian is
visible in figure 4.12 regarding the size of the operator basis. The number of operators
rises significantly faster so that for m = 6 the critical size is already reached. For the
one-dimension chain an exact result is available in Ref. [25] which is

Uc

W
=

√
3

2
≈ 0.866 . (4.12)

When the two results are compared, there is a significant relative deviation of 31 % between
our and the exact result. Now the question is how to interpret this deviation. Although
in Ref. [25] the movement of a hole in a disordered spin background is also considered the
main difference is that in the present work correlations between spins of the order t2/U are
completely neglected and only hopping process of a hole are used where the next nearest
neighbor hopping is also in the order of t2/U. This indicates that these spin correlations
also have a not negligible impact on the critical interaction strength. Therefore, the terms
in the t-J model describing spin correlations should also be considered up to the order
t2/U. This would have a non negligible impact on the approach discussed in section 3.3 for
the HL

2 case since the Liouville operator of a local operator Q00 with non spin correlations
neglected has now a non-vanishing contribution. Solving this issue is not part of this thesis
and therefore open for further investigations. The question if this observation also holds
for the results of the two-dimensional squared lattice is discussed in the next section.

4.7 Spin dependent hopping on a two-dimensional square lattice

In this section the simple and spin dependent next nearest neighbor hopping is taken
into consideration in the case of a two-dimensional square lattice as its done before for
the one-dimension chain. Now in comparison to the one-dimension chain all terms of
the Hamiltonian in equation (2.14) are used the case of the square lattice. Again the
parameters for each hopping amplitude is taken from Ref. [21] in the area of W/U=1. The
parameter for the various hopping terms read as

t′0 = −0.1 t′′0 = −0.05 t′s,0 = 0.1 t′′s,0 = 0.1 . (4.13)

Since in one dimension the dispersion relation of λmmin(k) for the spin dependent hopping
showed an unexpected behavior the dispersion relation is also investigated here. In
figure 4.15 the dispersion relation is illustrated up to the loop m = 2 where the initial
operator for the iEoM approach is both h†k,↑ and d†k,↑. As before, particle hole symmetry
is still present in the spin dependent Hamiltonian on a squared lattice. In contrast to the
results in one dimension the minima of λmmin not moves and stay in the same position as in
the non spin dependent case, which is for h†k,↑ in the center of the Brillouin zone k = (0, 0)T

and for d†k,↑ in the corner points of the Brillouin zone for example k = (π, π)T . Therefore,
no adjustments are needed and λ̄min is determined as before in section 4.7. In figure 4.16
the different λmmin of Mm∑

Ti
(h†k=0,↑) with Ti from the spin-dependent Hamiltonian in
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Figure 4.15: Dispersion relation of the lowest eigenvalue λmmin(k) is displayed in the
first Brillouin zone for different loops and initial operators. The Hamiltonian used is
from (2.14) and the local operators act on HL

2 . In figures 4.15a-4.15c the initial operator
is a creator of a hole and in figures 4.15d-4.15f the creator of a double occupied site is
used.

equation (2.14) are shown as well as the results for the simple model of section 4.5 for
comparison. For the spin dependent hopping in two dimension on a square lattice the
highest possible loop here achieved is m = 3. Therefore, the approach to estimate the
uncertainty for Uc used before fails. Instead, the uncertainty for Uc is estimated with the
determined uncertainty of the simple two dimension model. In table 4.6 the estimation for
the critical interaction strength for both results displayed in figure 4.16 is listed together
with the values to estimate the corresponding uncertainty if possible.

Table 4.6: With a least squares method calculated values for λ̄fmin associated with
the function of equation (4.4). The values corresponds to the functions displayed in
figure 4.16 and the values of Uc/W are calculated via equation (3.52) with W = 8t in two
dimension. The values λ̄f̃min and λ̄f̄min are determined by a LH fit using only the results
of the first respectively the last three loops. With equation (4.3) the uncertainty for
λ̄fmin is determined.

∑
Ti −λ̄f̃

min/t −λ̄f̄
min/t −λ̄f

min/t Uc/W

T0 3.58 3.69 3.61 ± 0.23 0.90 ± 0.06

T0 + T ′
0 + T ′

s,0 - - 3.83 ± 0.23 0.96 ± 0.06
+T ′′

0 + T ′′
s,0
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Figure 4.16: Results for the Hamiltonians of (2.14) and (4.1) on a two-dimensional
square lattice with HL

2 , both in moment space(k-space). Lowest eigenvalues λmmin of the
Liouville matrices Mm∑

Ti
(h†k=0,↑) with Ti from the Hamiltonian (2.14) and Mm

T0
(h†k=0,↑)

and the size of the operator basis Om for the m-loop are shown. Also three LS fits for
the simple Hamiltonian(4.1). Where f uses all values of λmmin. Whereas f̃ and f̄ use the
results of the first respectively the last three loops.

When the two results for the critical interaction strength in table 4.6 are compared, the
expansion of the simple model with simple and spin dependent NNN hopping terms results
in an increase of Uc which was also observed in one dimension. The next step is to compare
the obtained result of Uc for the Hamiltonian of equation (2.14) on a squared lattice with
values of the literature. In Ref. [21] the ratio W/Uc ≈ 0.9 is determined for the critical
interaction strength Uc, which translate to

Uc

W
≈ 1.11 . (4.14)

The result was obtained for a generalized t-J model on a two-dimensional square lattice
with the Lanczos approach. Although the Hamiltonian of equation (2.14) and the
corresponding parameter are taken from the Ref. [21], the relative deviation of 14 %
raise the question of why the deviation is so high. The difference is that the complete
Hamiltonian of Ref. [21] contains spin correlations which are neglected here, since the
Hamiltonian of equation (2.14) describes only movements of DOs. This observation
confirms the assumption of section 4.6 that the spin correlation should not be neglected.
Whether it is possible to reproduce the value of Ref. [21] with the iEoM approach, if also
the spin correlations are taken into account cannot be answered here. But this serves as a
good test if the approach is extended to consider also spin correlations. This final result
concludes the presentation of the results made in this thesis and the next chapter provides
a summary of all results as well as an outlook.
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5 Summary and outlook

In the course of this thesis the energy gap for single charge excitation in the Fermi-Hubbard
model is investigated in a parameter regime where charge fluctuations are suppressed so
that a mapping to an effective model namely the t-J model is possible.

As a tool for this purpose the iterated equations of motion approach was introduced. It was
discussed how to dissolve the corresponding energy spectrum for a given initial operator by
solving the iterated equations of motion. As a result, a necessity for a Hermitian Liouville
matrix was identified which was attained with a scalar product preserving unitarity on
operator level. In this context a reworked approach of the so called m-loop approach was
discussed where operators occurring within a loop are all orthonormal by construction.
This was achieved by introducing an orthonormal local operator basis with respect to the
Frobenius scalar product.

The solution of the iterated equations of motion for an operator creating a hole respectively
a doubly occupied site was established as a possibility to assess the energy gap for single
charge excitation in the t-J model. Moreover, two different choices of the local Hilbert
space, a four- respectively two-dimensional local Hilbert space, were presented, and
different restrictions and advantages for the orthonormal local operator basis regarding
the both choices were discussed. The two-dimensional local Hilbert space directly affected
the technique discussed for the m-loop approach which resulted in a simplification of the
approach. The momentum space representation of the operators used was introduced
effectively reducing the size of the operator basis for the iEoM approach around a factor
of two without remarkable shortcomings. To cope with the hugely increasing number of
operators in the operator basis in higher loops the Lanczos algorithm was introduced.
This algorithm was used as a useful tool to evade a full diagonalization, which was not
feasible due to the huge size of the Liouville matrices in higher loops, and yet accessing
the important features for the estimation of the energy gap even in higher loops.

First results for the two different local Hilbert space choices were obtained for a simple
model in one dimension, which only considered simple nearest neighbor hopping of a
hole respectively a double occupation. It was not possible to produce converging results
towards an energy gap for single charge excitation in the four-dimensional Hilbert space,
which was traceable in a detailed analysis of the operators in the operator basis to the
missing consideration of half-filling in the four-dimensional space. In contrast, for the
two-dimension space this convergence was observed. The estimated values determined with
an empirical function for the critical interaction strength were identical in both momentum
space and real space representation. Moreover, the results were also in agreement with the
zeroth order perturbation theory result in one dimension [25]. Also, results for the simple
model applied to a two-dimensional square lattice were calculated but the obtained result
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were smaller than the zeroth order result in two dimension. Lastly, next nearest neighbor
hopping both simple and spin dependent hopping of a hole and were added to the simple
model. Again, the critical interaction strength was examined in both dimensions for the
extended model. In one dimension only, an unordinary behavior in the dispersion for
the lowest eigenvalue of the Liouville matrix was observed where the minimum of the
dispersion was split into two parts which drifted apart from each other. Due to the effect
that the dispersion flatted in higher loops and the limited number of possible loops, the
drifting of the minima was not examined further here. Compared to the obtained solution
for the simple model the adding of the simple and spin dependent next nearest neighbor
hopping terms resulted in an increase of the ratio Uc/W between the critical interaction
strength Uc and the bare bandwidth W in both dimension. This observation in one
dimension is in contradiction to analytical results of Ref. [25] where the ratio is lower than
the zeroth order. From this it was concluded that spin correlations have a non-negligible
contribution to the critical interaction strength Uc since they were not considered in this
approach. In principle this also applies to the two-dimensional model since the difference
to the comparable investigation [21] are also the lack of spin correlations. The difference
is that the result of [21] determined a higher ration Uc/W than the zeroth order in two
dimension. But the estimated ratio is below the zeroth order. Therefore, the consideration
of spin correlations is expected to lower the ratio in one dimension where in two dimension
it should have an increasing effect on the ratio. To confirm this interpretation, further
calculations considering spin correlations in both one and two dimension are therefore
mandatory. This in turn is linked to the need to improve the iEoM approach so that
more loops are possible. Concepts must be found to limit the size of the operator basis
while still allowing the determination of the energy gap. One approach could be to filter
operators depending on their weight in the eigenvector of the lowest eigenvalue of the
Liouville matrix or to characterize types of operators which have a great weight in the
eigenvector of the lowest eigenvalue in each possible loop and look for a pattern which can
be used to construct an oeprator basis which only consists of those operators important
for the energy gap.

The strategies to enhance the iEoM approach in this field of application are therefore
numerous. However, before these are pursued further, additional studies that consider
the spin correlations in the t-J model should be the focus for further development of the
iEoM approach in this area.

65



66



A Operators of the four-dimensional local Hilbert
space

Here all local operators of the four-dimensional local Hilbert space HL
4 are listed together

with corresponding Liouville operators and simplification rules. The normalization factor
N for each operator has to taken separately into consideration for each prefactor α and is
not part of the shown operators. As a consequent, the real prefactors α̃ in the case of the
Liouville operators in the form

L
(
ôia

)
= αôjb ô

i
c . (A.1)

reads as

α̃ = α
Na

NbNc
. (A.2)

where Nx is the corresponding normalization factor of the operator ôix . For the simplifica-
tion rules in the form

ôia ô
i
b = αôic . (A.3)

the factor is

α̃ = α
NaNb

Nc
. (A.4)

d†i,↑: with N=2

Liouville operator: L
(
d†i,↑

)
= [T0, d

†
i,↑] + [Hint, d

†
i,↑]

[Hint, d
†
i,↑] =

U

2
d†i,↑ (A.5a)

[T0, d
†
i,↑] = f †i,↓f

†
i,↑h

†
i±1,↓ − σ+i d

†
i±1,↓ + ñi,↓d

†
i±1,↑ +

1

2
d†i±1,↑ (A.5b)

simplification rules:

d†i,↑di,↑ = nui +
1

2
ñi,↑ +

1

2
ñi,↓ +

1

4
d†i,↑hi,↓ = −f †i,↓f

†
i,↑ (A.6a)

d†i,↑ñi,↑ = −1

2
d†i,↑ d†i,↑ñi,↓ =

1

2
d†i,↑ (A.6b)

d†i,↑σ
−
i = −d†i,↓ d†i,↑n

u
i = −1

4
d†i,↑ (A.6c)
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A Operators of the four-dimensional local Hilbert space

d†i,↓: with N=2

Liouville operator: L
(
d†i,↓

)
= [T0, d

†
i,↓] + [Hint, d

†
i,↓]

[Hint, d
†
i,↓] =

U

2
d†i,↓ (A.7a)

[T0, d
†
i,↓] = −f †i,↓f

†
i,↑h

†
i±1,↑ − σ−i d

†
i±1,↑ + ñi,↑d

†
i±1,↓ +

1

2
d†i±1,↓ (A.7b)

simplification rules:

d†i,↓di,↓ = nui +
1

2
ñi,↑ +

1

2
ñi,↓ +

1

4
d†i,↓hi,↑ = f †i,↓f

†
i,↑ (A.8a)

d†i,↓ñi,↑ =
1

2
d†i,↓ d†i,↓ñi,↓ = −1

2
d†i,↓ (A.8b)

d†i,↓σ
+
i = −d†i,↑ d†i,↓n

u
i = −1

4
d†i,↓ (A.8c)

di,↑: with N=2

Liouville operator: L
(
di,↑

)
= [T0, di,↑] + [Hint, di,↑]

[Hint, di,↑] =
U

2
di,↑ (A.9a)

[T0, di,↑] = fi,↓fi,↑hi±1,↓ + σ−i di±1,↓ − ñi,↓di±1,↑ −
1

2
di±1,↑ (A.9b)

simplification rules:

di,↑d
†
i,↑ = −nui − 1

2
ñi,↑ +

1

2
ñi,↓ +

1

4
di,↑d

†
i,↓ = −σ−i (A.10a)

di,↑f
†
i,↓f

†
i,↑ = −hi,↓ di,↑ñi,↓ =

1

2
di,↑ (A.10b)

di,↑ñi,↑ =
1

2
di,↑ di,↑n

u
i =

1

4
di,↑ (A.10c)

di,↓: with N=2

Liouville operator: L
(
di,↓

)
= [T0, di,↓] + [Hint, di,↓]

[Hint, di,↓] =
U

2
di,↓ (A.11a)

[T0, di,↓] = −fi,↓fi,↑hi±1,↑ + σ+i di±1,↑ − ñi,↑di±1,↓ −
1

2
di±1,↓ (A.11b)
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simplification rules:

di,↓d
†
i,↓ = −nui +

1

2
ñi,↑ −

1

2
ñi,↓ +

1

4
di,↓d

†
i,↑ = −σ+i (A.12a)

di,↓f
†
i,↓f

†
i,↑ = hi,↑ di,↓ñi,↑ =

1

2
di,↓ (A.12b)

di,↓ñi,↓ =
1

2
di,↓ di,↓n

u
i =

1

4
di,↓ (A.12c)

h†i,↑: with N=2

Liouville operator: L
(
h†i,↑

)
= [T0, h

†
i,↑] + [Hint, h

†
i,↑]

[Hint, h
†
i,↑] =

U

2
h†i,↑ (A.13a)

[T0, h
†
i,↑] = −fi,↓fi,↑d

†
i±1,↓ − σ−i h

†
i±1,↓ + ñi,↓h

†
i±1,↑ −

1

2
h†i±1,↑ (A.13b)

simplification rules:

h†i,↑di,↓ = −fi,↓fi,↑ h†i,↑hi,↑ = nui − 1

2
ñi,↑ −

1

2
ñi,↓ +

1

4
(A.14a)

h†i,↑ñi,↓ = −1

2
h†i,↑ h†i,↑ñi,↑ =

1

2
h†i,↑ (A.14b)

h†i,↑σ
+
i = h†i,↓ h†i,↑n

u
i = −1

4
h†i,↑ (A.14c)

h†i,↓: with N=2

Liouville operator: L
(
h†i,↓

)
= [T0, h

†
i,↓] + [Hint, h

†
i,↓]

[Hint, h
†
i,↓] =

U

2
h†i,↓ (A.15a)

[T0, h
†
i,↓] = fi,↓fi,↑d

†
i±1,↑ − σ+i h

†
i±1,↑ + ñi,↑h

†
i±1,↓ −

1

2
h†i±1,↓ (A.15b)

simplification rules:

h†i,↓di,↑ = fi,↓fi,↑ h†i,↓hi,↓ = nui − 1

2
ñi,↑ −

1

2
ñi,↓ +

1

4
(A.16a)

h†i,↓ñi,↓ =
1

2
h†i,↓ h†i,↓ñi,↑ = −1

2
h†i,↓ (A.16b)

h†i,↓σ
−
i = h†i,↑ h†i,↓n

u
i = −1

4
h†i,↓ (A.16c)
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A Operators of the four-dimensional local Hilbert space

hi,↑: with N=2

Liouville operator: L
(
hi,↑

)
= [T0, hi,↑] + [Hint, hi,↑]

[Hint, hi,↑] =
U

2
hi,↑ (A.17a)

[T0, hi,↑] = −f †i,↓f
†
i,↑di±1,↓ + σ+i hi±1,↓ − ñi,↓hi±1,↑ +

1

2
hi±1,↑ (A.17b)

simplification rules:

hi,↑h
†
i,↑ = −nui +

1

2
ñi,↑ −

1

2
ñi,↓ +

1

4
hi,↑h

†
i,↓ = σ+i (A.18a)

hi,↑fi,↓fi,↑ = −di,↓ hi,↑ñi,↓ = −1

2
hi,↑ (A.18b)

hi,↑ñi,↑ = −1

2
hi,↑ hi,↑n

u
i =

1

4
hi,↑ (A.18c)

hi,↓: with N=2

Liouville operator: L
(
hi,↓

)
= [T0, hi,↓] + [Hint, hi,↓]

[Hint, hi,↓] =
U

2
hi,↓ (A.19a)

[T0, hi,↓] = f †i,↓f
†
i,↑di±1,↑ + σ−i hi±1,↑ − ñi,↑hi±1,↓ +

1

2
hi±1,↓ (A.19b)

simplification rules:

hi,↓h
†
i,↑ = σ−i hi,↓h

†
i,↓ = −nui − 1

2
ñi,↑ +

1

2
ñi,↓ +

1

4
(A.20a)

hi,↓fi,↓fi,↑ = di,↑ hi,↓ñi,↓ = −1

2
hi,↓ (A.20b)

hi,↓ñi,↑ = −1

2
hi,↓ hi,↓n

u
i =

1

4
hi,↓ (A.20c)

f †i,↓f
†
i,↑: with N=2

Liouville operator: L
(
f †i,↓f

†
i,↑

)
= [T0, f

†
i,↓f

†
i,↑] + [Hint, f

†
i,↓f

†
i,↑]

[Hint, f
†
i,↓f

†
i,↑] =

U

2
f †i,↓f

†
i,↑ (A.21a)

[T0, f
†
i,↓f

†
i,↑] = −d†i,↑hi±1,↓ − hi,↑d

†
i±1,↓ + d†i,↓hi±1,↑ + hi,↓d

†
i±1,↑ (A.21b)
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simplification rules:
f †i,↓f

†
i,↑h

†
i,↑ = d†i,↓ f †i,↓f

†
i,↑h

†
i,↓ = −d†i,↑ (A.22a)

f †i,↓f
†
i,↑fi,↓fi,↑ = −nui − 1

2
ñi,↑ −

1

2
ñi,↓ −

1

4
f †i,↓f

†
i,↑ñi,↓ = −1

2
f †i,↓f

†
i,↑ (A.22b)

f †i,↓f
†
i,↑ñi,↑ = −1

2
f †i,↓f

†
i,↑ f †i,↓f

†
i,↑n

u
i =

1

4
f †i,↓f

†
i,↑ (A.22c)

fi,↓fi,↑: with N=2

Liouville operator: L
(
fi,↓fi,↑

)
= [T0, fi,↓fi,↑] + [Hint, fi,↓fi,↑]

[Hint, fi,↓fi,↑] =
U

2
fi,↓fi,↑ (A.23a)

[T0, fi,↓fi,↑] = di,↑h
†
i±1,↓ + h†i,↑di±1,↓ − di,↓h

†
i±1,↑ − h†i,↓di±1,↑ (A.23b)

simplification rules:
fi,↓fi,↑d

†
i,↑ = h†i,↓ fi,↓fi,↑d

†
i,↓ = −h†i,↑ (A.24a)

fi,↓fi,↑f
†
i,↓f

†
i,↑ = −nui +

1

2
ñi,↑ +

1

2
ñi,↓ −

1

4
fi,↓fi,↑ñi,↓ =

1

2
fi,↓fi,↑ (A.24b)

fi,↓fi,↑ñi,↑ =
1

2
fi,↓fi,↑ fi,↓fi,↑n

u
i =

1

4
fi,↓fi,↑ (A.24c)

σ−i : with N=2

Liouville operator: L
(
σ−i

)
= [T0, σ

−
i ] + [Hint, σ

−
i ]

[Hint, σ
−
i ] =

U

2
σ−i (A.25a)

[T0, σ
−
i ] = −hi,↓h

†
i±1,↑ − h†i,↑hi±1,↓ − d†i,↓di±1,↑ − di,↑d

†
i±1,↓ (A.25b)

simplification rules:
σ−i di,↓ = −di,↑ σ−i hi,↑ = hi,↓ (A.26a)

σ−i ñi,↓ = −1

2
σ−i σ−i ñi,↑ =

1

2
σ−i (A.26b)

σ−i σ
+
i = −nui − 1

2
ñi,↑ +

1

2
ñi,↓ +

1

4
σ−i n

u
i = −1

4
σ−i (A.26c)
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A Operators of the four-dimensional local Hilbert space

σ+i : with N=2

Liouville operator: L
(
σ+i

)
= [T0, σ

+
i ] + [Hint, σ

+
i ]

[Hint, σ
+
i ] =

U

2
σ+i (A.27a)

[T0, σ
+
i ] = −hi,↑h

†
i±1,↓ − h†i,↓hi±1,↑ − d†i,↑di±1,↓ − di,↓d

†
i±1,↑ (A.27b)

simplification rules:
σ+i di,↑ = −di,↓ σ+i hi,↓ = hi,↑ (A.28a)

σ+i ñi,↓ =
1

2
σ+i σ+i ñi,↑ = −1

2
σ+i (A.28b)

σ+i σ
−
i = −nui − 1

2
ñi,↑ +

1

2
ñi,↓ +

1

4
σ+i n

u
i = −1

4
σ+i (A.28c)

ñi,↑: with N=2

Liouville operator: L
(
ñi,↑

)
= [T0, ñi,↑] + [Hint, ñi,↑]

[Hint, ñi,↑] =
U

2
ñi,↑ (A.29a)

[T0, ñi,↑] = −hi,↑h
†
i±1,↑ − h†i,↑hi±1,↑ − d†i,↑di±1,↑ − di,↑d

†
i±1,↑ (A.29b)

simplification rules:

ñi,↑d
†
i,↑ =

1

2
d†i,↑ ñi,↑d

†
i,↓ =

1

2
d†i,↓ ñi,↑h

†
i,↑ = −1

2
h†i,↑ (A.30a)

ñi,↑h
†
i,↓ = −1

2
h†i,↓ ñi,↑di,↑ = −1

2
di,↑ ñi,↑di,↓ =

1

2
di,↓ (A.30b)

ñi,↑hi,↑ =
1

2
hi,↑ ñi,↑hi,↓ = −1

2
hi,↓ ñi,↑f

†
i,↓f

†
i,↑ =

1

2
f †i,↓f

†
i,↑ (A.30c)

ñi,↑fi,↓fi,↑ = −1

2
fi,↓fi,↑ ñi,↑σ

−
i = −1

2
σ−i ñi,↑σ

+
i =

1

2
σ+i (A.30d)

ñi,↑ñi,↑ =
1

4
ñi,↑ñi,↓ = nui ñi,↑n

u
i =

1

4
ñi,↓ (A.30e)

ñi,↓: with N=2

Liouville operator: L
(
ñi,↓

)
= [T0, ñi,↓] + [Hint, ñi,↓]

[Hint, ñi,↓] =
U

2
ñi,↓ (A.31a)

[T0, ñi,↓] = −hi,↓h
†
i±1,↓ − h†i,↓hi±1,↓ − d†i,↓di±1,↓ − di,↓d

†
i±1,↓ (A.31b)
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simplification rules:

ñi,↓d
†
i,↑ =

1

2
d†i,↑ ñi,↓d

†
i,↓ =

1

2
d†i,↓ ñi,↓h

†
i,↑ = −1

2
h†i,↑ (A.32a)

ñi,↓h
†
i,↓ = −1

2
h†i,↓ ñi,↓di,↑ =

1

2
di,↑ ñi,↓di,↓ = −1

2
di,↓ (A.32b)

ñi,↓hi,↑ = −1

2
hi,↑ ñi,↓hi,↓ =

1

2
hi,↓ ñi,↓f

†
i,↓f

†
i,↑ =

1

2
f †i,↓f

†
i,↑ (A.32c)

ñi,↓fi,↓fi,↑ = −1

2
fi,↓fi,↑ ñi,↓σ

−
i =

1

2
σ−i ñi,↓σ

+
i = −1

2
σ+i (A.32d)

ñi,↓ñi,↓ =
1

4
ñi,↓ñi,↑ = nui ñi,↓n

u
i =

1

4
ñi,↑ (A.32e)

nui : with N=4

Liouville operator: L (nui ) = [T0, n
u
i ] + [Hint, n

u
i ]

[Hint, n
u
i ] =

U

2
nui (A.33a)

[T0, n
u
i ] =

1

2
hi,↓h

†
i±1,↓ +

1

2
h†i,↓hi±1,↓ +

1

2
hi,↑h

†
i±1,↑ +

1

2
h†i,↑hi±1,↑

− 1

2
d†i,↓di±1,↓ −

1

2
di,↓d

†
i±1,↓ −

1

2
d†i,↑di±1,↑ −

1

2
di,↑d

†
i±1,↑ (A.33b)

simplification rules:

nui d
†
i,↑ =

1

4
d†i,↑ nui d

†
i,↓ =

1

4
d†i,↓ nui h

†
i,↑ =

1

4
h†i,↑ (A.34a)

nui h
†
i,↓ =

1

4
h†i,↓ nui di,↑ = −1

4
di,↑ nui di,↓ = −1

4
di,↓ (A.34b)

nui hi,↑ = −1

4
hi,↑ nui hi,↓ = −1

4
hi,↓ nui f

†
i,↓f

†
i,↑ =

1

4
f †i,↓f

†
i,↑ (A.34c)

nui fi,↓fi,↑ =
1

4
fi,↓fi,↑ nui σ

−
i = −1

4
σ−i nui σ

+
i = −1

4
σ+i (A.34d)

nui ñi,↓ =
1

4
ñi,↑ nui ñi,↑ =

1

4
ñi,↓ nui n

u
i =

1

8
(A.34e)
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B Operators of the two-dimensional local Hilbert
space

Here, all local operators of the two-dimensional local Hilbert space HL
2 are listed together

with corresponding Liouville Operators and simplification rules. All Liouville operator
and simplification rules the normalization N is not part of the operator and therefore the
prefactor need to be corrected according to equation (A.2) respectively equation (A.4).

d†i,↑: with N=
√
2

Liouville operator:

L
(
d†i,↑

)
= [Hint, d

†
i,↑] + [T0, d

†
i,↑] + [T ′

0, d
†
i,↑]

+ [T ′
s,0, d

†
i,↑] + [T ′′

0 , d
†
i,↑] + [T ′′

s,0, d
†
i,↑] (B.1a)

[Hint, d
†
i,↑] =

U

2
d†i,↑ (B.1b)

[T0, d
†
i,↑] = t0

∑
j|〈i,j〉

(
−d†j,↓σ

+
i − 1

2
d†j,↑σ

z
i +

1

2
d†j,↑

)
(B.1c)

[T ′
0, d

†
i,↑] = t′

∑
j|〈〈i,j〉〉d

(
d†j,↓σ

+
i +

1

2
d†j,↑σ

z
i −

1

2
d†j,↑

)
(B.1d)

[T ′′
0 , d

†
i,↑] = t′′

∑
j|〈〈i,j〉〉l

(
d†j,↓σ

+
i +

1

2
d†j,↑σ

z
i −

1

2
d†j,↑

)
(B.1e)
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simplification rules:
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B Operators of the two-dimensional local Hilbert space
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simplification rules:
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simplification rules:
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B Operators of the two-dimensional local Hilbert space

σzi : with N=1

Liouville operator:
L (σzi ) = 0 (B.9a)

simplification rules:
σzi σ

z
i = 1− σzi σzi σ

+
i = σ+i σzi σ

−
i = σ−i (B.10a)

σ+i : with N=
√
2

Liouville operator:
L
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)
= 0 (B.11a)

simplification rules:
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σ−i : with N=
√
2

Liouville operator:
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= 0 (B.13a)

simplification rules:
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