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Abstract

Suppression of decoherence is a necessary prerequisite for quantum computation
and NMR spectroscopy. In these areas of research control pulses play an important
role because they are used to perform necessary operations. The influence of a pulse
on decoherence can be investigated via the central spin model. An important task is
the search for pulse shapes which suppress the decoherence effectively.

This work addresses the search for decoherence suppressing pulses. To describe the
physical situation a semiclassical form of the central spin model with a cusp-like au-
tocorrelation is used. We introduce a variational search method which leads after an-
alytical calculations to an Euler-Lagrange equation. For amplitude-modulated pulses
analytical and numerical methods to find solutions of the Euler-Lagrange equation are
presented. The pulse which we assume to be the most important outcome of these
methods in terms of decoherence suppression is tested via a simulation program writ-
ten by Stanek. In addition the variational method is applied to frequency-modulated
pulses but the Euler-Lagrange equation is not solved within this work.



Zusammenfassung

Dekohärenzunterdrückung ist eine notwendige Voraussetzung für Quanten-
informationsverarbeitung und NMR-Spektroskopie. In diesen Forschungs-
bereichen spielen Kontrollpulse eine wichtige Rolle weil sie für notwendige Op-
erationen verwendet werden. Der Einfluss eines Pulses auf die Dekohärenz kann
im Zentralspinmodell untersucht werden.

Diese Arbeit beschäftigt sich mit der Suche nach dekohärenzunterdrückenden
Pulsen. Um die physikalische Situation zu beschreiben, wird eine semiklassis-
che Form des Zentralspinmodelles mit einer spitzen Autokorrelation verwendet.
Wir stellen eine Variationsrechnung als Suchmethode vor, die nach analytis-
chen Rechnungen zu einer Euler-Lagrange Gleichung führt. Für amplituden-
modulierte Pulse werden analytische und numerische Methoden vorgestellt, um
die Lösungen zu finden. Der Puls, den wir für das wichtigste Ergebnis dieser
Methoden bezüglich der Dekohärenzunterdrückung halten, wird mit einem von
Stanek geschriebenen Simulationsprogramm getestet. Als Ergänzung wird die
Variationsmethode auch auf frequenzmodulierte Pulse angewendet, aber die
Euler-Lagrange Gleichung wird in dieser Arbeit nicht gelöst.



1 Introduction and Motivation

Control pulses are a fundamental part of quantum computation and NMR spectroscopy.
An important tool to of the theoretical description of these topics is the central spin model
in all of its different versions. Typical examples of these versions are the quantum mechan-
ical central spin model and the semiclassical central spin model.
Since the realization of devices using quantum information processing seems to be a pos-
sible task in the foreseeable future, the central spin model has undergone an intensive
development. The idea of storing information in quantum systems exists principally al-
most since the beginning of quantum mechanics [1] but significant investigations aiming
into the direction of devices based on quantum information processing started mainly in
1982. In that year Benioff did some considerations about the simulation of a classical sys-
tem by a quantum system [2] and Feynman did some considerations on the opposite case,
namely the simulation of a quantum system by a classical system [3]. The application of
pulses in NMR spectroscopy is used since 1949, three years after the development of NMR
spectroscopy [4].

Quantum information processing in comparison with classical information processing has
besides other advantages the main advantage of the so called quantum parallelism [1]. It
is the potential of a quantum computer to perform multiple operations at the same time
whereas a classical computer has to perform the same operations one after another. This is
not an advantage from which a quantum computer benefits in every case. This advantage
can be used just for suitable problems and the algorithms have to be written in such a way
that they make use of this advantage. But if these conditions are fulfilled, the advantage
can be huge in comparison with a classical computer. There are several examples for al-
gorithms written for quantum computers.
A famous example for a quantum algorithm is the Shor algorithm [5] which factorizes
a number in polynomial time, that means, the run time depends polynomial on the bit
length log(N) of the input number N . The Shor algorithm is not just a test algorithm
for quantum computers but rather a good example for an algorithm which could be really
used for practical purposes. Data cryptography is based on factorization [1] and hence
the Shor algorithm or similar quantum algorithms could become very useful in the field of
cryptography, if an efficient quantum computer will be build.
In general every quantum system with two different energy values can be used as a quan-
tum bit [1]. Possible realizations are electrons in a magnetic field captured in electron traps
or quantum dots. The requirements that a physical system as a candidate for a quantum
computer has to fulfill are summarized under the five DiVincenzo criteria [6].
One of these criteria is the necessity of low decoherence times of the quantum bits. The
ground steps of a quantum algorithms are operations depending on the states of one or
two quantum bits, so called quantum gates. Decoherence causes errors, that means, devia-
tion in the ground steps from the predicted operations. For a working quantum computer
a total avoidance of errors is not necessary. Instead it is enough to hold the errors per
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quantum gate under a certain threshold according to the quantum threshold theorem [7].
The relevance of the central spin model for the field of quantum information processing
lies in the understanding of the decoherence of a quantum bit. Decoherence is caused by
different interactions of the central spin with its environment especially by the hyperfine
interaction of the central spin with the nuclei in its surrounding material [8]. The relation
of the central spin model to the decoherence lies in the fact that you can understand the
central spin as a quantum bit and the bath spins as the disturbing environment, i.e. the
nuclei in the surrounding material.

In this work we use the semiclassical form of the central spin model. This means we
treat just the central spin quantum mechanically and we use an averaged classical fluc-
tuating field for the bath. This does not consider the quantum mechanical effects in the
bath and is hence further afar from the reality than a quantum mechanical central spin
model, but the advantage is, that the semiclassical central spin model has a much easier
mathematical representation and makes computational approaches much faster, because it
reduces the states of a big number of bath spins to a single variable. The averaged field
is known under the title Overhauser field and it is already attested that it is a justified
simplification of the bath [9, 10].

The situation which we want to investigate in this work is the decoherence under ex-
tern pulses with the aim to find pulse shapes which suppress the decoherence. This is
interesting because in a quantum computer you have to perform operations on the qubits.
These operations have to turn the direction of the spin in the Bloch sphere by an angular
of π, π

2 and π
4 for the Hadamard gate. These operations are a necessity because they

represent the ground steps of every quantum algorithm [1, 21]. Hence control pulses are a
fundamental part of quantum computation and it is vital to suppress decoherence during
the application of a pulse as effectively as possible. A typical idea for quantum computers
is to implement these operations via magnetic pulses.
Further relevance of control pulses lies in the fact that pulses are used in sequences for the
suppression of decoherence. This is known under the title dynamical decoupling and was
initiated by the discovery of the Hahn Echo, which was demonstrated in 1950 [12]. Dy-
namical decoupling is investigated for sequences of equidistant and non-equidistant pulses
[13]. Examples are the Carr-Purcell-Meiboom-Gill sequence [14] with preparatory work
from [15] and the Uhrig-dynamical-decoupling sequence [16, 17, 18, 19].

The investigations in this work which are new within the research field of the semiclassi-
cal central spin model are mainly two points. The first one is that we use a variational
approach for the pulse search. To our knowledge the method which we use is new in this
research area. A variational approach to the topic of decoherence was already done by
Gordon and Kurizki in 2008 [20] but they addressed a sequence of pulses while we vary
the shape of a single pulse. Variational approaches are for example common in analytical
mechanics or path integral methods to minimize functionals. We investigate just π-pulses.
For our method we define a reasonable functional which we want to minimize and auxiliary
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conditions which we want to fulfill. Hence we treat a typical optimization problem.
The second investigation in this work lies in the noise model which we use. Previous works
mainly used a Gauß distribution for the autocorrelation of the noise while we use a cusp.
This is not the first work that investigates a cusp as the autocorrelation, see for example
[21] which is the most important forerunner of this work. But this noise model is much
less investigated than a Gauß distribution and further research is necessary. A special
feature of the cusp-like autocorrelation is a term in the expansion of the Frobenius norm
that does not exist under a Gauß distribution as autocorrelation. This term was just in
[21] discovered and this work continues the investigation.
A further noteworthy aspect of this work is that we search for pulses which minimize
the docoherence under an assumed energy limitation which can be caused for example by
device-limits or a certain energy value that you do not want to exceed because of a limited
energy supply. The forerunner of this work [21] presents the pulses under two aspects,
namely an upper limit of the amplitude and a lower limit of the pulse duration. Such a
limitation is a typical aspect of the search for new pulses because without any limitation
it would be no problem to create a perfectly decoherence suppressing pulse and in practice
you have limitations in every case. The reasons for our choice of a limited energy are rather
conceptional reasons concerning the practicability of the variational approach than reasons
concerning physical questions which we ask, but an energy limitation is still interesting in
terms of physical questions. To show the quality of the pulses that we find within this work
we show all the features of the new pulses in comparison with the already known pulses
CORPSE and SCORPSE [22, 23] while SCORPSE is also called UPi in [24].

This work is structured as follows. In this chapter we give at first in chapter 1.1 an
overview of the model including the semiclassical central spin model and the cusp-like
noise model. Then in chapter 1.2 we present all the mathematics that we need for the
pulse search.
Chapter 2 is the main part of this work where the variational calculation for amplitude-
modulated pulses is presented. In chapter 2.1 we apply the ansatz to the problem and we
do the first calculations which lead to an Euler-Lagrange equation. The next two chapters
2.2 and 2.3 contain the solutions of the Euler-Lagrange equation. In chapter 2.2 we present
analytical solutions of a simplified form of the Euler-Lagrange equation and in chapter 2.3
we present numerical solutions of the general form of the Euler-Lagrange equation.
Chapter 3 contains a test of the best solution to verify it. The test is done by simulating
the time evolution of a spin under the new discovered pulse with a program written in
the forerunner work [21] which is described in chapter 3.1. In chapter 3.2 we present the
results of the test and in chapter 3.3 we discuss these results.
Chapter 4 is an additional part where we apply an analogue variational approach to fre-
quency modulated pulses but we follow this approach just until we get a raw form of an
Euler-Lagrange equation because as you can see in chapter 4 problems arise which make
the calculations much more difficult than for amplitude-modulated pulses. In chapter 4.1
we explain the aims of the approach. Further we present the Lagrangian in chapter 4.2 and
the Euler-Lagrange equation in chapter 4.3 and in chapter 4.4 we discuss the situation.
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Chapter 5 is the conclusion and the outlook of this work where we discuss the results within
the research field of the central spin model.

1.1 Model

The model that is used in this work is the semiclassical form of the central spin model,
which is presented in chapter 1.1.1. Because the semiclassical model contains a field which
fluctuates statistically obeying an specific autocorrelation it is necessary to make a choise
for the autocorrelation which is done in chapter 1.1.2. The formulas are from [25, 21].

1.1.1 Semiclassical central spin model

According to [25, 21] the central spin model consists of a central spin and a bath of spins
arranged around the central spin. The central spin can be created by applying a static
magnetic field to a spin-1

2 particle, for example an electron, so that the particle has two
different energy eigenvalues in the magnetic field due to the Zeeman interaction. Without
loss of generality the magnetic field and hence the axis of precession is arranged along
the z-direction of the coordinate system. The contributing interactions are the interaction
between the central spin and the bath spins and the interactions between the bath spins
among each other.
In addition in order to do operations on the central spin an applied high-frequency pulse
is included into the system and causes an interaction with the central spin. The pulse
turns the direction of the spin by a predefined angular where we treat just π-pulses. The
interaction between the bath spins and the pulse is neglected in this work.
In general there is also a contribution to the Hamiltonian of the static magnetic field,
but to simplify the Hamiltonian the rotating wave approximation is used [25] so that
this contribution is not noticeable in the coordinate system which we use. The pulse
has the same frequency as the spin-precession around the static magnetic field. Then
you can divide the pulse into two fields, which rotate into opposite directions with the
frequency of the precession. One of these parts Vres(t) rotates into the same direction as
the precession and the other part Vnon−res(t) rotates into the opposite direction. Rotating
wave approximation means that Vnon−res(t) is neglected because it rotates with a very high
frequency in the rotating coordinate system. The legitimization of this approximation and
a further description can be seen in [26].
At first we write down the pulse shape within the non-rotating coordinate system. The
pulse is applied within the time interval 0 ≤ t ≤ τp where t is the actual time and τp is
the pulse duration. The resulting time-dependent pulse amplitude in the static coordinate
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system is calculated in (1) according to [25]:

V (t) =4V0(t) cos (ωref · t+ Ω(t) + Φp)~ex (1)

=Vres(t) + Vnon−res(t)

=2V0(t)[cos (ωref · t+ Ω(t) + Φp)~ex + sin (ωref · t+ Ω(t) + Φp)~ey]

+ 2V0(t)[cos (ωref · t+ Ω(t) + Φp)~ex − sin (ωref · t+ Ω(t) + Φp)~ey].

V0(t) is the maximum amplitude of the field, ωref is the angular velocity of the precession
and hence of Vres(t), Ω(t) is a time-dependent phase and Φp is a time-independent phase.
For amplitude-modulated pulses a modulation of V0(t) is used and for frequency-modulated
pulses a modulation of Ω(t) is used.
Now we apply the rotating wave approximation. We ignore the second line in the result of
(1) and transfer the first line, which represents the remaining rotation direction, into the
rotating coordinate system. The remaining field of an amplitude-modulated pulse after
the rotating wave approximation seems to be static in the rotating coordinate system and
can be written in the rotating coordinate system according to (2) without loss of generality
because of the freedom of choice of the phase of the rotating coordinate system.

V a
rot(t) = 2V0(t)~ey (2)

For frequency-modulated pulses the field is

V f
rot(t) = 2V0 [cos (Ω(t))~ex + sin (Ω(t))~ey] . (3)

The semiclassical form of the central spin model uses a simplification for the interaction
between the central spin and the bath spins. In the Gaudin-model [27, 28] without the
simplification the interaction has the Hamiltonian (4) according to [9] in which the bath
is represented as a sum over the bath spins.

Hq
I = ~S0

N∑
i=1

Ji~Si (4)

S0 is the central spin, Si are the bath spins, Ji is a coupling constant and N is the number
of bath spins in the model. In the semiclassical model [8, 29] the sum over the bath spins,
which is a quantum mechanical object, is replaced by a fluctuating scalar-field ~η(t), which
is a classical object. This neglects indeed all the quantum mechanical effects within the
bath but it is a justified model for a bath which is large enough on short time scales
where the bath can be assumed as frozen. The computational effort is reduced enormously
because the semiclassical model replaces the 2N bath-dimensions for N bath spins by just
one classical variable.
The interaction between the central spin and the bath is included in the model just as an
interaction with the z-direction of the central spin because a rotation symmetrical noise
model around the z-axis is used. This is explained in detail in chapter 1.1.2. The complete
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Hamiltonian is written as

H =HB +HI(t) +HP (t) (5)

=HB + ~σ · ~η(t) + ~σ · ~v(t).

If we stick to amplitude-modulated pulses, which are treated mainly in this work, we can
simplify (5) to

H = HB + σz · ηz(t) + σy · vy(t). (6)

As described above the static magnetic field does not appear in (6). The term HB is a
formal term which is written just for now in the more general Hamiltonian. In chapter 1.2.1
we show that this term leads to the time evolution of the bath field ~η(t) = eiHBt~ηe−iHBt

(we set ~ = 1). In chapter 1.1.2 we introduce a noise model which captures the time
evolution of the bath field in a statistical way. The more general time evolution with HB

will be replaced by this statistical model and henceforth HB will not appear anymore in
the equations.

1.1.2 Noise model

The semiclassical model contains a field which fluctuates according to an autocorrela-
tion. Hence a choice for a specific function describing the autocorrelation is necessary. The
accordance between the real world and the semiclassical model depends on this choice.
The easier task is to chose an expectation value of the field. Due to its statistical character
generated by a big number of fluctuations the probability for different values of the field
is usually a Gaussian distribution around an expectation value, such as it it used in [21].
Because of the static magnetic field the z-direction is the only direction with a special
feature and for the rest the model is rotational symmetric around the z-direction. Hence
(7) is a reasonable choice according to [25].

〈ηx〉 = 0 (7)

〈ηy〉 = 0

〈ηz〉 = η̄

The effect of this rotation symmetry is that we reduce the decoherence to effects due to
pure dephasing and we ignore any effects due to longitudinal relaxation. Pure dephasing
alone does not bring a quantum bit closer to the state |0〉 or |1〉 but that happens in the
combination of pure dephasing and the applied pulse. When the phase of the two states is
changed the pulse causes another effect on the spin than it was initially planned and this
effect can change the direction of the spin in every possible way and hence it can change
the probability to measure the state |0〉 or |1〉. Now an autocorrelation describing the
correlation of the field with itself between two times t1 and t2 has to be chosen.
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Because of the symmetry concerning time shifts the noise and its autocorrelation should
be only dependent of the difference ∆t = t2 − t1. According to [25] a formal description
of the autocorrelation g(t1, t2) is written in (8) where W1(η1, t1) is a Gaussian distribution
with the variance σ2.

g(t1, t2) = g(∆t) = 〈η(t1) · η(t2)〉 =

∞∫
−∞

∞∫
−∞

η1η2W2(η2, t2, η1, t1)dη1dη2 (8)

∞∫
−∞

W2(η2, t2, η1, t1)dη2 = W1(η1, t1)

W1(η1, t1) =
1√
2πσ

e
− 1

2

(
η1−η̄
σ

)2

In many preceding works the autocorrelation is considered as a Gaussian distribution. A
quite new approach [21] which is followed also in this work considers the autocorrelation
as a cusp. This cusp typically arises due to an Ornstein-Uhlenbeck process [21, 30]. This
process is a result of highly energetic fluctuations in the bath and is dominant on short
time scales. Hence it is a model which captures the physics especially at high temperatures.
Such fluctuations can be for example spin-orbit couplings. An example is [21] where both,
a Gaussian distribution and a Cusp are considered in a simulation. The autocorrelation
assumed here is given as

g(∆t) = η̄2 + g0e
−ν∆t = η̄2 + g0 − g0ν|∆t|+

g0

2
ν2|∆t|2 +O

(
|∆t|3

)
. (9)

The Taylor series expresses the autocorrelation in powers of |∆t|. This will play a role
in the chapters 1.2.3 and 1.2.4 because the conditions for pulses of the first two orders
are a consequence of the orders zero and one of this Taylor series. A special term in (9)
that we want to pay attention to is the term linear in |∆t| because this term concerns
the new investigations to which this work belongs to. This term is a special feature of a
cusp-like autocorrelation in comparison with a Gauß distribution. In many previous works
a Gauß distribution was used as the autocorrelation where the term does not exist due
to the vanishing derivation of a Gauß distribution in its maximum. The importance of
this term lies in the fact that it leads to an order in the Frobenius norm that was just in
[21] discovered. You can see the derivation of this order in chapter 1.2.3. A plot of the
autocorrelation can be seen in figure 1.
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Figure 1: Cusp-like autocorellation in dependence of the time distance

1.2 Supression of decoherence

The aim of this chapter is to set up a quantitative definition of the pulse quality in
terms of decoherence suppression. At first we set up the time evolution operator for the
interaction between the central spin and the bath following the way of the calculations
in [31]. This is needed in order to set up the so called Frobenius norm of a pulse. The
Frobenius norm describes the difference between the actual pulse and the theoretically
ideal pulse. The ideal pulse would be a delta peak [31] but it is not realizable in exper-
iments because of its infinite big amplitude and its infinite short pulse duration. Hence
the Frobenius norm is a quantification for the quality of a pulse and we get mathematical
expressions which we need for the pulse search. The Frobenius norm will be expressed in
orders of the pulse duration. The idea to let these orders vanish in ascending order leads
to conditions that the pulses shall fulfill.
The shapes of the pulses, the conditions and the Frobenius norm will be expressed at first
in dependence of the pulse duration. This is shiftable into expressions in dependence of
the maximum amplitude or the energy of a pulse, so that the pulses are in every case
expressed in dependence of one variable. The expressions in different variables are just
different sights on the same pulse and do not mean a change of the physics. But an aspect
which is physically important is the choice of the variable which we try to minimize. That
means we search for a pulse which is good under the definition of quality that we set up in
chapters 1.2.3 and 1.2.4 and in addition minimizes the value of one of the three variables.
The effect which we want to reach is that the pulse is optimized under a certain value of
one of these variables which can be for example a limit due to the devices which create
the pulse. An example is the limitation of the amplitude. It is clear that an infinitely
big amplitude is not implementable. We are interested in finding the best pulse under a
restriction which we choose.
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1.2.1 Time evolution operator

To set up the time evolution operator we follow the calculations of [31]. The most
general formulation of the time evolution operator over the whole pulse duration Up(τp, 0)

is given by

Up(τp, 0) = e−iτpHBT{e−i~σ·
∫ τp
0 ~v(t)dt}UI(τp, 0). (10)

The first exponential function is the time evolution of the bath, the second exponential
function is the time evolution induced by the pulse and UI(τp, 0) is the time evolution
induced by the interaction between the central spin and the bath which is the disturbing
part in the system that we want to have as close to the identity operator as possible. The
time evolution for the applied pulse P̂t can be rearranged as

P̂t :=T{e−i~σ·
∫ t
0 ~v(t′)dt′} (11)

=e−i~σ·â(t)
ψ(t)

2 .

This formulation represents a rotation around the pulse field in the rotating wave approxi-
mation [32]. â(t) is the axis of rotation and ψ(t) is the angle of rotation. The Schrödinger
equation for the pulse is

i∂tP̂t = HP (t)P̂t. (12)

~v(t) written in dependence of ~a(t) and ψ(t) is

2~v(t) = ψ̇(t)~a(t) + ~̇a(t) sinψ(t)− [1− cosψ(t)]
[
~̇a(t)× ~a(t)

]
(13)

⇔ ~v(t) · ~a(t) =
ψ̇(t)

2
.

The calculations of (13) can be seen in detail in [25].
The total time evolution obeys the Schrödinger equation

i∂tUp(t, 0) = [HB +HI +HP ]Up(t, 0) (14)

From a combination of (12) and (14) we get

i∂tUI(t, 0) = G(t)UI(t, 0) (15)

G(t) = eiHBtP̂−1
t (~σ · ~η) P̂te

−iHBt (16)

The Schrödinger equation (15) leads to the interaction part of the time evolution operator
over the whole pulse duration

UI(τp, 0) = T{e−i
∫ τp
0 G(t)dt}. (17)
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Now we calculate the time evolution of the bath and the pulse separately. We define
according to [31] Hqb

G(t) =eiHBtHqbe
−iHBt (18)

Hqb =P̂−1
t (~σ · ~η) P̂t (19)

=~σ · ~η cosψ(t)− ~σ · [~a(t)× ~η] sinψ(t) + 2 [~a(t) · ~η] [~σ · ~a(t)]
sin2 (ψ(t))

2
.

The calculations in (18) can be seen in detail in [31].
Further we define according to [31]

~S(t) := P̂−1
t ~σP̂t = Dâ(ψ)~σ. (20)

The meaning of (20) is that the influence of the pulse is captured in a rotation of the Pauli
matrices vector ~σ where Dâ(ψ) is the corresponding 3 × 3 rotation matrix. Now we shift
the expression of the rotation from the pauli matrices vector ~σ to the field ~η so that ~σ will
be static in our picture.

Hqb = P̂−1
t (~σ · ~η) P̂t = ~S(t)~η = [Dâ(ψ)~σ] · ~η = [Dâ(−ψ)~η]~σ := ~nη(t) · ~σ (21)

(18) and (21) lead to

~nη(t) = ~η cosψ(t)− [~a(t)× ~η] sinψ(t) + ~a(t) [~a(t) · ~η] [1− cosψ(t)] . (22)

Now we include the time evolution of the bath into our calculations, e.g. we calculate G(t).
This has an effect only on η:

~η(t) = ~ηt = eiHBt~ηe−iHBt (23)

As described in chapter 1.1.1 HB is captured in the time evolution of ~η and hence HB

is henceforth no longer in our equations because this time evolution is replaced by the
statistical noise model presented in chapter 1.1.2.
Now we want to transform (17) into a mathematical expression that we can work with in
the pulse search. In order to do this we expand the exponent with a Magnus expansion.
The Magnus expansion builds up a power series expression of an exponent, in this case
a series of powers of the pulse duration τp. This is a description which is needed for the
variational pulse search technique because we must be able to see the effect of a small
variation on the pulse quality in a quantitative way. A detailed description such as a proof
of the Magnus expansion can be seen in [33]. The Magnus expansion of (17) is given by

U(τp, 0) = e
−i
(∫ τp

0 G(t)dt− i
2

∫ τp
0 dt1

∫ t1
0 dt2[G(t1),G(t2)]+O(τp3)

)
. (24)
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If we insert G(t) = ~nηt(t) · ~σ where ηt is the statistical fluctuating field, we get

U(τp, 0) =e
−i
(∫ τp

0 ~nηt (t)·~σdt−
i
2

∫ τp
0 dt1

∫ t1
0 dt2[~nηt (t1)·~σ,~nηt (t2)·~σ]+O(τp3)

)
(25)

=e−i(~µ
(1)·~σ+~µ(2)·~σ+O(τp3)).

We are interested in the first order of the Magnus expansion. The following calculations
can be seen in detail in [25].
Now we calculate the first order of the Magnus expansion for amplitude-modulated pulses.
The axis of rotation is

~a(t) =

0

1

0

 (26)

and (13) leads to the differential equation

v(t) =
ψ̇(t)

2
(27)

which is analytically solvable. The first order for amplitude-modulated pulses is

~µ(1) · ~σ =

τp∫
0

~nη(t1) · ~σdt (28)

=σz

τp∫
0

η(t) cosψ(t)dt− σx

τp∫
0

η(t) sinψ(t)dt.

For frequency-modulated pulses the situation is more difficult. The axis of rotation is

~a(t) =

sin (θ(t)) cos (φ(t)))

sin (θ(t)) sin (φ(t)))

cos (θ(t))

 . (29)

and (13) leads to the system of equations

∂ψ(t)

∂t
=2V0 sin (θ(t)) [sin (Ω(t)) sin (φ(t)) + cos (Ω(t)) cos (φ(t))] (30)

∂φ(t)

∂t
=V0

cos
(
ψ(t)

2

)
sin (Ω(t)− ψ(t))− sin

(
ψ(t)

2

)
cos (θ(t)) cos (Ω(t)− φ(t))

sin
(
ψ(t)

2

)
sin (θ(t))

(31)

∂θ(t)

∂t
=V0

cos
(
ψ(t)

2

)
cos (θ(t)) cos (Ω(t)− φ(t)) + sin

(
ψ(t)

2

)
sin (Ω(t)− ψ(t))

sin
(
ψ(t)

2

) . (32)
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The system of equations is not analytically solvable. This is a problem that makes the
variational calculation for frequency-modulated pulses more complicated than the varia-
tional calculation for amplitude-modulated pulses as you can see in chapter 4. θ(t) and φ(t)

are functions, which appear because of the non-static rotation axis. These functions and
ψ(t) are auxiliary functions which are not part of the underlying mathematical problem.
In theory the problem could be described completely without these functions, but these
functions still stand as placeholders in the equations because there is no analytical solution
of the system of the equations (30), (31) and (32). The first order for frequency-modulated
pulses is according to [25]

~µ(1) · ~σ =

τp∫
0

~nη(t1) · ~σdt (33)

=η̄σx

τp∫
0

(−ay(t) sin (ψ(t)) + (1− cos (ψ(t)))ax(t)az(t)) dt

+ η̄σy

τp∫
0

(ax(t) sin (ψ(t)) + (1− cos (ψ(t)))ay(t)az(t)) dt

+ η̄σy

τp∫
0

(
cos (ψ(t)) + (1− cos (ψ(t)))a2

x(t)
)
dt.

Because it is important in chapter 4, we write down the second order, too. It is

µ(2) =2i~σ

τp∫
0

t1∫
0

(~nη (t1)× ~nη (t2)) dt2dt1 (34)

=2iσx
(
η̄2 + g0

) τp∫
0

t1∫
0

(nyz(t1)nzz(t2)− nzz(t1)nyz(t2)) dt2dt1

=2iσy
(
η̄2 + g0

) τp∫
0

t1∫
0

(nzz(t1)nxz(t2)− nxz(t1)nzz(t2)) dt2dt1

=2iσz
(
η̄2 + g0

) τp∫
0

t1∫
0

(nxz(t1)nyz(t2)− nyz(t1)nxz(t2)) dt2dt1

with the abbreviation

~n~η(t) = η(t)

−ay(t) sin (ψ(t)) + (1− cos (ψ(t)))ax(t)az(t)

−ax(t) sin (ψ(t)) + (1− cos (ψ(t)))ay(t)az(t)

cos (ψ(t)) + (1− cos (ψ(t)))a2
x(t)

 . (35)
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1.2.2 Frobenius norm

After the calculation of the time evolution operator of the disturbance we follow a
calculation of Stanek of which a short version can be found in [21] in order to get a
quantified expression for the pulse quality. The deviation between the ideal pulse with
the density matrix ργid and the real pulse with the density matrix ργre is expressed in the
density matrix

ργ :=ργid − ρ
γ
re (36)

(37)

with

ργid =P̂τpρ
γ
0 P̂
†
τp (38)

ργre =P̂τpUI(τp)ρ
γ
0U
†
I (τp)P̂

†
τp

The density matrices ργ0 represent totally polarized states of the central spin in the direction
of the axis γ. They are given by

ργ0 =
1

2
[1+ σγ ] (39)

The square of the Frobenius norm ∆F is defined as

∆2
F :=

1

3

∑
γ=x,y,z

Tr (ργ)2 . (40)

After carrying out the square and exploiting the properties of the time evolution and the
rotation operator according to [21] (40) leads to

∆2
F := 2

[
1− 1

3

∑
γ=x,y,z

Tr
(
ργidρ

γ
re

)]
. (41)

It is helpful to write the time evolution operators of the interaction as

UI(τp) = 1 · cos |~µ| − i~µ · ~σ
|~µ|

sin |~µ|. (42)

We will use

(σγ(~µ · ~σ))2 = µ2
γ −

α 6=γ∑
α=x,y,z

µ2
α (43)

(~µ · ~σ)2 = |~µ|2 (44)
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Tr
(

2σγ (~µ · ~σ)2
)

= 0. (45)

With these equations we calculate the trace in (41) using P̂ †τpP̂τp = 1 and cyclical permu-
tation under the trace:

Tr
(
ργidρ

γ
re

)
=Tr

(
P̂τpρ

γ
0 P̂
†
τpP̂τpUI(τp)ρ

γ
0U
†
I (τp)P̂

†
τp

)
(46)

= cos |~µ|2 +
sin2 |~µ|
4|~µ|2

· Tr
(
(~µ · ~σ)2 + 2σγ(~µ · ~σ)2 + (σγ(~µ · ~σ))2

)
= cos |~µ|2 +

sin2 |~µ|
|~µ|2

µ2
γ

We insert this trace into the Frobenius norm:

∆2
F =2

[
1− 1

3

∑
γ=x,y,z

Tr
(
ργidρ

γ
re

)]
(47)

=2

[
1− cos |~µ|2 − 1

3

sin |~µ|2

|~µ|2
(
µ2
x + µ2

y + µ2
z

)]
=

4

3

[
1− cos2 |~µ|

]
.

Until this point we have calculated the Frobenius norm exactly. Now we are going to make
an approximation. We insert the Taylor series of the cosine into (47) and thus we get
according to the calculations of Stanek

∆2
F ≈

4

3

[
1− (1− 1

2
|~µ|2)2

]
=

4

3
|~µ|2 +O

(
|~µ|4

)
. (48)

In the next two sections we are going to deduce conditions for amplitude-modulated and
frequency-modulated pulses from (48) and from the boundary conditions.
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1.2.3 Conditions for amplitude-modulated pulses

For the conditions we use just the first order of the Magnus expansion. We calculate
the contribution of this order to ∆F by inserting it into (48) according to [25].

µ
(1)
x

2
+ µ

(1)
z

2
(49)

=

τp∫
0

τp∫
0

g(t1 − t2) sin (ψ(t1)) sin (ψ(t2))dt1dt2

+

τp∫
0

τp∫
0

g(t1 − t2) cos (ψ(t1)) cos (ψ(t2))dt1dt2

=

τp∫
0

τp∫
0

g(t1 − t2) cos (ψ(t1)− ψ(t2))dt1dt2

We insert the Taylor series (9) of the autocorrelation.

µ
(1)
x

2
+ µ

(1)
z

2
(50)

=

τp∫
0

τp∫
0

(
η̄2 + g0 − g0ν|∆t|+

g0

2
ν2|∆t|2 +O

(
|∆t|3

))
cos (ψ(t1)− ψ(t2))dt1dt2

Now there are different orders of |∆t|. Note that there are two reasons for different orders in
∆F and their combination leads to the actual orders. One reason is the Magnus expansion
of the time evolution operator and the other one is the Taylor series of the autocorrelation.
At first we look at the first order of the Taylor series. We set up the demand on the pulses
that the order from the first order of the Magnus expansion and the first order of the Taylor
series vanishes completely:

τp∫
0

τp∫
0

η̄2 cos (ψ(t1)− ψ(t2))dt1dt2 =0 (51)

η̄2

 τp∫
0

sin(ψ(t1))dt1

τp∫
0

sin(ψ(t2))dt2 +

τp∫
0

cos(ψ(t1))dt1

τp∫
0

cos(ψ(t2))dt2

 =0

According to [25] we get the two conditions (52) and (53). Further we deduce a boundary
condition from the usage of π-pulses [25]. We know that the difference between the initial
angular ψ(0) and the final angular ψ(τp) has to be π and hence we can write down the
condition (54).

τp∫
0

sin (ψ(t))dt = 0 (52)
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τp∫
0

cos (ψ(t))dt = 0 (53)

ψ(τp)− ψ(0) = π (54)

The biggest contribution to the decoherence on the central spin is due to the first order of
the Frobenius norm. Thus the fulfillment of the conditions (52) and (53) is a reasonable
first step in order to suppress decoherence. Further we look at the second order of the
Taylor series in (50) and define

X = −
τp∫

0

τp∫
0

|t1 − t2| cos (ψ(t1)− ψ(t2))dt1dt2. (55)

As explained in chapter 1.2.2 this term is a recently discovered [21] special feature of the
cusp-like autocorrelation in comparison with a Gauß distribution where this order does not
exist. The meaning of this term is that it is the order τ3

p with its prefactor in ∆2
F . After we

let the first order vanish via the conditions (52) and (53) it would be nice to let the second
order vanish, too. But this is not possible because of the No-Go theorem. It is shown in
[15] that it is impossible to let (55) vanish at the same time when the conditions (52), (53)
and (54) are fulfilled. Thus the best what we can try to reach is to create a pulse, which
makes (55) as small as possible while (52), (53) and (54) are fulfilled.
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1.2.4 Conditions for frequency-modulated pulses

For frequency-modulated pulses we set up conditions in analogy to the condition for
amplitude-modulated pulses such as in [25]. We use (33) to calculate

µ
(1)
x

2
+ µ

(1)
y

2
+ µ

(1)
z

2
(56)

=

τp∫
0

τp∫
0

g(t1 − t2) (−ay(t1) sin (ψ(t1)) + (1− cos (ψ(t1)))ax(t1)az(t1))

(−ay(t2) sin (ψ(t2)) + (1− cos (ψ(t2)))ax(t2)az(t2)) dt1dt2

+

τp∫
0

τp∫
0

g(t1 − t2) (ax(t1) sin (ψ(t1)) + (1− cos (ψ(t1)))ay(t1)az(t1))

(ax(t2) sin (ψ(t2)) + (1− cos (ψ(t2)))ay(t2)az(t2)) dt1dt2

+

τp∫
0

τp∫
0

g(t1 − t2)
(
cos (ψ(t1)) + (1− cos (ψ(t1)))a2

x(t1)
)

(
cos (ψ(t2)) + (1− cos (ψ(t2)))a2

x(t2)
)
dt1dt2.

We insert the Taylor series (9):

µ
(1)
x

2
+ µ

(1)
y

2
+ µ

(1)
z

2
(57)

=

τp∫
0

τp∫
0

(
η̄2 + g0 − g0ν|∆t|+

g0

2
ν2|∆t|2 +O

(
|∆t|3

))
(−ay(t1) sin (ψ(t1)) + (1− cos (ψ(t1)))ax(t1)az(t1))

(−ay(t2) sin (ψ(t2)) + (1− cos (ψ(t2)))ax(t2)az(t2)) dt1dt2

+

τp∫
0

τp∫
0

(
η̄2 + g0 − g0ν|∆t|+

g0

2
ν2|∆t|2 +O

(
|∆t|3

))
(ax(t1) sin (ψ(t1)) + (1− cos (ψ(t1)))ay(t1)az(t1))

(ax(t2) sin (ψ(t2)) + (1− cos (ψ(t2)))ay(t2)az(t2)) dt1dt2

+

τp∫
0

τp∫
0

(
η̄2 + g0 − g0ν|∆t|+

g0

2
ν2|∆t|2 +O

(
|∆t|3

))
(
cos (ψ(t1)) + (1− cos (ψ(t1)))a2

x(t1)
)(

cos (ψ(t2)) + (1− cos (ψ(t2)))a2
x(t2)

)
dt1dt2

In analogy to the amplitude-modulated pulses we want to let the order from the first order
of the Magnus expansion and the first order of the Taylor series vanish. We derive the
first order conditions from (57). Further there are boundary conditions for the frequency-
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modulated pulses which you can see in [25]. Altogether we get the following conditions:

τp∫
0

(−ay(t) sin (ψ(t)) + (1− cos (ψ(t)))ax(t)az(t)) dt = 0 (58)

τp∫
0

(ax(t) sin (ψ(t)) + (1− cos (ψ(t)))ay(t)az(t)) dt = 0 (59)

τp∫
0

(
cos (ψ(t)) + (1− cos (ψ(t)))a2

x(t)
)
dt = 0 (60)

ψ(τp)− ψ(0) = π (61)

θ(τp) =
π

2
(62)

∆F in the second order of the Taylor series is derived in chapter 4 because it is a newly
derived formula in this work.

2 Variational Calculation for Amplitude-Modulated Pulses

This chapter contains the central investigations of this work for amplitude modulated-
pulses. At first we give an overview of the ansatz and start with the essential calculations of
the variation in chapter 2.1 where we finally come to the central differential equation which
we want to solve. This differential equation will be solved in two main steps. The first step
is to set one Lagrange multiplier to zero and solve the remaining equation analytically in
chapter 2.2. The second step is the extension of the solution to a solution of the general
equation with a numerical method in chapter 2.3.

2.1 Variational ansatz

We start with an explanation of the variational ansatz. Our initial situation consists of
conditions which we want to fulfill. One of them is (54) which is the boundary condition of
a π-pulse and the others are (52) and (53) which we want to fulfill because of the reasonable
idea to make the orders of the Frobenius norm vanish in ascending order. As described
above the next order is X in (55) which we cannot make vanish at the same time with the
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fulfillment of the conditions because of the No-Go Theorem [34]. Thus the best we can try
to reach is to make X as small as possible while we fulfill the three conditions.
In addition to these aims stemming from the wanted pulse quality we want to set up a
further aim which leads to a good realizability of the pulse in an experiment or further a
device such as a quantum computer. Previous works such as [21] aim at a big pulse duration
or a small amplitude. Both of these ideas are hardly integrable into our variational calculus
due to the fact that it is difficult to include a discrete limitation of such values and thus
we have to think about something different. The idea is to minimize the energy of a pulse
given by

E =
1

2

∫ τp

0
v2(t). (63)

E andX can be minimized with different weightings to each other via a Lagrange multiplier
that you will see in the formulas. The minimization of the energy is reasonable because
of two aspects. The first one is that it can be beneficial to use pulses with a low energy
due to a limited energy supply and heating. The second one is that the deviation of the
actual spin angle ψ̇(t) which is contained in the energy corresponds to the amplitude of
a pulse and thus we get a special form of an amplitude minimization in our method, too.
The energy is suitable to our variational calculation because we can insert it easily into the
functional I. In total we have two terms X and E that we want to minimize while we want
to fulfill the three conditions (52), (53) and (54). This is a typical optimization problem
and a variational calculation is a good suggestion for the solution of such a problem.
A variational calculation is generally used to find the static points and thus the maxima,
minima or saddle points of a functional I(~q(t), ~̇q, t). In the argument of the functional
stand the functions ~q(t), their first deviations ~̇q(t) and the variable t. Hence the initial
equation of a variational calculation is

δI(~q(t), ~̇q(t), t) = 0. (64)

The functional is written as an integral over a Lagrange function L:

I =

∫
L
(
~q(t), ~̇q(t), t

)
dt. (65)

Finally the solutions are reached over the Euler-Lagrange equations for every single function
qi(t):

d

dt

∂L
∂q̇i(t)

− ∂L
∂qi(t)

= 0. (66)
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2.1.1 Functional

Now we want to adjust our problem to a variational calculation as described above.
With (52), (53), (55) and (63) we define the functional

I =
1

8

τp∫
0

ψ̇2(t)dt+ λ1

τp∫
0

sin (ψ(t))dt+ λ2

τp∫
0

cos (ψ(t))dt (67)

+ λ3

τp∫
0

τp∫
0

|t1 − t2| cos (ψ(t1)− ψ(t2))dt1dt2.

λ1, λ2 and λ3 are Lagrange multipliers.

2.1.2 Lagrangian

To set up a Lagrangian at first we have to identify the coordinates and the variable in
(65) for our problem. Our problem is one dimensional and thus there is just one Euler-
Lagrange equation. The coordinate that we use is the angle ψ(t) depending on the variable
t. Note that we are finally searching for a pulse shape defined by (27) which depends on
ψ̇(t). This will play an important role later in this work because when we know any general
solutions for ψ(t) depending on a number of variables the solutions for v(t) depend on one
variable less because one variable gets lost by the derivation.
We set up the Lagrangian for our problem by identifying L in (65). This is easy for the three
terms in (67) which consist of one integral where the terms contributing to the Lagrangian
are just the integrands. For the term consisting of two integrals it is not that easy. It is
easily comprehensible that one integral must stay in L after removing the integral which
you see in (65) but we cannot just remove one of the two integrals to get the contribution to
L. In fact both integrals are equal before a formulation such as L. This leads to a prefactor.
To get this prefactor we trace the mathematical derivation of the general Euler-Lagrange
equations. We call the integrand of X

f(ψ(t1), ψ̇(t1), ψ(t2), ψ̇(t2)) = |t1 − t2| cos (ψ(t1)− ψ(t2)). (68)

Then we derive the Euler-Lagrange equation and we can identify the contribution to L.
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δ

τp∫
0

τp∫
0

f(ψ(t1), ψ̇(t1), ψ(t2), ψ̇(t2))dt1dt2 = 0 (69)

⇔
τp∫

0

τp∫
0

(
f(ψ(t1) + δψ(t1), ψ̇(t1) + δψ̇(t1), ψ(t2) + δψ(t2), ψ̇(t2) + δψ̇(t2))

−f(ψ(t1), ψ̇(t1), ψ(t2), ψ̇(t2))
)
dt1dt2 = 0

⇔
τp∫

0

τp∫
0

(
∂f

∂ψ(t1)
δψ(t1) +

∂f

∂ψ̇(t1)
δψ̇(t1) +

∂f

∂ψ(t2)
δψ(t2) +

∂f

∂ψ̇(t2)
δψ̇(t2)

)
dt1dt2 = 0

⇔
τp∫

0

τp∫
0

∂f

∂ψ(t1)
δψ(t1)dt1dt2 +

τp∫
0

[
δψ(t1)

∂f

∂ψ̇(t1)

]τp
0

dt2 −
τp∫

0

τp∫
0

δψ(t1)
d

dt1

∂f

∂ψ̇(t1)
dt1dt2

τp∫
0

τp∫
0

∂f

∂ψ(t2)
δψ(t2)dt1dt2 +

τp∫
0

[
δψ(t2)

∂f

∂ψ̇(t2)

]τp
0

dt1 −
τp∫

0

τp∫
0

δψ(t2)
d

dt2

∂f

∂ψ̇(t2)
dt1dt2 = 0

⇔
τp∫

0

τp∫
0

(
∂f

∂ψ(t1)
δψ(t1) + δψ(t1)

d

dt1

∂f

∂ψ̇(t1)

)
dt1dt2

+

τp∫
0

τp∫
0

(
∂f

∂ψ(t2)
δψ(t2) + δψ(t2)

d

dt2

∂f

∂ψ̇(t2)

)
dt1dt2 = 0

The single integrals in the last step vanish due to the fact that δψ(t) is zero in the starting
and the ending point t = 0 and t = τp. The integrands are completely symmetrical in t1
and t2 because X is symmetrical in t1 and t2 as you can see in (55). Further the range of
integration is equal for t1 and t2 and hence we get:

τp∫
0

τp∫
0

(
∂f

∂ψ(t1)
δψ(t1) + δψ(t1)

d

dt1

∂f

∂ψ̇(t1)

)
dt1dt2 (70)

=

τp∫
0

τp∫
0

(
∂f

∂ψ(t2)
δψ(t2) + δψ(t2)

d

dt2

∂f

∂ψ̇(t2)

)
dt1dt2.
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Thus we can write:

δ

τp∫
0

τp∫
0

f(ψ(t1), ψ̇(t1), ψ(t2), ψ̇(t2))dt1dt2 (71)

=2

τp∫
0

τp∫
0

(
∂f

∂ψ(t1)
δψ(t1) + δψ(t1)

d

dt1

∂f

∂ψ̇(t1)

)
dt1dt2

=

τp∫
0


∂

(
2
τp∫
0

fdt2

)
∂ψ(t1)

δψ(t1) + δψ(t1)
d

dt

∂

(
2
τp∫
0

fdt2

)
∂ψ̇(t1)

 dt1.

Now we can identify the contribution to L in comparison with (65) as

LX(ψ(t), ψ̇(t), t) = 2

τp∫
0

fdt2 = 2

τp∫
0

|t− t2| cos (ψ(t)− ψ(t2))dt2. (72)

Then we have all the terms that we need to write down the Lagrangian as

L(ψ(t), ψ̇(t), t) (73)

=
1

8
ψ̇(t)

2
+ λ1 sin (ψ(t)) + λ2 cos (ψ(t)) + 2λ3

τp∫
0

|t− t2| cos (ψ(t)− ψ(t2))dt2.

2.1.3 Euler-Lagrange equation

The next step is to derive the Euler-Lagrange equation from the Lagrangian. We insert
(73) into (66):

d

dt

∂L(ψ(t), ψ̇(t), t)

∂ψ̇(t)
− ∂L(ψ(t), ψ̇(t), t)

∂ψ(t)
= 0 (74)

d

dt

∂ 1
8 ψ̇

2(t)

∂ψ̇(t)
−
∂

(
λ32

τp∫
0

|t− t2| cos (ψ(t)− ψ(t2))dt2 + λ1 sin (ψ(t)) + λ2 cos (ψ(t))

)
∂ψ(t)

= 0

ψ′′(t) + 8λ3

τp∫
0

|t− t1| sin (ψ(t)− ψ(t2))dt2 + 4λ2 sin (ψ(t))− 4λ1 cos (ψ(t)) = 0.
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Now we want to capture the last two terms within one term. We calculate:

λ2 sin (ψ(t))− λ1 cos (ψ(t)) (75)

=− λ2
i

2

(
eiψ(t) − e−iψ(t)

)
+ λ2

1

2

(
eiψ(t) − e−iψ(t)

)
=− 1

2
(λ2 + iλ1) eiψ(t) − 1

2
(λ2 − iλ1) e−iψ(t)

=
λ2

2

√
1 +

λ2
1

λ2
2

1 + iλ1
λ2√

1 +
λ2

1

λ2
2

eiψ(t) +
λ2

2

√
1 +

λ2
1

λ2
2

1− iλ1
λ2√

1 +
λ2

1

λ2
2

e−iψ(t)

=
λ1

2

√
1 +

λ2
1

λ2
2

e
i
(
ψ(t)+arctan

λ1
λ2

)
+
λ2

2

√
1 +

λ2
1

λ2
2

e
−i
(
ψ(t)+arctan

λ1
λ2

)

=
√
λ2

2 + λ2
1 cos

(
ψ(t) + arctan

λ1

λ2

)
=
√
λ2

2 + λ2
1 sin

(
ψ(t) + arctan

λ1

λ2
+
π

2

)
Thus we can rewrite (74) as:

ψ̈(t) + 4
√
λ2

2 + λ2
1 sin

(
ψ(t) + arctan

λ1

λ2
+
π

2

)
(76)

+ 8λ3

τp∫
0

|t− t2| sin (ψ(t)− ψ(t2))dt2 = 0

Before we start to solve the Euler-Lagrange equation (76) we want to think about a few
general aspects of the solutions and the physical meaning of these aspects.
(76) is a differential equation of the second order. This means that the solution for ψ(t)

contains two integration constants which will be variables in the solution. Further there are
three Lagrange multipliers in (76) and thus these three Lagrange multipliers are variables
in the solution, too. Hence altogether there are five variables in the general solution for
ψ(t).
But an important point is that in the end we are not searching for a solution of ψ(t). We
are searching for a solution of the pulse shape v(t) which is defined by (27) in dependence
of the derivation ψ̇(t). This is important because one of the variables in the solution gets
lost due to the derivation and thus the solution of v(t) contains just four variables.
Then an adjustment of the solution to the auxiliary conditions is necessary. Every auxil-
iary condition determines one of the variables. Hence after adjusting the solution to the
auxiliary conditions three variables are determined and just one free variable is left in the
solution.
But because of the way in which we express the solution this variable will not appear in
our equation. We will choose specific values for λ3 and we will plot the functions that we
want to investigate against λ3. This means we just look at solutions for fix values of λ3.
For a fix value of λ3 the solutions depend on no further variables. But this does not mean
that there is just one solution for a fix value of λ3 because different solutions in discrete
steps are possible. This stems from the discrete different possibilities to adjust the general
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solution to the auxiliary conditions. The different discrete solutions will play an important
role in this work because we will look at first at the symmetric solution which is one of these
discrete solutions but rather we look at asymmetric solutions which are further solutions
of these discrete steps.
Another important aspect is the meaning of λ3. This Lagrange multiplier is the weighting
of X against the energy E in the minimization. This means if we choose λ3 to be zero
and we solve (76), we get the pulses with a minimized energy but there is absolutely no
minimization of the term X. If we make λ3 bigger we get pulses with a mix of a minimized
energy E and the minimized term X. The bigger λ3 is the stronger is the minimization of
X in comparison with the minimization of E. If we let λ3 grow to infinity we reach the
opposite case of λ3 = 0 asymptotically. In this case we get a pulse with the minimized
function X but almost no minimization of the energy E is included in our calculation.

In the differential equation (76) you can see a periodicity in ψ(t) with the period 2π.
This means the differential equation stays exactly the same if we add a phase of 2π to the
function ψ(t).

Now we want to solve the Euler-Lagrange equation while we fulfill the conditions (52),
(53) and (54). This is a typical optimization problem known from mathematics.
The best what we can try to reach is to get an analytical solution because in comparison
to a numerical solution it delivers a formula as the solution which gives us more general
information.
The problem is that (76) is to our knowledge not analytically solvable. The main prob-
lem which prevents us from finding an analytical solution is the term with the integral.
Without this term (76) would be analytically solvable. Because we prefer an analytical
solution to a numerical one it seems to be a good idea to solve as much of (76) as we can
analytically and include the rest numerically into the solution. That means concretely that
we want to solve the equation in the following two steps. In the first step we ignore the
difficult term with the integral by setting λ3 = 0 and thus we get the differential equation:

ψ̈(t) + 4
√
λ2

3 + λ2
2 sin

(
ψ(t) + arctan

λ2

λ3
+
π

2

)
= 0 (77)

or with other constants λ and Φ corresponding to the amplitude and the angular in polar
coordinates:

ψ̈(t) + 4λ sin
(
ψ(t) + Φ +

π

2

)
= 0. (78)

This term is a form of the Sine-Gordon equation. We solve this equation analytically.
Further we have to adjust the solution to the auxiliary conditions (52), (53) and (54). This
is done in chapter 2.2.2. The analytical solution is not just a preparation step in order to
solve the general Euler-Lagrange equation (76), but rather it has an own physical meaning
which is worth to have a look at. Neglecting the term with the integral is equal to setting
λ3 to zero and as explained above the solution of (77) hence corresponds to a pulse with
minimized energy.
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In the second step we include the term with the integral numerically so that we get so-
lutions for (76) . To do this we let λ3 raise in small steps within an algorithm which is
described in detail in chapter 2.3. This means that we shift the weighting in the minimiza-
tion starting from a pure energy minimization in small steps to a growing focus on the
minimization of the term X in comparison to the minimization of the energy E.
The analytical part is nice to have on its own but an additional advantage is that the
numerical treatment in the second step is at an advantage in comparison with a pure nu-
merical treatment of the whole problem because with the analytical solution of the first step
we have an exact starting point for the numerical calculation and because the part of the
whole problem which we capture numerically is smaller than in a pure numerical treatment.

As a preparation for the analytical solution we write down three qualitative features which
a solution of the differential equation fulfilling the auxiliary conditions must have under
the restriction λ3 = 0 under which we set up analytical solutions. This restriction does
not concern statement 2, which is generally valid.

Statement 1
A solution ψ(t) must be antisymmetrical around the points ψ(t) = −Φ − π

2 + n · 2π with
n ∈ Z.
Due to the periodicity we look at n = 0 without loss of generality. Now we think about
the areas to the left and to the right of the point where we have ψ(t) = −Φ − π

2 .
We see in the differential equation (78) that the second derivation ψ̈(t) depends just
on a sine which is negative in the interval −Φ − 3π2 < ψ(t) < −Φ − π

2 and positive
in the interval −Φ − π

2 < ψ(t) < Φ + π
2 . Further it is obvious that for two points

t1 and t2 we have ψ̈(t1) = −ψ̈(t2) if the corresponding functions ψ(t1) and ψ(t2) have
equal distances to the value ψ(t) = −φ − π

2 on different sides of this value, that means
ψ(t1) = −Φ − π

2 −
(
ψ(t2)−

(
−Φ− π

2

))
= −2Φ − π − ψ(t2). When we now imagine that

we move from a point with ψ(t) = −Φ− π
2 to the left side and to the right side in equally

infinitesimal small steps then it is obvious that ψ(t) must be antisymmetrical around this
point because we start with the same derivation ψ̇(t) and the second derivation ψ̈(t) is all
the time the negative of each other when we compare the left side with the right side.

Statement 2
A solution which fulfills the auxiliary conditions cannot be an injective function.
That means there must be points with ψ̇(t) < 0. This can be explained with the fact that
a function still fulfills the auxiliary conditions (52) and (53), if you add any constant to
the function. This can be shown as follows. At first we write down the conditions with a
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constant phase φ.

τp∫
0

sin (ψ(t) + φ)dt = 0 (79)

τp∫
0

cos (ψ(t) + φ)dt = 0

Now we apply a trigonometric formula which leads to

cos (φ)

τp∫
0

sin (ψ(t))dt+ sin (φ)

τp∫
0

cos (ψ(t))dt = 0 (80)

cos (φ)

τp∫
0

cos (ψ(t))dt− sin (φ)

τp∫
0

sin (ψ(t))dt = 0

Here we can read that the conditions with any constant are fulfilled at the same time when
the conditions without a constant are fulfilled and hence we can use any shifted function
ψ(t) with the same justification. If we assume an injective function, the function values
must be in an interval of the range π because this is the range which is given by the
boundary conditions and if a function exceeds this range it has just a chance to fulfill the
boundary condition if it is not injective. Now we shift the interval of the function by a
vertical translation in the graph to the interval −π

2 < ψ(t) < π
2 . We see easily that a

function within the interval −π
2 < ψ(t) < π

2 cannot fulfill the condition (53) because the

cosine is positive within the interval and hence
τp∫
0

cos (ψ(t)) must be positive.

Statement 3
A solution function must stay within one of the intervals −Φ − π

2 + n · 2π < ψ(t) <

−Φ + π
2 + n · 2π with n ∈ Z.

The different intervals stem from the periodicity of the differential equation described
above and for simplicity we chose n = 0. The restriction to the interval is due to the
boundary conditions that we have to fulfill. To show this we think about what happened,
if the solution would start within the interval and then leaves the interval. At the first
look it is conceivable that the solution leaves the interval and later comes back so that
it is possible that it fulfills the boundary condition. But this is a misconception. The
following consideration about the differential equation reveals that a solution which leaves
the interval over the upper or lower border must be an injective raising or sinking function,
which cannot fulfill the auxiliary conditions as explained above. In the upper half of the
interval the sine in the differential equation (78) is positive and in the lower half the sine
is negative. This is a necessity for a non-injective function because a function that crosses
the middle of the interval has behind this crossing point a derivation leading away from
the middle and thus it needs a negative second derivation ψ̈(t) < 0 in the upper half or a
positive second derivation ψ̈(t) > 0 in the lower half to turn its direction. This turn must
happen before it reaches the borders of the interval. We explain the reason for the upper
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border because the explanation for the lower border is exactly analogue. If we assume that
the function reaches the upper border with a positive first derivation ψ̇(t) > 0 then it gets
into the lower half of the next interval where the second derivation is positive ψ̈(t) > 0.
This means that the function will necessarily rise with a growing derivation and hence
reach the middle of this interval. Then the function raises on with a decreasing derivation
but because the symmetry argument explained above, which is valid in every interval, the
function will reach the upper border of this interval with the same derivation as it had on
the lower border and the same shape of the function is repeated in the next interval and
so on.

Our aim as explained above is to reach a mix of a minimization of the Energy E and
of the term X, but that is just a qualitative formulation. Before we start to search for
solutions we have to write down a quantitative formulation of our aim.
We express the shape of pulses over the pulse duration τp. We know that a pulse gets
better if the pulse duration decreases. It would be nice to minimize a function which does
not depend on the pulse duration so that we can say something about the pulse quality in
general without referring to specific values of the pulse duration. To find such a function
we look at the dependence of E and X of the pulse duration τp:

E =
1

2

τp∫
0

v2(t)dt ∼ 1

τp
(81)

X =

τp∫
0

τp∫
0

|t1 − t2| cos (ψ(t1)− ψ(t2))dt1dt2 ∼ τ3
p (82)

A = vmax ∼
1

τp
(83)

This is due to the fact that ψ(t) has no physical magnitude and hence its derivation is
proportional to 1

τp
which leads to the proportionality of the energy while it is quite obvious

that t and dt are proportional to τp. A is the amplitude of a pulse corresponding to the
highest value of v(t) within the pulse shape. To construct a function without a physical
magnitude we define:

Z = XE3. (84)

In addition we have a look at the function

ZA = XA3. (85)

This function is interesting for us because it is independent of the pulse duration τp, too,
due to the proportionality X ∼ τ3

p and A ∼ 1
τp
. We do not minimize the maximum

amplitude A of a pulse in a direct way and so we do not expect that XA3 is minimized in
the same effective way as XE3, but the minimization of the energy can be interpreted as
a minimization of the amplitude in some averaging way over the whole pulse. Hence it is
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worth to have a look at the minimization of XA3.

2.2 Analytical solutions

In this chapter we write down the different analytical solutions of the simplified Euler-
Lagrange equation (77). In chapter 2.2.1 we show the general analytical solution of the
differential equation and in chapter 2.2.2 we show the analytical solutions under the aux-
iliary conditions.

2.2.1 General solution function

(77) represents a reduced form with just one parameter, namely the time t, of the Sine-
Gordon equation. The general Sine-Gordon equation with two parameters has different
solutions, which are called solitons and can be seen for example in [35]. For our needs we
are interested in a general form of the solution of the reduced Sine-Gordon equation.
A useful form of the solution which we want to use for our work is given in [36]. The
problem discussed in [36] is the mathematical pendulum, which has physically nothing to
do with our problem, but the mathematical equations are the have the same form as in
our case. In [36] there are no phase factors in the sine as we have in the equations (77) and
(78). This is not a problem because it is obvious how these phase factors can be included
into the solution. In the equations (77) and (78) you can see that the phase factors are
just added on ψ(t) within the sine and thus when we set up our formulation of the solution
we just have to subtract these phase factors from the solution given in [36]. According to
[36] regarding the explained aspect the general form of the solution is given by:

ψ(t) = 2 arcsin

(
k · sn

(√
4
√
λ2

2 + λ2
1(t− t0)|k

))
− arctan

λ1

λ2
+
π

2
(86)

ψ(t) = 2 arcsin
(
k · sn

(√
4λ(t− t0)|k

))
− Φ +

π

2
. (87)

We definem =
√

4λ. The two emerging integration constants are k and t0. t0 has obviously
the meaning of a shift in the t-direction. Note that the solution (86) contains four constants,
not five, because we have chosen λ3 = 0. The emerging function sn is one of the elliptic
Jacobi functions.
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2.2.2 Solutions under the auxiliary conditions

At first we want to find symmetrical solutions. Symmetrical means that the solution
v(t) is symmetrical around the point t 1

2
=

τp
2 and hence that the solution for ψ(t) is point

symmetrical or antisymmetrical around the point t 1
2
. We reach this by determining one

constant in the solution in such a way that the solution must be symmetrical. This seems at
the first look as a reduction of the generality of the solution not just in the different discrete
functions that fulfill the auxiliary conditions but rather in a reduction of the free eligible
variables. This is not the case as we can see when we include the auxiliary conditions
into our considerations. A symmetrical solution fulfills the condition (53) automatically
because the cosine is antisymmetrical around the point π

2 . That means we determine one
constant but we fulfill one conidition in the same step, too. That is what we initially
planned to do to fulfill the conditions so in the end determining one variable to make the
solution symmetrical does not lead to a reduction of the free constants in the solution
under the auxiliary conditions.
The solution is periodical with a period that consists of two halves in every period which are
antisymmetrical to each other. If we look into the general solution, we see that the solution
is antisymmetrical around the point t0. This means we can create a solution which is
antisymmetrical in ψ(t) and thus symmetrical in v(t) by choosing t0 in the middle between
our boundary points t0 = 1

2τp. Now we do not have to care about the condition (53), which
is automatically fulfilled, and we just have to adjust the solution to the conditions (52)
and (54).

At first we adjust the solution to the boundary condition. Due to the periodicity of the
solutions we can fulfill the boundary condition with different numbers of periods between
the boundary points where we can start with a positive or negative derivation ψ̇(t). We
will look at different solutions starting with a solution that has less than one oscillation
period between the boundary points. At first we want to write down a general equation
which describes the solution under the boundary conditions. Later we look at specific
numbers of periods within the boundary points. We get

ψ(τp) =π (88)

⇔ 2 arcsin

(
kSn(m(τp −

1

2
τp))

)
=
π

2

⇔ Sn(m
1

2
τp|k) =

1√
2k

⇔ 1

2
mτp =arcSn

(
1√
2k
|k
)

⇔ m1 =2arcSn
(

1√
2k
|k
)

+ 4K(k) · j

m2 =4K(k)− 2arcSn
(

1√
2k
|k
)

+ 4K(k) · j.

K(k) is an elliptic Integral and j ∈ N including j = 0. j describes the numbers of

29



whole periods within the solution between the boundary points. Note that this does not
mean that there is an integer number of periods between the boundary points because in
every solution there is a non-completed period in addition to the number of whole periods
described by j. m1 describes the solutions starting with a positive derivation ψ̇(t) > 0

and m2 describes the solutions starting with a negative derivation ψ̇(t) < 0. Note that
there is no solution for m1 with j = 0 which fulfills the auxiliary conditions. The reason
lies in statement 2. The solution of the differential equation for m1 with j = 0 is injective
with a positive derivation and thus according to statement 2 it can not fulfill the auxiliary
conditions.
Further we adjust the solution to the remaining condition (52). This means we determine
the remaining constant k. This is analytically difficult. We do it numerically by treading
equation (52) as a root finding task, which we can solve easily with an interval method
similar to the methods described in [37]. The tables 1 and 2 show the calculated values of
the solutions. Appendix A explains the graphical meaning of these solutions. The figures
2 and 4 show the solutions for the angular and 3 and 5 show the solutions for the pulse
shape.

Pulse m k

1 4K(k)− 2arcSn
(

1√
2k
|k
)

0.85509241

2 4K(k) + 2arcSn
(

1√
2k
|k
)

0.94140311

3 −8K(k) + 2arcSn
(

1√
2k
|k
)

0.88579264

4 −8K(k)− 2arcSn
(

1√
2k
|k
)

0.92698697

5 12K(k)− 2arcSn
(

1√
2k
|k
)

0.89417815

6 12K(k) + 2arcSn
(

1√
2k
|k
)

0.92142142

7 −16K(k) + 2arcSn
(

1√
2k
|k
)

0.89809898

8 −16K(k)− 2arcSn
(

1√
2k
|k
)

0.91847486

Table 1: The first eight analytical solutions

Pulse E
[

1
τp

]
X
[
τ3
p

]
XE3 A

[
1
τp

]
XA3

1 4.583 0.150535 14.493 5.384410 23.499
2 27.723 0.039648 844.762 11.279234 56.893
3 35.100 0.023843 1031.065 13.911100 64.187
4 81.517 0.012659 6857.364 19.746023 97.464
5 93.751 0.009353 7707.136 22.370874 104.715
6 163.413 0.006155 26859.794 28.195976 137.976
7 180.517 0.004961 29182.336 30.818857 145.216
8 273.415 0.003628 74156.607 36.639920 178.456

Table 2: Function values of the first eight analytical solutions
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Figure 2: Angular of analytical solutions in dependence of the time
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Figure 3: Pulse shape of analytical solutions in dependence of the time
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Figure 4: Angular of further analytical solutions in dependence of the time
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Figure 5: Pulse shape of further analytical solutions in dependence of the time

Further we want to think about asymmetrical solutions. As explained above the sym-
metrical solution is one of the discrete possibilities to adjust the general solution to the
auxiliary conditions. We assume that there are asymmetrical solutions for the general
differential equation. The question is if there are asymmetrical solutions for the simplified
differential equation, too. This is not the case. In the following we proof that no asym-
metric solution for the reduced differential equation exists.
To set up the proof at fist we use the fact that we can add any phase to the function
ψ(t) in the equations (52) and (53) as it is shown in statement 2. We add Φ + π

2 so that
the sine in condition (52) has the same argument as the sine in the differential equation.
Then we use statement 1 which tells us that a solution of the differential equation must
be antisymmetrical around the points where we have ψ(t) = −Φ− π

2 + n · 2π. Due to the
antisymmetry the only possibility to get an asymmetrical solution is to place the boundary
points asymmetrically around such a symmetry point. But this is not possible because of
the conditions (52) and (53). Due to the shift the sine in equation (52) is antisymmetrical
around the symmetry points of the solution, too. Further it can shange its sign only in
symmetry points. To fulfill condition (52) the positive and the negative part in the inte-
grand must have the same volume. Due to the symmetry of the sine in condition (52) this is
just possible if the boundary points are symmetrically arranged around a symmetry point
and hence it follows that every solution which fulfills the auxiliary conditions is forced to
be symmetrical.
Note that this proof is just valid for the reduced Euler-Lagrange equation (77). The
whole Euler-Lagrange equation (76) is another differential equation and thus we can say
at this point nothing about the existence of asymmetrical pulses as solutions of the whole
Euler-Lagrange equation. As you will see in chapter 2.3.3 there are indeed asymmetri-
cal solutions of the whole Euler-Lagrange equation which we find in that chapter with a
numerical approach.
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2.3 Numerical solutions

In this chapter we want to solve the whole differential equation (76). That means
we use the analytic solution of the preceding chapter for the simplified Euler-Lagrange
equation and we extend the solution to different values of λ3 numerically. The integral in
(76) is not analytically solvable and thus we can not change the differential equation to a
form without an integral. There are many different methods to solve differential equations
numerically but a typical feature of the most methods is that they are based on a stepwise
walk along the values of the variable in the differential equation, in our case the time from
0 to τp. The integral term prevents us from applying such a method directly because in the
integral we need information about the whole function ψ(t) while a stepwise method has
in every step just the information about the preceding steps but not about the following
steps. In order to solve the differential equation we use a method that is generally based
on a standard method for which we chose the Runge-Kutta algorithm of fourth order but
the method uses several runs over the whole Runge-Kutta algorithm.
Further we want to search for asymmetrical pulses. To do this we change the program so
that we get a second program which is similar to the first one.
The scheme of the programs is explained in the following chapter. The purpose of this
chapter is to find a solution with lower value of XE3 in comparison with the analytical
solution. This is possible because we expect that the energy E has a vanishing derivation
in λ3 = 0 because the analytical calculus aimed on a pure minimization of the energy. If
the term X has a non-vanishing derivation in λ3 = 0 its shrinkage will outperform the
growths of E at least in a short area around λ3 = 0. We expect that X has a non-
vanishing derivation in λ3 = 0 because the analytical calculus ignores the minimization of
X completely.

2.3.1 Scheme of the programs

Here we explain the function scheme of the programs that we use for the search for
symmetrical and asymmetrical pulses. At first we look at the program for the search for
symmetrical pulses. Due to the fact that the integral term in (76) requires knowledge of
the whole solution the following idea seems to be a useful approach.
The first clear point is that we have to discretize the function ψ(t) along the t-axis due to
the numerical stepwise moving Runge-Kutta algorithm. We chose 2000 steps. We calculate
solutions by rising values of the Lagrange multiplier λ3 i.e. by concrete weightings of the
minimization of the term X to the minimization of the energy E. We start by λ3 = 0,
which corresponds the analytically solved problem in chapter 2.2. The advantage of this
starting point is that in this point we know the solution with high precision. Then we raise
λ3 in small steps. In every single step we use the solution of the preceding step as the
function ψ(t2) in (76) over which we integrate in the differential equation. This solves the
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problem that a standard method delivers just knowledge of the preceding steps. In every
single step in λ3 we apply a loop which lets the solution converge to the solution by the
specific value of λ3. The idea of the loop is to apply the Runge-Kutta algorithm to (76) at
first with the solution of the preceding step within the integral. To improve the efficiency of
the program the Runge-Kutta algorithm runs from the middle by t 1

2
= τp to the end by τp

instead of running over the whole pulse shape. The left half is adjusted antisymmetrically
to the right half because we restrict this first program to symmetrical pulses. Then we get
a new solution ψ(t) from the Runge-Kutta algorithm which we use in a second application
of the Runge-Kutta algorithm within the integral. Further in every step of the loop we use
the solution of the preceding step as the function within the integral as ψ(t2).
When we change the differential equation and thus the solution it is expectable that the
new solution will not fulfill the auxiliary conditions under the same Lagrange multipliers.
We have to adjust the new solution numerically to the auxiliary conditions in every single
step of the loop again by determining the Lagrange multipliers. This is a problem which
corresponds to a root search. One of the auxiliary conditions (53) is automatically ful-
filled due to the fact that we restrict ourselves to symmetrical pulses with λ3 = 0. Then
we have two remaining conditions (52) and (54) which we want to fulfill by determining
two parameters. One of these parameters is λ2, But we need a second parameter. We
use the starting derivation ψ̇(t 1

2
) which is quite more easy to handle numerically than the

variable k from the analytical solution. The method that we use in the root search is the
Broyden’s algorithm taken from the numerical recipes [38]. The Broyden’s algorithm is a
quasi-Newton method and it is based on the secant method.
Alltogether in every single step of the loop we do a root search with the solution function
ψ(t) from the preceding loop step and we get a new solution in the actual loop step when
the auxiliary conditions are fulfilled more exactly than a numerical threshold, which we
set for the root search. We need a second threshold for the loop, which repeats the Runge-
Kutta algorithm. We expect that the loop converges to the solution under the chosen
variables in each step so that the difference between consecutive solutions becomes smaller
and smaller. We use the norm ||~ψn(t) − ~ψn+1(t)||2 for the definition of the difference be-
tween two consecutive solutions. The indices define the number of the step within the loop
and the functions ψ(t) are vectors containing the values of ψ(t) at the discretized points
of this function. The loop ends when the difference between two consecutive solutions
becomes smaller then a threshold that we set. A pseudocode version of this program can
be seen in Appendix B.

In addition we want to search for asymmetrical pulses. To do this we use a program
that is quite similar to the program which searches for symmetrical pulses. Due to the
fact that we do not know if asymmetrical solutions exist and by which values of λ3 asym-
metrical solutions exist we do not write a program which raises λ3 in small steps and uses
for the initial solution in every step the solution of the previous one. Instead we write a
program which searches in bigger steps in λ3 and uses in every step the same solution as
the initial guess for example the asymmetrical CORPSE pulse or the analytical solution
from chapter 2.2 which led to the results below.
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In every step the program does in general the same process as the program which searches
for symmetrical solutions with a few differences. The first difference is that the Runge-
Kutta algorithm does not run from the middle to t = τp. Instead it runs from t = 0

to t = τp. Another difference is that the Lagrange multiplier λ2, which was chosen to
be zero in the solution for symmetrical pulses, has not anymore a predefined value. The
program does not perform a root search in two but instead in three variables. We use a
representation such as (78) of the Euler-Lagrange equation containing the integral term
from (76) and we use the amplitude λ and the angular Φ instead of λ1 and λ2. Hence the
three variables for the root search are λ, Φ and the initial derivation ψ̇(0).
Here lies a big disadvantage in the program performance in comparison with the first search
program. In addition the initial values of the three variables are in general much more far
away from the solution because as explained there are no small steps in λ3 where one step
delivers the initial solution for the following one.

2.3.2 Symmetrical solutions

In this chapter we present the symmetrical solutions. The main aim is to find the
solution with the minimal value of the function XE3 and as a secondary aim the solution
with the minimal value of the function XA3 because these functions are independent of
the pulse duration τp. At first plots of E and X alone are shown. In figure 6 you can see
the plot of E against the Lagrange multiplier λ3 which is raised in steps of ∆λ3 = 0.05.
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Figure 6: Energy in dependence of λ3

For raising values of λ3 the energy gets worse and worse. This is expectable when
you remember that the Lagrange multiplier λ3 can be interpreted as the weight of the
minimization of the term X in comparison with the minimization of the energy E. That
means the bigger λ3 grows the less is E minimized and that is exactly what you can see
in figure 6.
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Further the fact that we see a local minimum of E in figure 6 in the point λ3 = 0 due to
the vanishing derivation of the energy in this point is what we wanted to reach in chapter
2.2 for the analytical solution. Hence figure 6 can be seen as a verification of the results
in chapter 2.2. It shows that the analytical method worked well and led indeed to a local
minimum.
In figure 7 you can see a plot of the term X against the Lagrange multiplier λ3.
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Figure 7: X in dependence of λ3

As you can see in figure 7 the term X has a non-vanishing derivation in the point
λ3 = 0. This is what we hoped and thus the function XE3 has a minimum of XE3 which
we find with the numerical calculation. Another point is that the graph of X looks for big
values of λ3 as if it gets closer to an asymptote. This is according to the No-Go theorem
because we know that a pulse which fulfills the auxiliary conditions can not make X to
zero at the same time. Hence there must be a minimum point of X which the graph can
not cross. Figure 8 shows a plot of the function XE3 against λ3 over a big range.
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Figure 8: XE3 in dependence of λ3
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For a better visualization figure 9 shows the same graph as figure 8 but a smaller area
around the minimum of XE3.
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Figure 9: A smaller frame of XE3 in dependence of λ3

In figure 9 you can see the position of the minimum of XE3 in the point λ3 = 10.25.
The minimum is the smallest value that we reach within this work and thus the pulse at
this point is the most important outcome of this work under all the presented pulses.
A disadvantage is that this pulse has a value XE3 which is very close to the value of the
analytical solution. Hence we win not very much shrinkage in XE3. Further we look at
the pulse which minimizes the function XA3. At first we plot the maximum amplitude A
in figure 10. A has a non-vanishing derivation in λ3 = 0. This is expectable because in the
analytical solution we did no direct minimization of A.
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Figure 10: Maximum amplitude in dependence of λ3

In figure 11 the function XA3 is shown. As expected we see that it has a minimum
which is an interesting point to have a look at.
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Figure 11: XA3 in dependence of λ3

At first we want to have a look at the general development of the pulse shape under a
raising λ3. In tabular 3 the function values for pulses at some points of λ3 are shown and
in the figures 12 and 13 you can see the angular and the shape of these pulses.

λ3 E
[

1
τp

]
X
[
τ3
p

]
XE3 A

[
τ3
p

]
XA3

25 4.626 0.147318 14.583 4.874125 17.059
50 4.803 0.142703 15.809 4.283410 11.215
75 5.223 0.136068 19.386 4.179140 9.932
100 6.017 0.127058 27.680 4.639220 12.686

Table 3: Numerical solutions for raising λ3
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Figure 12: Angular in dependence of the time for raising values of λ3
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Figure 13: Pulse shape in dependence of the time for raising values of λ3

In tabular 4 you can see the values of the relevant functions for our pulses in comparison
with CORPSE and SCORPSE.

Pulse E
[

1
τp

]
X
[
τ3
p

]
XE3 A

[
1
τp

]
XA3

XE3 min 4.590 0.149288 14.438 5.184094 20.799
XA3 min 5.049 0.138516 17.828 4.123058 9.709
SCORPSE 6.717 0.127612 38.671 3.665191 6.283
CORPSE 23.166 0.029884 371.541 6.806784 9.425

Table 4: Numerical solutions of the functions minimizing XE3 and XA3 in comparison
with CORPSE and SCORPSE

In figure14 the time-dependent angular ψ(t) of the central spin to its initial position of
the pulses in the minima ofXE3 andXA3 in comparison with the already known CORPSE
and SCORPSE [22, 23, 24] is shown and in 15 the pulse shapes are shown.
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Figure 14: Angular in dependence of the time of the XE3 and XA3 minimizing pulses and
for comparison of the already known pulses SCORPSE and CORPSE
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Figure 15: Pulse shape in dependence of the time of the XE3 and XA3 minimizing pulses
and for comparison of the already known pulses SCORPSE and CORPSE

2.3.3 Asymmetrical solutions

Further we evaluate the solutions of the program which searches for asymmetrical
solutions. Because we had not initially idea by which values of the parameters asymmetrical
solutions could be we have just a few evaluated points due to the big step ranges and we
show just a few points in λ3. We start the program with the analytical symmetrical
solution of chapter 2.2 and move over to asymmetrical solutions by the initial choice of the
parameters. We find some asymmetrical solutions for which we show the function values
in tabular 5 and plot ψ(t) and v(t) in the figures 16 and 17.
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λ3 E
[

1
τ3
p

]
X
[
τ3
p

]
XE3 A

[
1
τp

]
XA3

0 4.590 0.14929 14.438 5.1740 20.678
7.14285 4.598 0.15003 14.587 5.3179 22.564
14.2857 4.646 0.14927 14.964 5.2564 21.679
21.42855 4.732 0.14819 15.705 5.2042 20.887
28.57145 4.867 0.14672 16.913 5.1677 20.247
35.7143 5.058 0.14478 18.732 5.1561 19.846

Table 5: Asymmetrical numerical solutions

0 0.2 0.4 0.6 0.8 1
t[τ

p
]

0

1

2

3

4

5

ψ

λ
3
=0 (symmetric)

λ
3
=7.14285

λ
3
=14.2857

λ
3
=21.42855

λ
3
=28.57145

λ
3
=35.7143

π/2

π

Figure 16: Angular in dependence of the time of a few asymmetric pulses
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Figure 17: Pulse shape in dependence of the time of a few asymmetric pulses

As you can see the asymmetrical solutions are for small values of λ3 very similar to the
symmetrical analytical solution and for growing values of λ3 they get probably continuously
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away from the analytical solution. The steps of the shapes in the figures 16 and 17 stem
from the stepwise choice of λ3 which is not a parameter of the root search.

2.3.4 Discussion

The variational calculations in chapter 2.1 run quite straightforward and are not a big
difficulty for amplitude-modulated pulses.
For the solutions in the chapters 2.2 and 2.3 the comparison with the already known pulses
CORPSE and SCORPSE is interesting because it proves the quality of the new pulses. In
chapter 2.2 the analytical solution leads to a series of pulses which are divided discretely
from each other. We see that the best pulse of this series is the first one which has the
lowest number of oscillations between its boundary points.
A few qualitative considerations let us understand this aspect. A pulse which oscillates
often between the boundary points has to have a bigger average amplitude than a pulse
that oscillates less often. This is due to (27) which implies that the traveled angular into
both directions is proportional to the integral over the pulse shape from t = 0 to t = τp.
This means that a big traveled angular leads to a big average amplitude and thus a big
pulse energy. The qualitative statement that we can make is that keeping the traveled
angular small is one of the features of a pulse which makes the energy small and leads thus
to a small function XE3. In the series of the analytical solutions the first one is the pulse
which has the smallest travelled angular and hence fulfills this idea best. In comparison
with the pulses CORPSE and SCORPSE the best analytical pulse has a lower energy and
a lower function XE3.
A surprising result that was not clear beforehand is that already the analytical pulse has
a lower function XE3 than CORPSE and SCORPSE because the analytical calculation
contains absolutely no minimization of the term X. The energy minimization alone was
successful enough to reach this.
The next stage was the numerical calculation in which the minimization of the term X

was included to find the minimum of the function XE3. The pulse which we found mini-
mizes the function XE3 a little bit more than the analytical solution. The solution in the
minimum of the function XE3 is the most important new pulse in this work because this
minimum of XE3 is the smallest value that we found and thus the pulse is the best pulse
regarding to our definition of decoherence suppression quality. The disadvantage is that
the difference to the value of XE3 of the analytical solution is really small. This means
that the numerical method in fact led to an improvement but to an improvement much
smaller than we hoped to reach. But in the end it is important that the new pulse performs
well in comparison with CORPSE and SCORPSE and the advantage in the minimization
of XE3 is big in comparison with these pulses because already the analytical solution was
very good in this comparison.
A remarkably point is the qualitative similarity between the new pulse at the minimum
of XE3 and SCORPSE. The similarities between these two pulses are the three intervals
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where the spin moves backwards in the first interval, forward in the second interval and
again backwards in the third interval. Further the points where the pulse shape crosses
the value zero are close to each other. The differences are in the quantitative pulse shape.
For the reason of this outcome we can just set up assumptions but it could have some-
thing to do with the fact that the minimization of the energy and the minimization of
the maximum amplitude are not completely independent of each other. This is due to
the fact that the energy contains an integral over the square of the amplitude and thus
depends in some way of the average value of v2(t). Then the outcome leads to the idea
that the qualitative puls shape with these three intervals of the new pulse and SCORPSE
could be in some way ideal for such problems because two independent methods led to this
qualitative pulse shape. But note that this idea is not more than an assumption for the
reason of this outcome.
In addition we looked at the pulse in the minimum of XA3. This pulse has a bigger value
of XA3 than the SCORPSE pulse but a smaller value of XE3. Hence this pulse is an
interesting outcome of this work, too.
In the end we had a look at asymmetrical pulses, not because we really expected better per-
formances than for the symmetrical pulses, but rather for further understanding of possible
solutions of the Euler-Lagrange equation. The asymmetrical pulses have a bigger function
XE3 than the symmetrical solution. Thus they are indeed just relevant for considerations
concerning understanding of the equations and not for considerations concerning quality
for practical purposes.

3 Simulation of the Pulses

The pulse in the minimum of XE3 is the most important result for practical purposes
in this work. Thus we want to do a further verification of its quality. In order to do this
we use a program of Stanek [21]. He wrote a program which calculates the Frobenius norm
for a default pulse under the cusp-like autocorrelation. In the end the program delivers a
plot of the Frobenius-norm against the pulse duration τp or the maximum amplitude A.
We will present those plots but more interesting for us is a plot of the Frobenius norm
against the energy which is easily calculable starting from one of the first two plots.
In chapter 3.1 we present the scheme of the program and explain how it works. In chapter
3.2 the results are presented and in chapter 3.3 we discuss the results. What we hope to
see is that the results of the simulation coincide with the results of the values of XE3

and XA3 in chapter 2 because this would underline the correctness of the calculations in
chapter 2.
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3.1 Scheme of the program

The idea of Stanek’s [25] program is to calculate an averaged Frobenius norm of a pulse
via the calculation of the time evolution under fluctuations created by a random number
generator which obeys the Noise model described in chapter 1.1.2. Using more fluctuations
within the pulse duration improves the statistical accuracy of the results but it causes a
higher computation time. We use 5 runs of 100000 fluctuations for our calculations. The
calculation of the time evolution itself is not time intensive because just simple integrals
have to be carried out. Stanek [21] reduces the error of the integration for the time-
dependent Hamiltonian with the method of CFETs (commutator-free exponential time
propagators) [39, 40] but this does not increase the run-time significantly. The main
difficulty is the sampling of the fluctuations η(t) which obey the autocorrelation. To do
this Stanek [21] writes down a differential equation for the noise

η̇ = −νη + h(t). (89)

h(t) represents white noise. The solution is given by:

η(t) =

 t∫
0

dt′h(t′)eνt
′
+ η0

 e−νt. (90)

This is what is the time dependence which is needed for the noise but further the values
h0 and η0 have to be determined. To do this the autocorrelation is used. Stanek comes to
the result:

h0 = 2νg2
0 (91)

η̄0 = 0 (92)

Var(η0) = g2
0 (93)

3.2 Results

Now we present the results of the simulation for the pulse in the minimum of XE3 in
comparison with CORPSE and SCORPSE. At first we have a look at plots of the Frobenius
norm plotted against the pulse duration τp which we produce directly as an outcome of
the program. Then we translate this plot over the relationship between τp, A and E to
a plot of the Frobenius norm against the inverse amplitude and the inverse energy. A
demonstrative understanding of these plots is that for every point on the x-scale which you
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chose to look at you compare the three pulses with the same pulse duration, amplitude or
energy. In figure 18 you can see the plot of the Frobenius norm against the pulse duration,
in figure 19 against the inverse amplitude and in figure 20 against the inverse energy.

1e-05 0.0001 0.001 0.01 0.1 1
τ

p

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1
∆

F

XE
3
 min

SCORPSE
CORPSE

Figure 18: Frobenius norm of the XE3 minimizing pulse in comparison with the Frobenius
norm of the pulses SCORPSE and CORPSE in dependence of the pulse duration τp
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Figure 19: Frobenius norm of the XE3 minimizing pulse in comparison with the Frobenius
norm of the pulses SCORPSE and CORPSE in dependence of the maximum amplitude A
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Figure 20: Frobenius norm of the XE3 minimizing pulse in comparison with the Frobenius
norm of the pulses SCORPSE and CORPSE in dependence of the energy E

The first important point that should be said to avoid confusion is that the cutoff values
of the Frobenius norm for the new pulse, i.e. the value below which the Frobenius norm
is not calculable, has nothing to do with physics. It is just a numerical effect and if you
are interested in the physics and not numeric, you should focus on the graphs on the right
side of the kink where the Frobenius norm is above of this cutoff value. Below at fist we
discuss the physics and in the end we do a few considerations on the numerical cutoff.
What you can see in figure 18 is exactly what we expected. The new pulse is worse than
CORPSE and SCORPSE plotted against the pulse duration. This is due to the fact that
the new pulse is not directly constructed to be good under this definition of quality and
this coincides with the results in chapter 2. Plotted against the inverse amplitude in figure
19 the new pulse is worse than CORPSE and SCORPSE and this coincides with our results
in chapter 2 again.
The most important plot is figure 20 because this plot shows the quality under our definition
of quality. In chapter 2 the results showed that we reached this aim with success because
the new pulse had a smaller function XE3 than CORPSE and SCORPSE. Thankfully
picture 20 confirms this result. As you can see the Frobenius norm of the new pulse
plotted against the inverse energy stays always below the Frobenius norm of CORPSE and
SCORPSE.
Fits through the graphs on the right side of the kink can be seen in Appendix C where fits
for the XA3 minimizing pulse, which we do not plot in the graphs for reasons of clarity,
are shown, too.
Now we want to think about the numerical cutoff. The cutoff is due to the fact that the
new pulse is divided into a certain number of intervals between t = 0 and t = τp. To
do investigations concerning this cutoff we tested the program with different numbers of
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intervals. Until this point the new pulse was described with 2000 intervals all over this
work but now we want to test the simulation with 100 till 2000 intervals ascending in steps
of 100 intervals with 1000 fluctuations. The result can be seen in 21 where the cutoff is
plotted against the number of intervals.
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Figure 21: Limitation value of the numerically calculated Frobenius norm in dependence
of the numerical discretization of the pulses

A fit of the function ∆Limit
F (N) = a

Nb in Figure 21 reveals a = 3.35104± 0.001167 and
b = 2.00172 ± 0.00007483. Hence we assume that the cutoff value of the Frobenius norm
has an inverse quadratic dependence of the number of intervals N :

∆Limit
F ∼ 1

N2
(94)

The cutoff value has no noticeable dependence of the number of digits at double precision
which are used within the values of the intervals. Thus we can say that the variable
which determines the cutoff value is the number of intervals N alone in our case. This
is not a general statement because if we would raise the number of intervals much higher
it is expectable that the number of digits in the interval values will become the variable
which determines the cutoff. Making the cutoff value smaller is hence just a question of
computation time because more pulse intervals raise the computation time of the numerical
program from chapter 2.2 which calculates the pulse and the computation time of the
simulation program.
It is unclear if a smaller cutoff value is really necessary. Within this work the areas in the
plots above the cutoff value tell us everything what we want to know because the double
logarithmical plots show straight lines which allow a clear comparison of the pulse qualities.
The reason that there is no cutoff for CORPSE and SCORPSE is that these pulses are
known exactly. The amplitude and the switching times are exact values described in units
of the known constant π.
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3.3 Discussion

The simulation worked well and verified the results of chapter 2. This is an important
validation in order to present a pulse as the outcome of this work which could have a
theoretical and practical use for decoherence suppression. All the qualitative graphs agree
with the calculated values in chapter 2 and thus we have determined the quality of the
new pulse in comparison with CORPSE and SCORPSE over two independent ways. In
the three graphs we can see clearly the growth of the Frobenius norm with the exponent 3

2

which is due to the mixed term in the Frobenius norm under the cusp-like autocorrelation.
This result under the cusp-like autocorrelation was already plotted in the work of Stanek
[21].

4 Variational Ansatz for Frequency-Modulated Pulses

The main part of this work was the application of a variational approach to the search
for decoherence suppressing amplitude-modulated pulses. Now we try to apply a similar
approach with the difference that we want to search for frequency modulated pulses instead
of amplitude modulated pulses.
The most important difference between the two approaches lies in the fact that for frequency-
modulated pulses there are four instead of one varied function which are dependent of each
other such that they could be described theoretically by one varied function, too. Note that
there is one instead of two functions for amplitude-modulated pulses because the depen-
dence between ψ(t) and v(t) is analytically solvable. But we have no analytical solution for
the coupling equations (30), (31) and (32). The approach would be absolutely analogue, if
we could solve these equations analytically. We know that the functions ψ(t), φ(t) and θ(t)
are dependent of Ω(t) and thus if we had a solution for the coupling equations, we could
write down all the formulas as functionals in dependence of Ω(t) just as we can write the
equations in dependence of v(t) or alternatively ψ(t) in the search for amplitude-modulated
pulses. The fact that we have no analytical solution makes this way impossible. What
we can do instead is doing a variational calculation with four functionals instead of one
functional and with the coupling equations as three auxiliary conditions which couple the
functionals.
This way of the variational calculation is not as easy as the variational calculation for am-
plitude modulated pulses because it can not be done straightforward following the known
standard way of a variational calculation. Instead we have to backtrace the whole deriva-
tion of the Euler-Lagrange formalism starting from the postulation of a stationary action.
This is done in chapter 4.3 where you can see that the dependence of the four functionals
of each other indeed changes the way of the calculations for the derivation of an Euler-
Lagrange equation. Due to the arising difficulties we just write down the calculations until
we have an Euler-Lagrange equation for the search for frequency modulated pulses. We
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do not give solutions for these equations because it would be a difficult task to search for
solutions and we do not start this within this work.

4.1 Minimized functions

As described in chapter 1 there are four conditions (58), (59), (60) and (61) which stem
from the minimization to zero of the first order of the Frobenius norm and the boundary
condition. In addition we want to minimize the next order of the Frobenius norm. As
for amplitude modulated pulses this order is an order proportional to τ

3
2
p for frequency

modulated pulses, too.
The difference is that this order does not stem just from the combination of the linear order
of the Magnus expansion with the linear order of the Taylor series of the noise. Instead
there is a contribution of the combination of the linear and the quadratic order of the
Magnus expansion with the constant order of the Taylor series of the noise, too.
The reason that such a contribution does not exist for amplitude modulated pulses is that
there is just one second order term in the Magnus expansion which has another direction
than the two first order terms. Just terms in the same direction lead to a contribution to
the Frobenius norm. For frequency modulated pulses there are three first order terms in
the Magnus expansion, one of them in each direction, and three second order terms, one
of them in each direction, too. Thus there are indeed combinations of different orders in
the same direction, which contribute to the Frobenius norm.

µ
(1)
x

2
+ µ

(1)
y

2
+ µ

(1)
z

2
+ µ

(1)
x µ

(2)
x + µ

(1)
y µ

(2)
y + µ

(1)
z µ

(2)
z (95)

=QuadraticOrder + g1

τp∫
0

τp∫
0

|t1 − t2| [nxz(t1)nxz(t2) + nyz(t1)nyz(t2) + nzz(t1)nzz(t2)] dt1dt2

η̄
(
η̄2 + g0

) τp∫
0

τp∫
0

t2∫
0

[nxz(t1)nyz(t2)nzz(t3)− nxz(t1)nzz(t2)nyz(t3) + nyz(t1)nzz(t2)nxz(t3)

−nyz(t1)nxz(t2)nzz(t3) + nzz(t1)nxz(t2)nyz(t3)− nzz(t1)nyz(t2)nxz(t3)] dt3dt2dt1 +O(τ4
p )

=QuadraticOrder +Xf +O(τ4
p )

As you can see in (95) we call the term in the Frobenius norm Xf which is trilinear in
τp. The situation is now similar to the situation for amplitude modulated pulses. We
want to make the orders of the Frobenius norm vanish in ascending order. The three first
order terms can vanish completely, described within the auxiliary conditions, and further
we want to make the next order (95) as small as possible.
Analogue to the approach for amplitude modulated pulses where we minimized the energy
we want to minimize a similar term for frequency modulated pulses, too. This term should
describe something what describes a practically limited physical size or a physical size that
we want to keep small for any reasons. For amplitude modulated pulses we have chosen the
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energy which is limited by the amplitude for a certain pulse duration and which is wanted

to be small. Here we chose the same termM = 1
8

τp∫
0

ψ̇2(t)dt. The reason for which we chose

this function is that a quite smooth movement of the angular ψ(t) should be more easy to
be implemented by a device than a movement with sudden changes of the movement or
peaks of the speed.
Note that the choice of a minimized function is a conceptual question which depends on
the practical purposes within an experiment or a produced device. Other functions could
be chosen with good justification, too, depending on the purpose. Such as for amplitude
modulated pulses one of the minimized functions has a Lagrange multiplier, we set it in
front of Xf . This Lagrange multiplier describes the weight of the minimization of Xf in
comparison with M .

4.2 Lagrangian

Now we have to write down a Lagrangian for the situation which contains all the terms
that we want to eliminate due to the auxiliary conditions or minimize. For simplification we
reduce the problem analogously to the reduced analytical solvable problem for amplitude-
modulated pulses. That means we neglect the minimization of the term (95) completely
by setting its Lagrange multiplier to zero. What is left is the minimization of M under
the auxiliary conditions. To derive the Lagrangian we write down the action functional:

I =
1

8

τp∫
0

ψ̇2(t)dt (96)

+ λ1

τp∫
0

(−ay(t) sin (ψ(t)) + (1− cos (ψ(t)))ax(t)az(t)) dt

+ λ2

τp∫
0

(ax(t) sin (ψ(t)) + (1− cos (ψ(t)))ay(t)az(t)) dt

+ λ3

τp∫
0

(
cos (ψ(t)) + (1− cos (ψ(t)))a2

x(t)
)
dt

Now we compare the action functional (96) with the formal definition of an action func-
tional over a Lagrangian (65) and we identify the Lagrangian in . The Lagrangian is

L =
1

8
ψ̇2(t) (97)

+ λ1 (−ay(t) sin (ψ(t)) + (1− cos (ψ(t)))ax(t)az(t))

+ λ2 (ax(t) sin (ψ(t)) + (1− cos (ψ(t)))ay(t)az(t))

+ λ3

(
cos (ψ(t)) + (1− cos (ψ(t)))a2

x(t)
)
.
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4.3 Euler-Lagrange equation

In this chapter we describe the derivation of the Euler-Lagrange equation. This part
contains the most important differences in comparison with the standard Euler-Lagrange
formalism due to the fact that we have four minimized functions which are dependent of
each other. What we do now is to add a small variation to the four functions Ω(t), φ(t),
θ(t) and ψ(t):

Ω(t)

φ(t)

θ(t)

ψ(t)

−→

Ω(t) + δΩ(t)

φ(t) + δφ(t)

θ(t) + δθ(t)

ψ(t) + δψ(t)

(98)

Without the coupling equations the calculation could be such as the standard variational
calculation of the Lagrange formalism of the second kind in analytical mechanics. Then we
could compare the four functions Ω(t), φ(t), θ(t) and ψ(t) with four degrees of freedom in
the mechanical case and the mathematics would be the same. But the important difference
is that the four functions are dependent of each other due to the coupling equations (58),
(59) and (60). This situation is thus similar to coordinates in analytical mechanics which
are coupled over constraint equations such as within the Lagrange formalism of the first
kind. We can start the derivation of the Euler-Lagrange equation similar to the Euler-
Lagrange formalism of the second kind but at the point where the independence of the
degrees of freedom of each other is used in the Euler-Lagrange formalism of the second
kind, we have to leave this way of calculations and then we have to find another solution
for the problem.
Note that we know already before we did any calculations that there can be just one Euler-
Lagrange equation for our problem and not a higher number of Euler-Lagrange equations.
For example you could guess that there must be four of them, one for each of the functions,
but that is wrong. This is due to the fact that we have just one independent varied
function and just this function should have an Euler-Lagrange equation because just this
function represents a physical degree of freedom. The three other functions which could
be theoretically expressed in dependence of this one independent function do not have
Euler-Lagrange equations because these functions have nothing in common with physical
degrees of freedom. They are just mathematical placeholders due to the missing solution
of the coupling equations. In the following calculation we backtrace the derivation of the
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Euler Lagrange formalism starting from the postulation of a stationary action functional.

δ

∫
L
(

Ω, Ω̇, φ, φ̇, θ, θ̇, ψ, ψ̇
)
dt = 0 (99)

⇔
∫ (
L
(

Ω + δΩ, Ω̇ + δΩ̇, φ+ δφ, φ̇+ δφ̇, θ + δθ, θ̇ + δθ̇, ψ + δψ, ψ̇ + δψ̇
)

= 0

⇔ −L
(

Ω, Ω̇, φ, φ̇, θ, θ̇, ψ, ψ̇
))

dt = 0

⇔
∫ (

∂L
∂Ω

δΩ +
∂L
∂Ω̇

δΩ̇ +
∂L
∂φ

δφ+
∂L
∂φ̇

δφ̇+
∂L
∂θ
δθ +

∂L
∂θ̇
δθ̇ +

∂L
∂ψ

δψ +
∂L
∂ψ̇

δψ̇

)
dt = 0

⇔
∫ ((

∂L
∂Ω
− d

dt

∂L
∂Ω̇

)
δΩ +

(
∂L
∂φ
− d

dt

∂L
∂φ̇

)
δφ

+

(
∂L
∂θ
− d

dt

∂L
∂θ̇

)
δθ +

(
∂L
∂ψ
− d

dt

∂L
∂ψ̇

)
δψ

)
dt = 0

Until this point the calculations do not differ in any way from the calculations of the
Euler-Lagrange formalism of the second kind. In the Euler-Lagrange formalism of the first
kind the four functions Ω(t), φ(t), θ(t) and ψ(t) would be degrees of freedom which are
independent of each other and at this point you would say that the variations δΩ(t), δφ(t),
δθ(t) and δψ(t) can be chosen independently of each other and hence you would claim that
each of the four braces in (99) has to be zero to fulfill the postulation of a stationary action
functional. Thus you would get four Euler-Lagrange equations there.
But this is not possible in our situation and thus we have to find another way to fulfill
the postulation. The four variations are not independent of each other. They are coupled
over the coupling equations and thus we can not see the Euler-Lagrange equation as easy
as in the Euler-Lagrange formalism of the second kind. Instead we follow another way. At
first we write all the terms under the integral linear in the variation of the independent
function, we chose Ω(t) to be this. We calculate further:∫ ((

∂L
∂Ω
− d

dt

∂L
∂Ω̇

)
δΩ +

(
∂L
∂φ
− d

dt

∂L
∂φ̇

)
δφ

δΩ
δΩ (100)

+

(
∂L
∂θ
− d

dt

∂L
∂θ̇

)
δθ

δΩ
δΩ +

(
∂L
∂ψ
− d

dt

∂L
∂ψ̇

)
δψ

δΩ
δΩ

)
dt = 0

In (100) we are able to identify the Euler-Lagrange equation, but at first we want to do
something else. Now we are able to see the Euler-Lagrange equation in a formal way, but
we are not able to write down an explicit form of the Euler-Lagrange equation. We use
the same argument as in the Euler-Lagrange formalism of the second kind about the free
eligibility of δΩ(t) and say that the postulation of the stationarity of the action functional
is fulfilled if the prefactor of δΩ(t) is zero. The formal form of the Euler-Lagrange equation
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is: (
∂L
∂Ω
− d

dt

∂L
∂Ω̇

)
+

(
∂L
∂φ
− d

dt

∂L
∂φ̇

)
δφ

δΩ
(101)

+

(
∂L
∂θ
− d

dt

∂L
∂θ̇

)
δθ

δΩ
+

(
∂L
∂ψ
− d

dt

∂L
∂ψ̇

)
δψ

δΩ
= 0.

The formal form of the Euler-Lagrange equation (101) tells us formally how the equation
looks like but this form is not enough for concrete calculations. The problem is quite
obvious. The braces are not difficult to calculate because we have got a Lagrangian in
chapter 4.2 and the braces contain just derivations of the Lagrangian with respect to the
four functions or their time derivations. This can produce longer calculations but there
are no conceptual problems expected. The problem lies in the fractions behind the braces
because these fractions contain time derivations of the varied functions which are dependent
of the degree of freedom Ω(t).
At this point we have no knowledge of the explicit form of these fractions and we have
to think about a method to write something mathematical manageable instead of these
fractions. To do this we use the four coupling equations. The idea is to make an expansion
of the time derivations of the variations linear in the variations. This means we write the
time derivations of the variations as:

δφ̇ = f11δΩ + f12δφ+ f13δθ + f14δψ (102)

δθ̇ = f21δΩ + f22δφ+ f23δθ + f24δψ

δψ̇ = f31δΩ + f32δφ+ f33δθ + f34δψ.

In the end δψ(t), δθ(t) and δψ(t) must be writable in an expansion as functions which are
linear in δΩ(t). Due to (102) the shape of δΩ(t) from the start until the present point
in time t is relevant for the shape of δψ(t), δθ and δφ. Hence it is clear that these three
functions must be writable in a linear expansion as a convolution. We define the vector
~v(t) of the three dependent functions:

~v(t) =

δφδθ
δψ

 . (103)

We define the convolution with the for now unknown and just formal function ~χ(t, t′):

~v(t) =

∫ t

0
dt′~χ(t, t′) · δΩ(t′). (104)

This linear expansion in δΩ has an important advantage concerning the calculation of (101).
There is a good justification for throwing away all the terms which are more than linear
in the variations. The theory of variational calculations contains putting an infinitesimal
small variation on a shape of a function to find the solution for which the minimized
function is stationary in such an infinitesimal variation. The fact that the variations are
infinitesimal small leads to the justification that we need to throw away all the orders which
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are more than linear. The quadratic order must be infinitesimal small in comparison with
the linear order, the trilinear order must be infinitesimal small in comparison with the
quadratic order and so on. Hence we can throw away all orders except of the linear order
without causing any problems.
The task is now to find an explicit expression of (104). At first we try to find a linear
expansion according to (102). To do this we start from the three coupling equations (58),
(59) and (60). In these equations we add a small variation to all the four functions according
to (98) on the right sides of these equations so that the left sides have the meaning of φ̇+δφ̇,
θ̇+ δθ̇ and ψ̇+ δψ̇. On the right sides we expand all the trigonometric functions in Taylor
series until the first order. According the multiplications of trigonometric functions mixed
orders will arise which are more than linear in the variations. We throw away all the terms
which are more than linear in the variations so that we get an expansion until the first
order. Then we substract the to each expansion according non-varied time derivations of
the functions φ̇, θ̇ and ψ̇ from the expansions. The result is that we get expansions of δφ̇,
δθ̇ and δψ̇. This corresponds to (102). We start with the calculation for ψ.

δψ̇ (105)

=ψ̇ + δψ̇ − ψ̇

=2V sin (θ + δθ) [sin (Ω + δΩ) sin (φ+ δφ) + cos (Ω + δΩ) cos (φ+ δφ)]

− 2V sin (θ) [sin (Ω) sin (φ) + cos (Ω) cos (φ)]

=2V (sin (θ) + cos (θ)δθ) [(sin (Ω) + cos (Ω)δΩ) · (sin (φ) + cos (φ)δφ)

+ (cos (Ω)− sin (Ω)δΩ) · (cos (φ)− sin (φ)δφ)]

− 2V sin (θ) [sin (Ω) sin (φ) + cos (Ω) cos (φ)]

≈2V cos (θ) (sin (Ω) sin (φ) + cos (Ω) cos (φ)) δθ

+ 2V sin (θ) (sin (Ω) cos (φ)− cos (Ω) sin (φ)) δφ

+ 2V sin (θ) (cos (Ω) sin (φ)− sin (Ω) cos (φ)) δΩ
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We do the same calculation for φ.

δφ̇ (106)

=φ̇+ δφ̇− φ̇

=V
cos
(
ψ+δψ

2

)
sin (Ω + δΩ− ψ − δψ)− sin

(
ψ+δψ

2

)
cos (θ + δθ) cos (Ω + δΩ− φ− δφ)

sin
(
ψ+δψ

2

)
sin (θ + δθ)

− V
cos
(
ψ
2

)
sin (Ω− ψ)− sin

(
ψ
2

)
cos (θ) cos (Ω− φ)

sin
(
ψ
2

)
sin (θ)

=V
1

sin
(
ψ+δψ

2

)
sin (θ + δθ)

[
cos

(
ψ + δψ

2

)
(sin (Ω + δΩ) cos (ψ + δψ)− cos (Ω + δΩ) sin (ψ + δψ))

− sin

(
ψ + δψ

2

)
cos (θ + δθ) (cos (Ω + δΩ) cos (φ+ δφ) + sin (Ω + δΩ) sin (φ+ δφ))

]

− V
cos
(
ψ
2

)
sin (Ω− ψ)− sin

(
ψ
2

)
cos (θ) cos (Ω− φ)

sin
(
ψ
2

)
sin (θ)

=V

cot

(
ψ

2

)
− 1

2 sin2
(
ψ
2

)δψ
( 1

sin (θ)
− cos (θ)

sin2 (θ)
δθ

)
[(sin (Ω) + cos (Ω)δΩ) (cos (ψ)− sin (ψ)δψ)− (cos (Ω)− sin (Ω)δΩ) (sin (ψ) + cos (ψ)δψ)]

− V
(

cot (θ)− 1

sin2 (θ)
δθ

)
[(cos (Ω)− sin (Ω)δΩ) (cos (φ)− sin (φ)δφ)

+ (sin (Ω) + cos (Ω)δΩ) (sin (φ) + cos (φ)δφ)]

− V
cos
(
ψ
2

)
sin (Ω− ψ)− sin

(
ψ
2

)
cos (θ) cos (Ω− φ)

sin
(
ψ
2

)
sin (θ)

≈V 1

sin (θ)

[
cot

(
ψ

2

)
(− sin (Ω) sin (ψ)− cos (Ω) cos (ψ))

− 1

2 sin
(
ψ
2

) (sin (Ω) cos (ψ)− cos (Ω) sin (ψ))

]
δψ

V

sin (θ)2

[
cos (Ω) cos (φ) + sin (Ω) sin (φ)−

cot

(
ψ

2

)
cos (θ) (sin (Ω) cos (ψ)− cos (Ω) sin (ψ))

]
δθ

− V cot (θ) (sin (Ω) cos (φ)− cos (Ω) sin (φ)) δφ

+ V

[
cot

(
ψ

2

)
1

sin (θ)
(cos (Ω) cos (ψ) + sin (Ω) sin (ψ))

− cot (θ) (− sin (Ω) cos (φ) + cos (Ω) sin (φ))

]
δΩ

And now we do the same calculation for θ.
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δθ̇ (107)

=θ̇ + δθ̇ − θ̇

=V
cos
(
ψ+δψ

2

)
cos (θ + δθ) cos (Ω + δΩ− φ− δφ) + sin

(
ψ+δψ

2

)
sin (Ω + δΩ− ψ − δψ)

sin
(
ψ+δψ

2

)
− V

cos
(
ψ
2

)
cos (θ) cos (Ω− φ) + sin

(
ψ
2

)
sin (Ω− ψ)

sin
(
ψ
2

)
=V cot

(
ψ + δψ

2

)
cos (θ + δθ) (cos (Ω + δΩ) cos (φ+ δφ) + sin (Ω + δΩ) sin (φ+ δφ))

+ V (sin (Ω + δΩ) cos (ψ + δψ)− cos (Ω + δΩ) sin (ψ + δψ))

− V
cos
(
ψ
2

)
cos (θ) cos (Ω− φ) + sin

(
ψ
2

)
sin (Ω− ψ)

sin
(
ψ
2

)
=V

cot

(
ψ

2

)
− 1

2 sin2
(
ψ
2

)δψ
 (cos (θ)− sin (θ)δθ)

(cos (Ω)− sin (Ω)δΩ) (cos (φ)− sin (φ)δφ)

+ V

cot

(
ψ

2

)
− 1

2 sin
(
ψ
2

)δψ
 (cos (θ)− sin (θ)δθ)

(sin (Ω) + cos (Ω)δΩ) (sin (φ) + cos (φ)δφ)

+ V (sin (Ω) + cos (Ω)δΩ) (cos (ψ)− sin (ψ)δψ)

− V (cos (Ω)− sin (Ω)δΩ) (sin (ψ) + cos (ψ)δψ)

− V
cos
(
ψ
2

)
cos (θ) cos (Ω− φ) + sin

(
ψ
2

)
sin (Ω− ψ)

sin
(
ψ
2

)
≈− V

[
cos (θ)

2 sin2
(
ψ
2

) (cos (Ω) cos (φ) + sin (Ω) sin (φ))

− sin (Ω) sin (ψ)− cos (Ω) cos (ψ)

]
δψ

+ V

[
cot

(
ψ

2

)
cos (θ) (cos (Ω) sin (φ)− sin (Ω) cos (φ))

+ cos (Ω) cos (ψ) + sin (Ω) sin (ψ)

]
δΩ

− V cot

(
ψ

2

)
sin (θ) (cos (Ω) cos (φ) + sin (Ω) sin (φ)) δθ

− V cot

(
ψ

2

)
(sin Ω cos (θ) + cos (Ω) cos (θ)) cosφδφ

Now we have expansions of the time derivations of the variations linear in the variations.
This does not already give us an expression of the variations linear in the independent
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variation δΩ. It is analytically difficult to find such an expression and the idea is to do
an analytical approach, which is not a part of this work. The next step that we can do
easily is to write down an expression of the Euler-Lagrange equation which still contains
the variations. This is simply done by inserting the Lagrangian (97) into the formal Euler-
Lagrange equation (101) and we get the equation:

∂L
∂Ω

+
∂L
∂φ

δφ

δΩ
+
∂L
∂θ

δθ

δΩ
+

(
∂L
∂ψ
− d

dt

∂L
∂ψ̇

)
δψ

δΩ
= 0 (108)

⇔
(
− λ1 sin (θ) cos (φ) sin (ψ) + λ1 (cos (ψ)− 1) sin (θ) cos (θ) sin (φ)

λ2 sin (ψ) sin (θ) sin (φ) + λ2 (1− cos (ψ)) sin (θ) cos (φ) cos (θ)

+ 2λ3 (cos (ψ)− 1) sin (θ)2 sin (φ) cos (φ)
) δφ
δΩ(

− λ1 sin (ψ) cos (θ) sin (φ) + λ1 (1− cos (ψ)) cos (φ)
(

cos (θ)2 − sin (θ)2
)

+ λ2 sin (ψ) cos (θ) sin (φ) + λ2 (1− cos (ψ)) sin (φ)
(

cos (θ)2 − sin (θ)2
)

+ 2λ3 (1− cos (ψ)) sin (θ) cos (θ) cos (φ)2
) δθ
δΩ

+
(
− 1

4
ψ′′ − λ1 sin (θ) sin (φ) cos (φ) + λ1 sin (ψ) sin (θ) cos (φ) cos (θ)

+ λ2 cos (ψ) sin (θ) cos (φ) + λ2 sin (φ) sin (θ) cos (θ) sin (φ)

− λ3 sin (ψ) + sin (ψ) sin (θ) sin (θ) cos (φ) cos (φ)
)δψ
δΩ

= 0.

Thus we have an Euler-Lagrange equation which contains the still not calculated variations.
It is clear that the linear expansion of the variations in δΩ leads to an Euler-Lagrange
equation that does not contain the variations anymore because the fractions behind the
braces are then independent of the variations due to the fact that the numerator and the
denominator are both linear in δΩ. The following task would be now to calculate these
braces numerically.

4.4 Discussion

The variational ansatz for the search for frequency-modulated pulses works in theory
such as the variational ansatz for the search for amplitude modulated pulses but in practice
the not analytically solvable coupling equations lead to difficulties which finally have to be
solved numerically. We did not start this numerical treatment but it is expectable that it
will not be easy to do. A big disadvantage in comparison with the amplitude modulated
pulses is that a partly analytical solution of the resulting Euler-Lagrange equation is prob-
ably not possible. The form of the Euler-Lagrange equation is much more complicated
than for amplitude modulated pulses which makes an analytical solution not probable.
Further a numerical treatment from the start is anyway necessary due to the fractions
which contain the variations.
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5 Conclusion and outlook

The variational method which we presented worked well according to our expectations
for amplitude-modulated pulses.
The first nice aspect is that we have analytical results in chapter 2.1 for the Euler-Lagrange
equation with λ3 = 0 and without the auxiliary conditions. To include the auxiliary
conditions we had to adjust the result to one of these conditions numerically. The numerical
error could be made much smaller than in this work due to the fact that the numerical
calculation is just a simple interval method and thus the numerical error should not have
any effect on practical purposes.
Further the best analytical result, namely the first one in the tables 1 and 2, is according
to our aims better than CORPSE and SCORPSE which are presented in table 4. The
function XE3 for the new pulse has a value of 37.477696465 percent of the value for the
SCORPSE pulse and 3.900780802 percent of the value for the CORPSE pulse. Note that
this good result is reached without any minimization of the term X, we focused just on
the minimization of the energy E and we see that this was already enough to reach this
result.
The other analytical solutions have very high values of XE3. Already the second solution
in the tables 1 and 2 has a much higher value of XE3 than the CORPSE pulse and hence
the only interesting pulse according to our aims is the first one. The higher pulses are much
worse according to our aims and hence practically not interesting but they are interesting if
you want to have a general understanding of the solutions of the Euler-Lagrange equation.
In chapter 2.2 symmetrical solutions for eligible values of λ3 are presented. We searched
for a minimum of the function XE3 and we have found such a minimum in the point
λ3 = 10.25. The positive aspect is that the numerical method worked in principle as we
wanted it to work and that we indeed have found a minimum of XE3. The negative aspect
is the small improvement through. It has a value of 99.620506451 percent of the value for
the best solution from chapter 2.1. For any practical purposes we win very little but the
best pulse from chapter 2.2 is still preferable to the best pulse from chapter 2.1. Note that
this disadvantage is not a disadvantage concerning the variational method in general. This
disadvantage emerged just for our problem and this does not mean that it would occur for
a similar variational method with a slightly changed ansatz.
In order to present an overview of further solutions some asymmetrical numerical solutions
are presented in chapter 2.3. These solutions are worse than the numerical solutions. We
presented a low number of solutions where you can not see clear curves against λ3 such
as in chapter 2.2 due to the fact that we did not know beforehand for which values of
λ3 asymmetrical solutions occur and hence we worked with big steps. If you do such a
calculation in smaller steps it is expectable that you can make a plot such as figure 8 where
the curve for asymmetrical pulses runs above of the curve for symmetrical pulses. Then
it would be advantageous to use the solution of every point as the initial solution for the
next point just as in chapter 2.2. We used for every point the first solution from chapter
2.1 within this work. Further it is possible that there is not just one curve of asymmetrical
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pulses but rather a whole bunch of curves, maybe an infinite number, which we did not
find due to our program and the initial values of the parameters, but that is not clear.
But note that for any practical purposes the best symmetrical solution is preferable to the
asymmetrical solutions due to the quality and hence the asymmetrical solutions are just
presented for the completeness’ sake.
In chapter 3 a simulation of the best solution from chapter 2.1 is presented and compared
with CORPSE and SCORPSE. This simulation worked successful and led to the expected
result and thus it validated the result from chapter 2 that the new pulse has a smaller
function XE3 than SCORPSE and CORPSE while these two pulses have smaller functions
X and XA3.
Further we tried to make an variational ansatz for frequency-modulated pulses in chapter
4. As explained there the problem is principally similar to the problem for amplitude-
modulated pulses but due to the missing analytical solution of the equations (30), (31)
and (32) the problem is much harder to handle and our result was the Euler-Lagrange
equation (108) which we did not solve. We expect that an analytical solution is impossible
and that a numerical solution is difficult due to the remaining variations in this equation.
Hence the result of this part is that we can just show the principal ansatz but a solution
which could be relevant for practical purposes seems to be very difficult to get.
For succeeding research the most relevant part of this work are firstly the shown principles
especially concerning the variational ansatz to the problem and secondly for more practical
purposes the pulse in chapter 2.2 in the minimum of XE3.
The ansatz is interesting because we could show that it works well and changes of such
an ansatz for succeeding research are conceivable. For example the minimization of the
energy E is something which could be replaced by other minimized functions. The choice
of the function which you minimize is a question which has no definite answer because
it depends strongly on your aims and the physical situation that you want to address.
For example if you have a practical problem such as building a device which works with
information stored in quantum bits this question must propably answered with respect
to the limitations of the pulses due to the used devices. This is mainly a limitation of
the amplitude and a limitation of too fast changes in the pulse shape. This is the reason
for which preceding works such as [21] used the amplitude or the inverse pulse duration
as the parameter against which they plotted definitions of the pulse quality. If you have
more theoretical purposes completely different functions can be conceivable to minimize
depending on what you want to show.
The best pulse of this work is a result which could be important for practical purposes if
the experimental implementation is well enough possible. The problem could be that the
pulse shape changes continuously and it is unclear how well a device can create such a
continuous shape. Maybe a device has to divide the pulse into small constant steps such
as we did it for the numerical calculations but the steps in this work are probably too
small for a device to implement. Bigger steps would have an influence on the pulse quality
because all the function values which we calculated within this work would change. The
second important question is how important the minimization of the energy is for practical
purposes. The most important limitation is probably the limitation of the amplitude and
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thus the SCORPSE pulse which does this minimization as the best pulse would be the
first choice. Maybe a mix of different quality criteria can be interesting, too. Then the
pulse which minimizes the function XA3 could be an interesting candidate because you
can see in table 4 that it is worse than the SCORPSE pulse if you look at the function XA3

but it is much better than the SCORPSE pulse if you look at the function XE3. For the
pulse which minimizes XA3 the function XA3 has a value of 154.528091676 percent of the
value of the SCORPSE pulse but the function XE3 has a value of 0.46101729978 percent
of the value of the SCORPSE pulse. Hence in comparison with the SCORPSE pulse the
quantitative advantage in the value of XE3 is much bigger than the disadvantage in the
value of XA3. The remaining question is how much weight you put on these aspects for
practical purposes.
Of course we are not able to suppress decoherence completely and it is probable that
this will never be possible, but fortunately this is not necessary. In practice decoherence
suppression such as we investigated it within this work is usually used in combination with
error correction schemes. Decoherence suppression prohibits errors before they happen and
error correction schemes fix errors after they happened. Hence a complete suppression of
decoherence is not necessary due to the threshold theorem [7]. Decoherence suppression
which is better than a certain threshold is needed and then the correction schemes are able
to eliminate the remaining errors. Examples for error correction schemes can be seen in
[41, 42, 43, 44].
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Appendix

A Analytical solutions

The general solution (86) has a periodical shape independent of the chosed values for
the variables. An example is for the solution is shown in figure 22 where the aspect that
we want to point out is not the quantitative shape for specific variables but rather the
qualitative periodical shape that the solution have for any values. Now we want to show
graphically what we calculate in (88) in order to give a deeper understanding of the last
step in (88) where the values of m1 and m2 are calculated. To adjust the solution to the
boundary condition we see quite easily in figure 22 what we have to do. We can stretch
and clinch the solution along the t-axis by varying the parameter m and thus we just have
to chose those parameters of m for which the solution ends at the points t = 0 and t = τp

with a distance of π. Due to the symmetry of the solutions it is enough to move the
intercection points with the line at π in figure 22 into the boundary point at t = τp. The
values of m which you get by doing this are the solutions which we calculate in (86). If
a point where the graph has a negative derivation in figure 22 is at the boundary point,
the solution corresponds to m1, and if a point where the graph has a positive derivation
in figure 22 is at the boundary point, the solution corresponds to m2.
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t[τ

p
]

0
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Figure 22: Frobenius norm of the XE3 minimizing pulse in comparison with the Frobenius
norm of the pulses SCORPSE and CORPSE in dependence of the pulse duration τp
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B Pseudocode

for (int i=0;i<=Lambda3steps;i++) {

lambda3=0.1*(double)i;

while (!Convergence)(This Loop iterates the Euler-Lagrange equation){

broydn(This function searches for the the parameter-values which fulfill the auxiliary con-
ditions);

}

}

C Simulation Fits

We fit the three functions in the figures 18, 19 and 20 at the right side of the kink.
Further we fit the same plot for the pulse minimizing XA3, which is not included in the
three figures because the figures would become not clear. The fits are done with the
function f(x) = axb where we expect b = 3

2 . Note that the fit-values should not be
taken too seriously because they vary strongly depending on the number of points which
we include into the fit. Table 5 shows the fit-values for the figure 18, table 6 shows the
fit-values for figure 19 and table 7 shows the fit-values for figure 20.

Pulse a b

XEEE 4.03505 ± 0.01612 1.47941 ± 0.001406
XAAA 4.68691 ± 0.00951 1.49088 ± 0.000604
SCORPSE 7.17434 ± 0.00545 1.49948 ± 0.0002105
CORPSE 20.5495 ± 0.04318 1.48623 ± 0.0005264

Table 6: Fits of the Frobenius norm against τp

Pulse a b

XEEE 4.97087 ± 0.01043 1.48738 ± 0.0006248
XAAA 3.46506 ± 0.006611 1.49088 ± 0.0006038
SCORPSE 2.89281 ± 0.001832 1.49948 ± 0.0002103
CORPSE 3.33553 ± 0.003864 1.48701 ± 0.0004105

Table 7: Fits of the Frobenius norm against 1/A
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Pulse a b

XEEE 0.429972 ± 0.0004675 1.48738 ± 0.0006233
XAAA 0.419268 ± 0.0004474 1.49088 ± 0.0006026
SCORPSE 0.412543 ± 0.0001506 1.49948 ± 0.0002099
CORPSE 0.192561 ± 0.00007395 1.48701 ± 0.0004094

Table 8: Fits of the Frobenius norm against 1/E
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