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Abstract

In this thesis a method for deriving e�ective one-dimensional models based on the matrix
product state formalism is introduced. It exploits tranlational invariance to to work di-
rectly in the thermodynamic limit. The method is tested on the analytically solvable Ising
model in a transverse magnetic �eld. Results for ground state energy and dispersion are
given as well as a way to �nd a real space representation for the local creation operator.
From this, the one particle contribution to the spectral weight is calculated.

Kurzfassung

In dieser Arbeit wird eine variationelle Methode zur Ableitung e�ektiver eindimensionaler
Modelle vorgestellt, die auf dem Formalismus der Matrixproduktzustände basiert. Durch
Ausnutzung von Translationsinvaranz kann direkt im thermodynamische Limes gearbeitet
werden. Die Methode wird anhand des Ising Modells in einem transversalen Magnetfeld
getestet, das exakt lösbar ist. Es werden Ergebnisse für die Grundzustandsenergie und
die Einteilchen-Dispersion angegeben, sowie ein Weg den lokalen Erzeuger im Ortsraum
zu konstruieren. Damit wird der Einteilchen-Beitrag zum spektralen Gewicht berechnet.
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Chapter 1

Introduction

1.1 Motivation

One of the main �elds of research in quantum many body physics are systems of strongly
correlated electrons. Sometimes, mostly for one-dimensional models, special properties of
a given model allow for an analytical solution. However, the number of such models is
small and in general one will have to resort to numerical calculations. The exponential
growth of the Hilbert space dimension with the number of particles strongly limits the size
of a system that can be analyzed by exact diagonalization.

There are various approaches to work around these limitations. Renormalization group
methods try to concentrate the computational power of a classical computer on a fraction
of the Hilbert space in which the physics takes place that one is interested in. Di�erent
methods mainly di�er in the criterion that is used to decide what information to keep and
what to discard. A very prominent example is the density matrix renormalization group
method (DMRG) [1].
These methods usually directly produce the results of simulated quantum measurements.
A di�erent approach is to map a given Hamiltonian onto an e�ective Hamiltonian that is
diagonal in the subspace of interest and can be used to derive futher physical properties of
the system. A group of such methods are e.g. continuous unitary transformations (CUT),
which come in di�erent variants depending on the model and the speci�c goal. Examples
are perturbative CUT (pCUT) [2, 3] and graph based CUT (gCUT) [4]. A problem of
these methods is however, that the interaction range accessable is strongly limited by the
computational ressources of today's classical computers.

In this thesis a method will be presentend, that combines ideas from both approaches: A
variational ansatz is used to obtain not only the ground state energy, but also the dispersion
relation and a real space representation of the local creation and annihilation operators.
This provides an e�ective model for the one particle space that can be used in further
studies.

1.2 Existing methods

Although the main goal of the method is the derivation of an e�ective model in the spirit
of CUTs, its algorithms are that of a renormalization method and it has to be seen in the
context of DMRG and matrix product state related methods.
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The �rst breakthrough of renormalization group methods was Wilsons solution of the
Kondo problem in a single impurity Anderson model [5] in 1975. His Numerical Renormal-
ization Group (NRG) very successfully used the energy as a criterion to select the correct
part of the Hilbert space. Later it became evident, that energy alone is not always the
relevant criterion. This led to S.R. White's DMRG method [1]. He could show that using
the eigenvalues of a density matrix is in a certain sense optimal (cf. Sect. 2.2.5). The
DMRG is still one of the most powerful methods to obtain the properties of ground states
and low lying excited states of one-dimensional systems
Today, there are a multitude of extensions to DMRG, some of which are closely related to
the method presented here. Extensions to standard DMRG cover the calculation of dy-
namical properties in both frequency space (DDMRG) [6] and real-time (tDMRG) [7, 8].
High precision DMRG results for ground state energies and excitation gaps are often used
as benchmark today. However, calculating an energy dispersion is rather extensive [8, 9].

Since the original formulation of DMRG in inherently one-dimensional, the poor perfor-
mance in two or more spatial dimensions has always been a drawback. This is due to the
interactions becoming longranged when mapping a two dimensional system onto a one-
dimensional chain. E�orts in overcoming this resulted in a momentum space formulation
of DMRG [10, 9] that also provied a method of calculating dispersions. The 2D perfor-
mance however was still moderate.

The concept of matrix product states (MPS) is also a very powerful tool that predates
DMRG and has been introduced under di�erent circumstances by di�erent people, e.g. in
Refs. [11, 12, 13]. Östlund and Rommer discovered in 1995 [14], that in a translationally
invariant system the DMRG automatically leads to a MPS form in the thermodynamic
limit. The MPS can be rederived purely variationally, without any reference to DMRG.
Although they did not take the thermodynamic limit in their calculations [14, 15], their
work is the basis for in�nite systems DMRG (iDMRG) [16, 17] and related methods.

The reformulation of the successful DMRG method in terms of MPS or, more general,
tensor networks created much interest and resulted in serveral related methods based on
tensor networks. G. Vidal's in�nite time-evolving block decimation (iTEBD) algorithm [18]
exploits translational invariance to very e�ciently simulate the time evolution of in�nite
one-dimensional systems using the Suzuki-Trotter decomposition of the time evolution
operator. Evolution in imaginary time e�ectively cools down the system and provides a
good ground state approximation.
Other MPS based approaches for in�nite chain systems that use transfer matrices were
developed by Bañuls et al. [19] and Ueda et al. [20]

The MPS formulation also paved the way for successful extension to higher spatial di-
mensions of the DMRG. Projected entangled pair states (PEPS) [21, 22] replace every
physical lattice site with a number of virtual spin-1/2 systems, corresponding to the num-
ber of nearest neighbours a site has. These auxillary spins form maximally entangled states
across every bond. The physical state in form of an MPS is the obtained by projecting the
auxillary systems onto the Hilbert space of the physical sites.
Combining conscepts of PEPS and iTEBD allows the simulation of in�nite two-dimensional
systems using iPEPS [23].

Another approach that is closely related to the method presented here was recently pro-
posed by Pirvu et al. [24]. It uses a momentum eigenstate ansatz for a MPS and is well
suited to obtain accurate dispersion relations.
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1.3 The approach

In this thesis a variational method to derive e�ective models is introduced. To our knowl-
edge, this has not been done before. The method uses the matrix product formalism, which
can also be used to describe a variety of other variational methods e.g. Wilson's NRG [25].
If translational invariance is assumed, matrix porduct states present a very e�cient way
to work in the thermodynamic limit, thus ridding the results of �nite size errors.
The ground state search algorithm is closely related to the above mentioned DMRGmethod
[26]. Unlike DMRG however, the method can use intermediate results from this ground
state search to obtain the energy dispersion of the elementary excitations with about the
same precision as the ground state energy itself. Moreover, as a byproduct of the dispersion
relation, a real space representation of the local second quantization creation operator is
found.
One of the key elements of the new method is that often high-dimensional minimization
can be replaced by more robust iterated diagonalization. At the moment, it allows to
compute static and momentum dependent properties at zero temperature.

The results are to be considered as proof of concept only. The current implementation is
in GNU octave script, which presents a severe limitation of e�ciency. Due to a lack of
time, some parts of the algoritm are rather crude. A lot of optimizations are to be made
in the future in order to understand if the remaining problems arise from the method itself
or from the model that is investigated.
An implementation in C++ and the use of more e�ecient algorithms such as the Lanczos
algorithm for diagonalization should considerably boos the accuracy of the results.
The calculations were done with double precision, most of them on workstation computers.

1.4 Structure of the thesis

The thesis is structured as follows: In Chap. 2 the model that is used to test the new
method is introduced and a general overview of the idea of matrix product states (MPS)
is given.
In Chap. 3 to 5, the method is developed and the results are presented and compared
to the exact solution and to some results obtained from other methods. Chapter 3 shows
how the ground state energy per lattice site for in�nite systems can be calculated with an
MPS representation of the ground state. In Chap. 4 a way to describe local excitations is
intoduced and results for the one-particle dispersion are given. In Chap. 5 a method to
derive a real space representations of the local creation operator is described, that allows
for the computation of the one-particle spectral weight and further studies of one particle
properties.
Finally, in Chap. 6 the method and the results are summed up and an outlook on future
investigations is given.





Chapter 2

Model and general approach

2.1 The transverse �eld Ising model

2.1.1 Exact solution

In this thesis, the presented method is tested on the one-dimensional quantum Ising model
in a transverse magnetic �eld (ITF) as used, e.g., by P. G. De Gennes to describe tunneling
in ferroelectric crystals [27]. In this section a quick reminder of the analytic solution and
the closed expressions for ground state energy, dispersion relation, and the one-particle
spectral weight are given.

The model is de�ned by the Hamiltonian

H = −Γ
∑
j

S z
j − J

∑
j

S x
jS

x
j+1, Γ, J > 0 (2.1)

where S z and S x are the common spin-1
2 operators. The model describes a spin chain

with nearest neighbour interaction along the x-axis in a perpendicular external �eld. It is
analytically solvable and well understood. The ratio of the coupling constants

λ :=
J

2Γ
, λ ∈ [0,∞) (2.2)

serves as control parameter that de�nes the system behaviour. In the strong �eld (or free
spin) limit (J = 0), the ground state aligns all spins along the external �eld and elemen-
tary excitations are spin �ips. In the weak �eld (or Ising) limit (Γ = 0), the ground state
is ferromagnetic and twofold degenerate. Then, elementary excitations are domain walls,
separating sections with di�erent ground state realizations. As λ approaches 1, the corre-
lation length diverges and a quantum phase transition occours at λ = 1.
In the Ising regime, the ground state has an intrinsic long range order, wherefore this
regime is also called the ordered phase. This order disappears for λ < 1, so that the strong
�eld regime is also referred to as disordered phase.

As Pfeuty has shown in Ref. [28], the model can be solved analytically by mapping the
spins to spinless fermions.
By introducing the spin ladder operators

S±j := S x
j ± iS

y
j , (2.3)

in terms of which the spin operators read

S x
j =

1
2

(S+
j + S−j ), S y

j =
1
2i

(S+
j − S

−
j ), S z

j = S+
j S
−
j −

1
2
, (2.4)
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the Hamiltonian becomes

H =
∑
j

Γ
2
− Γ

∑
j

S+
j S
−
j −

J

4

∑
j

(
S+
j + S−j

)(
S+
j+1 + S−j+1

)
. (2.5)

In the strong �eld limit, this can be interpreted as a quasiparticle model. Since a spin can
only be �ipped once, only one excitation can exist on a site, which is a fermionic property.
On the other hand, all spin operators on di�erent sites commute. This results in mixed
commutation and anticommutation relations

{S+
i , S

−
i } = 1, [S+

i , S
−
j ] = 0 j 6= i . (2.6)

Excitations with these properties are commonly called hardcore bosons. Note, however
that in the strong �eld limit, the ground state aligns all spins �upwards�. Hence S+ does
not create an excitation but annihilates one. Therefore, another set of operators is de�ned
by

αj := S+
j , α†j := S−j , (2.7)

so that α†j creates and αj annihilates a quasiparticle. This transformation preserves the
hardcore properties. In normal order H now reads

H = −
∑
j

Γ
2

+ Γ
∑
j

α†jαj −
J

4

∑
j

(
α†j + αj

)(
α†j+1 + αj+1

)
. (2.8)

In one dimension a Jordan-Wigner transformation [29, 30]

cj = exp

iπ∑
i<j

α†iαi

αj c†j = α†j exp

−iπ∑
i<j

α†iαi


αj = exp

−iπ∑
i<j

c†ici

 cj α†j = c†j exp

iπ∑
i<j

c†ici


can be used to map the hardcore bosons to spinless fermions. The cj satisfy the canonical
anticommutation relations [30]

{c†i , cj} = δij , {c†i , c
†
j} = {ci, cj} = 0 . (2.9)

In the case of open boundary conditions this results in

H = −LΓ
2

+ Γ
L∑
j

c†jcj −
J

4

L−1∑
j

(c†j − cj)(c
†
j+1 + cj+1) , (2.10)

where L is the number of lattice sites in the chain. For periodic boundary conditions, the
second sum runs from 1 to L with L + 1 := 1, giving rise to an additional subextensive
term, coupling the last and the �rst site of the chain. For both open and periodic boundary
conditions, the error in letting both sums run to L and neglecting the corrections becomes
small if L is large. Thus in the thermodynamic limit H reads

H = −LΓ
2

+ Γ
L∑
j

c†jcj −
J

4

L∑
j

(c†j − cj)(c
†
j+1 + cj+1) . (2.11)
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By a Fourier transform

φq =
1√
L

∑
j

exp(iqrj)cj φ†q = c†j
1√
L

∑
j

exp(−iqrj)

cj =
1√
L

∑
q

exp(−iqrj)φq c†j =
1√
L

∑
q

φ†q exp(iqrj)

one arrives at

H =
∑
q

(
−Γ

2
+
J

4
eiqa
)

+
∑
q

(
Γ− J

4
cos(qa)

)
φ†qφq −

J

4

∑
q

(φ−qφqeiqa − φ†qφ
†
−qe
−iqa)

(2.12)

= −Γ
∑
q>0

(
φ†q φ−q

)( Aq iBq
−iBq −Aq

)(
φq
φ†−q

)
(2.13)

Note that the constant terms in the �rst line are cancelled out by the anti-commutator
required to obtain the matrix form in the second line. In this, a is the lattice constant so
that rj = aj and

Aq := 1− λ cos(qa), Bq := λ sin(qa) . (2.14)

For simplicity a will be normalized to 1. Finally a Bogolyubov transform [31](
φq
φ†−q

)
=
(
i cos Θq − sin Θq

sin Θq −i cos Θq

)(
ηq
η†−q

)
(2.15)

leads to the diagonal form

H = Γ
∑
q>0

(
η†q η−q

)(Λq 0
0 −Λq

)(
ηq
η†−q

)
(2.16a)

= Γ
∑
q

Λqη†qηq −
Γ
2

∑
q

Λq . (2.16b)

From the requirement that the o�-diagonal elements vanish, the conditions

tan(2Θq) =
Bq
Aq

(2.17a)

Λq =
√

1 + λ2 − 2λ cos q (2.17b)

follow. This yields the one-particle energy dispersion and the ground state energy per
lattice site in the thermodynamic limit, cf. Ref. [28]:

ωq = ΓΛq = Γ
√

1 + λ2 − 2λ cos q (2.18a)

E0

L
= − Γ

2L

∑
q

Λq = −Γ(1 + λ)
π

∫ π
2

0

√
1− 4λ

(1 + λ)2
sin2(q) dq . (2.18b)

It is easy to see that the excitation energy gap ∆ follows as

∆ = min
q
ωq = Γ|1− λ| (2.19)

and vanishes at the quantum critical point λ = 1.
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The excitations created by η†q are nonlocal quasiparticles called magnons since they are
disturbances in the magnetic con�guration of the ground state. For convenience these
magnons will simply be referred to as particles.

The lower boundary of the two-particle energy continuum is given by

Ωq := min
q1

(ωq1 + ωq2)
∣∣∣∣
q1+q2=q

(2.20)

which is strictly greater than ωq except at criticality where Ωq = ωq.

2.1.2 Spectral weight

An important quantity in comparing theoretical models to experiments is the so called
dynamical structure factor (DSF) [32]

Sαβ(ω,q) :=
1

2πL

∑
ij

∫ ∞
−∞

dt ei[ωt+q(ri−rj)]
〈
Sαj (t)Sβi (0)

〉
(2.21)

with α, β ∈ {x, y, z, + , −}. The DSF describes the intensity distribution in inelastic
neutron scattering. Angular brackets denote the ground state expectation value in the
zero temperature case.
At the moment, the presented method does not provide frequency or time dependent
quantities. However, since the energy spectrum is discrete (except for λ = 1) the one-
particle DSF can be obtained from the �spectral form� of the DSF in Ref. [33] as

Sαβ1p (ω,q) = δ(ω − ωq)Sαβ1p (q) . (2.22)

This is expected to describe the low energy physics adequately. The one-partice spectral
weights Sαβ1p (q) are given by

Sαβ1p (q) := Ωα∗(q) Ωβ(q) (2.23a)

with Ωα(q) =
1√
L

∑
j

〈ψq|Sαj |ψ0〉 eiqrj . (2.23b)

These depend only on the wave vector q and can be calculated as shown in Sect. 5.2. In
Eq. (2.23) |ψ0〉 denotes the ground state and |ψq〉 := a†q |0〉 a state with one particle of
momentum q created by a yet to be de�ned creation operator a†q. From the exact solution
above for the ITF follows a†q = η†q. As an example the spectral weight Sxx1p(q) will be
calculated. From Eq. (2.23) it follows as

Sxx1p(q) =
1
L

∑
ij

〈ψ0|Sx†i |ψ1〉〈ψ1|S x
j |ψ0〉 eiq(rj−ri) . (2.24)

In Ref. [33], Hamer et al. conjecture an exact result for the ITF, extrapolated from high
order series expansions

Sxx1p(q) =
(1− λ2)1/4

4ω(q,λ)
. (2.25)

Though not rigorously proven, it is in very good agreement with our results and is therefore
used as a reference.

As will be shown later, the present method is not yet able to correctly handle ground state
degeneracy. Therefore, studies are concentrated on the disordered regime, i.e. λ ∈ [0,1].
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2.2 Introduction to matrix product states

In this section a short introduction to the idea of matrix product states (MPS) is given.
General properties are shown and the notation used in this thesis is presented. As the name
suggests, MPS are a matrix based formulation of Schrödinger picture quantum mechanics.
The concept as such was introduced in di�erent contexts. Baxter used it 1968 to calculate
dimerisation of spins on a plain [11]. In the context of quantum spin chains it recieved a lot
of attention through the work of Fannes et al. [12, 13]. And much research has been done
in this �eld since Östlund and Rommer found that MPS provide a powerful mathematical
framework for renormalization methods.
The approach to the topic is based on a review by Schollwöeck, Ref. [26].

2.2.1 De�nition and construction

The key to the concept of MPS is the singular value decomposition (SVD) of a matrix.

Theorem 2.1 (Singular value decomposition) For every m× n complex (or real)
matrix Ψ there is a unique decomposition

Ψ = USV † , (2.26)

such that U is a m×min(m,n) column-orthogonal matrix, V is a n×min(m,n) column-
orthogonal matrix and S is a min(m,n) ×min(m,n) real diagonal matrix with Sii ≥ 0,
Si ≥ Sj for i > j, holding the so called singular values of Ψ.

Note that U †U = 1 and V †V = 1. Either U or V is a square matrix and therefore unitary.
If Ψ is square, then both U and V are unitary and U †U = UU † = V †V = V V † = 1.

Now consider an arbitrary state |ψ〉 of a quantum system:

|ψ〉 =
∑

σ1,σ2,...,σL

cσ1,σ2,...,σL |σ1,σ2, . . . ,σL〉 . (2.27)

The σi can be any quantum numbers characterizing a state of the system. Because the
ITF described above is a linear chain model of spatially �xed spins, the σi will from here
on just be the z-component of spin i. Therefore, all σi take d possible values where d is
the dimension of the local Hilbert space of a single spin1.
Thus, there are dL coe�cients cσ1,σ2,...,σL , L being the number of spins in the chain. As
these coe�cients are (possibly time-dependent) C-numbers, they can be understood as the
components of a dL-dimensional vector or as the elements of a d× dL−1 matrix Ψ

cσ1,σ2,...,σL = Ψ(σ1),(σ2,...,σL) . (2.28)

Now the SVD is applied to this Ψ yielding

cσ1,σ2,...,σL = Ψ[1]
(σ1),(σ2,...,σL) =

(
U [1]S[1]V [1]†

)
(σ1),(σ2,...,σL)

=
d∑

α1=1

U [1]
σ1,α1

S[1]
α1,α1

V
[1]†
α1,(σ2,...,σL) . (2.29)

1In case of the ITF there are d = 2 possible states. However, the MPS formalism and also the method
developed in this thesis can be applied to other models wherefore they are introduced more generally.
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Theorem 2.1 states that U [1] and S[1] are of dimension d × d and V [1]† is of dimension
d× dL−1.
U [1] has d rows addressed by the index σ1, each row corresponding to a physical state of
lattice site (quantum number) 1. The index σ1 is therefore called the physical index. U [1]

can also be interpreted as a set of d matrices of dimension 1× d, cf. Fig. 2.2

U [1] =


U

[1]
1,1 . . . U

[1]
1,d

...
...

U
[1]
d,1 . . . U

[1]
d,d)

 →


(U [1]

1,1, . . . ,U
[1]
1,d)

...

(U [1]
d,1, . . . ,U

[1]
d,d)

 =:


Aσ1=1

...
Aσ1=d

 . (2.30)

Next, the product S[1]V [1]† is de�ned as a new d2 × dL−2 dimensional matrix Ψ[2](
S[1]V [1]†

)
α1,(σ2,...,σL)

:= Ψ[2]
(α1,σ2),(σ3,...,σL) (2.31)

that can again be decomposed by SVD. The index in square brackets marks both the step
in the decomposition process and the lattice site that the leftover U [i] is associated with.
Carried out over all σi this results in

cσ1,σ2,...,σL = Ψ[1]
(σ1),(σ2,...,σL) =

[
U [1]S[1]V [1]†

]
(σ1),(σ2,...,σL)

(2.32a)

=
d∑

α1=1

U [1]
σ1,α1

S[1]
α1,α1

V
[1]†
α1,(σ2,...,σL) (2.32b)

=:
∑
α1

Aσ1
1,α1

Ψ[2]
(α1,σ2),(σ3,...,σL) (2.32c)

=
∑
α1

∑
α2

Aσ1
1,α1

U
[2]
(α1,σ2),α2

S[2]
α2,α2

V
[2]†
α2,(σ3,...,σL) (2.32d)

=:
∑
α1,α2

Aσ1
1,α1

Aσ2
α1,α2

Ψ[3]
(α2,σ3),(σ4,...,σL) = · · · (2.32e)

=
∑

α1,α2,...,αL−1

Aσ1
1,α1

Aσ2
α1,α2

· · ·Aσ`α`−1,α`
· · ·AσL−1

αL−2,αL−1A
σL
σL−1,1

(2.32f)

Figure 2.1 shows how the big �blob� cσ1,σ2,...,σL is decomposed into sets of local matrices
Aσi that are associated with one lattice site each.

Figure 2.1: Left to right decomposition of the coe�cient vector cσ1,σ2,...,σL into
local sets of matrices Aσi . The colors indicate which matrices in
Eq. (2.32) are associated with which lattice site.

The set of equalities (2.32) shows that every coe�cient cσ1,σ2,...,σL for a given physical
con�guration {σ1,σ2, . . . ,σL} of the system can be obtained by choosing the right matrix
Aσi for every site and carrying out the matrix product. This leads to the
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De�nition: Matrix product state (MPS): Each state |ψ〉 of a quantum mechani-
cal system can be written as

|ψ〉 =
∑

σ1,σ2,...,σL

Aσ1 ·Aσ2 · · ·AσL |σ1,σ2, . . . ,σL〉 (2.33)

where Aσi is a set of local matrices with one element for each possible state of the
quantum number σi.

Note that no explicit knowledge about the basis |σ1,σ2, . . . ,σL〉 is required other than ex-
istence and ortho normality (which will be assumed as given).

By construction the dimension of the matrices Aσi is di−1×di, i.e. the maximum dimension
in at i = L

2 , growing exponentially with L. In some cases the Schmidt rank ri (number of
non-zero singular values of Ψ[i]) can be smaller than the full dimension of S[i], which leads
to somewhat smaller matrix sizes.

The true potential of the MPS formalism is however, that by choosing a �xed maximum
matrix size of D, the number of parameters for a variational description can be reduced
from O(dL) to O(LdD2). This happens in a systematic fashion, because all the sites in
the bulk of the chain are in�uenced by this truncation in the same way.

An intuitive way of truncating the matrix size is to keep only the D largest singular values
Si in each step. This is also optimal in a certain sense as will be shown in Sect. 2.2.5.
Obviously, the approximation is the better, the faster the decrease in the Si is. This
approach is however inherently asymmetric as apparent from the construction method
shown above. The truncation on bond (`)− (`+ 1) in�uences the sites to the right but not
those to the left whose matrices have already been truncated.

2.2.2 Tensor network notation

As the formulation of the required matrix products in terms of sums over multiple indices,
e.g. Eq. in (2.32), is rather cumbersome, a graphical, more intuitive representation is
introduced.
The tensor network notation describes n-dimensional tensors as objects (e.g. circles,
squares) with n �legs� sticking out, one for each free index.
An element of a local matrix Aσ`α`−1,α`

is addressed by three indices σ`, α`−1 and α`. This
can also be understood as a tensor of rank 3, giving rise to the pictogram for local matrices
Aσ` in Fig. 2.3.
In a tensor network solid lines connecting two objects represent indices that are contracted,
i.e. summed over.

The example in Tab. 2.1 shows the computation of the trace Tr(AB) of a matrix product
in tensor network notation where A and B are matrices of suiteable dimensions. The result
is an object with zero free indices, i.e. a scalar.

In this notation, the expansion coe�ent in Eq. (2.33) looks like

cσ1,σ2,...,σL = . (2.34)
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Figure 2.2: Graphical representation of re-casting the left SVD factor U [`] into
a set of d local matrices Aσ` .

Figure 2.3: Tensor network representation of local matrices Aσ` at the edges
and in the bulk of the chain. The matrcies at the edges are simply
vectors and therefore have only one matrix index α1 and αL−1

respectively. Complex conjugates that arise in the description of
bra-vectors are depicted with a downward pointing physical index.

Table 2.1: Examples on tensor network notation

A, B 2 indices each

(AB)ij =
∑
k

AikBkj 2 indices

Tr(AB) =
∑
j

(AB)jj 0 indices

2.2.3 General properties

The form of the MPS constructed in (2.32) is called �left-canonical�, as it is constructed
from left to right. By construction this form is also left-normalized, i.e. at each site i the
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matrices Aσi satisfy
d∑

σi=1

Aσi†Aσi = U [i]†U [i] = 1 ∀ i , (2.35)

but in general ∑
σi

AσiAσi† = UU † 6= 1 . (2.36)

Equation (2.35) implies that
〈ψ|ψ〉 = 1 . (2.37)

While the left-canonical construction is intuitive, it is by no means the only possibility.
One can as well start the decomposition from right to left and in this case interpret the
V [i]† as a set of d local matrices Bσi

cσ1,...,σL = Ψ[L]
(σ1,...,σL−1),(σL) (2.38a)

=
∑
αL−1

U
[L]
(σ1,...,σL−1),αL

S[L]
αL−1,αL−1

V [L]†
αL−1,σL

(2.38b)

=
∑
αL−1

Ψ[L−1]
(σ1,...,σL−2),(σL−1,αL−1)B

σL
αL−1,1

= · · · (2.38c)

=
∑

α1,...,αL

Bσ1
1,α1

Bσ2
α1,α2

· · ·BσL−1
αL−1,αLB

σL
αL,1

(2.38d)

= . (2.38e)

The representation obtained this way is then right-normalized:

d∑
σi=1

BσiBσi† = V [i]†V [i] = 1 ∀ i . (2.39)

A third possibility is the mixed-canonical representation, where the decomposition is car-
ried out form both the left and the right side. In this case, there is a leftover matrix
S[`] containing the singular values on the bond between the left-canonical and the right-
canonical parts.

cσ1,σ2,...,σL = . (2.40)

To see how Eq. (2.35) and (2.39) imply normalization of the state consider the norm 〈ψ|ψ〉

〈ψ|ψ〉 = (2.41a)

=
∑

σ1,σ2,...,σL

c∗σ1,σ2,...,σL
cσ1,σ2,...,σL = cσ1,σ2,...,σLc

∗
σ1,σ2,...,σL

(2.41b)

=
∑

σ1,σ2,...,σL

(AσL† · · ·Aσ1†)(Aσ1 · · ·AσL) (2.41c)

=
∑
σL

AσL† · · ·

(∑
σ1

Aσ1†Aσ1

)
︸ ︷︷ ︸

1

· · ·AσL = 1 (2.41d)
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and for right-canonical MPS analogously. For mixed-canonical MPS the norm is

〈ψ|ψ〉 = Tr

[ ∑
σ1,σ2,...,σL

BσL† · · ·Bσ`+1S[`]†Aσ`† · · ·Aσ1†Aσ1 · · ·Aσ`S[`]B`+1 · · ·BσL

]
(2.42a)

= (2.42b)

= Tr(S[`]†S[`]) . (2.42c)

From here on the local matrices will be labelled Mσi if the left- or right-canonical proper-
ties are not used explicitly.

This shows, that the matrix product representation is not at all unique. And there are still
many more gauge degrees of freedom which change the representation but not the state
|ψ〉. On each bond an invertible matrix X [i] can be introduced and the transformation

Mσi → MσiX [i], Mσi+1 → (X [i])−1Mσi+1 (2.43)

leaves the MPS invariant. Fixing all X [i] and the boundary conditions makes the state
unique.

So far, only a chain with open boundary conditions (OBC) has been discussed. In this
case, the matrices at the edges of the chain were simply vectors, thus making the complete
product a scalar value cσ1,σ2,...,σL . Since the matrices at each site i carry information about
the interaction with all sites to the left (or to the right), in a chain with periodic boundary
conditions (PBC) all matrices must have dimensions greater than 1. For translationally
invariant systems all matrices are of the same size. This will make the product itself a
matrix instead of a scalar. The solution to obtain a scalar again is rather intuitive, looking
at the tensor network

→ . (2.44)

The example on tensor networks in Tab. 2.1 shows that the long line coupling the end of
the chain to its �rst site corresponds to the trace operation. Thus for PBC, the coe�cients
are

cσ1,σ2,...,σL =
∑

σ1,σ2,...,σL

Tr(Mσ1 · · ·MσL) . (2.45)

This form also holds for OBC, since the trace of a scalar is still the same scalar.

Thus for OBC the coe�cients are automatically scalars and PBC can be expressed by
a trace operation which can be seen from the tensor network. There are however, other
possible boundary conditions e.g. antiperiodic, �xed or linear combinations of any of these.
Particularly for variational algorithms it is desireable to have the same �xed matrix size
D on each lattice site independently of the boundary conditions. This leads to a more
general ansatz.
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De�nition: General ansatz for variational MPS: Each physical state |ψ〉 of a one-

dimensional system can be approximated variationally by

|ψvar〉 =
D∑

α,β=1

∑
σ1,σ2,...,σL

aTαM
σ1 ·Mσ2 · · ·MσLbβ |σ1,σ2, . . . ,σL〉 (2.46)

where theMσi are D×D matrices and the aα and bβ are D-dimensional column vectors.

The choice of the vectors aα and bβ , which may depend on each other, provides the neces-
sary degrees of freedom to implement various boundary conditions. For instance, the trace
operation for PBC follows from a choice of, e.g., aα = eα and bβ = δαβeβ where the ei are
Cartesian unit vectors. A concrete method to derive the aα and bβ for particular boundary
conditions will not be elaborated at this point, because it is not required for the presented
method.

As an example let us consider the overlap 〈φ|ψ〉 of two di�erent states of the system, where
the state |ψ〉 is described by local matrices Mσi and |φ〉 is described by M̃σi . Then

〈φ|ψ〉 =
∑

σ1,σ2,...,σL

cφ∗σ1,σ2,...,σL
cψσ1,σ2,...,σL

(2.47a)

=
∑

σ1,σ2,...,σL

Tr(M̃σ1∗ · · · M̃σL∗) Tr(Mσ1 · · ·MσL) , (2.47b)

which is true for both OBC and PBC. In this form, there are dL products of 2L matrices
each, so that the overall computational e�ort is O(LdL) which is exponentially expensive.
However, most of the operations are unnecessary, because only two matrices change in each
product. Therefore, a better way is to evaluate the expression as

〈φ|ψ〉 = (2.48a)

=
∑

σ1,σ2,...,σL

Tr(M̃σ1∗ · · · M̃σL∗) Tr(Mσ1 · · ·MσL) (2.48b)

=
∑

σ1,σ2,...,σL

Tr
[
(M̃σ1∗ · · · M̃σL∗)⊗ (Mσ1 · · ·MσL)

]
(2.48c)

= Tr

[(∑
σ1

M̃σ1∗ ⊗Mσ1∗

)
· · ·

(∑
σL

M̃σL ⊗MσL

)]
, (2.48d)

where ⊗ denotes the tensor product.
In this way, there is one product of L matrices of dimension D2 ×D2, which results in a
total computational e�ort of O(dLD6) and the actual growth is only linear in the system
size.
While the form in Eq. (2.48d) follows naturally from Tr(A)Tr(B) = Tr(A⊗B), this shows
that the tensor product is the correct form of product to use when contractig over physical
indices.

2.2.4 Matrix product operators (MPO)

Now that the matrix product form for quantum states has been de�ned, a compatible
de�nition for operators is needed. States are de�ned by their expansion coe�cients

cσ1,σ2,...,σL = 〈σ1,σ2, . . . ,σL|ψ〉 = Mσ1 · · ·MσL , (2.49)
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where the Mσi are tensors of order 3. Correspondingly, operators are de�ned by their
matrix elements which for a product of local operators are given by

〈σ1, . . . ,σL|Ô |σ′1, . . . ,σ′L〉 = W σ1σ′1 · · ·W σLσ
′
L , (2.50)

and are products of order 4 tensors W σiσ
′
i . Thus if Ô is a product of local operators, its

MPO form is

Ô =
∑

σ1,...,σL,σ
′
1,...,σ

′
L

W σ1σ′1 · · · W σLσ
′
L |σ1, . . . ,σL〉〈σ′1, . . . ,σ′L| (2.51)

and as a tensor network

Ô
∧= . (2.52)

The tensor network representation also shows how to apply a MPO to a MPS.

Figure 2.4: Application of a matrix product operator to a matrix product state

As shown in Fig. 2.4, the network is contracted over the physical indices σ′i, where the
product form to be used is the direct matrix product

|φ〉 = Ô |ψ〉 =
∑

σ1,σ2,...,σL

∑
σ′1

W σ1σ′1 ⊗Mσ′1

 · · ·
∑

σ′L

W σLσ
′
L ⊗Mσ′L

 |σ1,σ2, . . . ,σL〉

=
∑

σ1,σ2,...,σL

Nσ1 · · ·NσL |σ1,σ2, . . . ,σL〉 , (2.53)

in analogy to the overlap in Eq. (2.48). This means that the dimension of the local ma-
trices Nσi describing the new state |φ〉 are of dimension D ·DW ×D ·DW , where DW is
the dimension of the operator matrices W σiσ

′
i . This multiplication of matrix dimensions is

denoted by the thicker lines in the diagram.

At this point one usually has to solve two issues: First, how to explicitly construct the
matrices W σiσ

′
i and sencond, how to reduce the matrix dimension of Nσi to D×D. There

are systemic ways to do this. The construction and use of general MPOs is known as MPO
formalism and the latter as MPS compression. Both are discussed in Ref. [26].
However, this general case is not really applicable for our method, as it deals with in�nte
systems. Also, as will be shown in detail in Chap. 3, it is not necessary.
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As a simple example, take the case of a matrix element 〈φ|Ô |ψ〉, where Ô is nontrivial
only on a single lattice site i. In this case the MPO form is simple

Ô =
∑

σ1,...,σL,σ
′
1,...,σ

′
L

δσ1,σ′1
· · · δσi−1,σ′i−1

W σiσ
′
iδσi+1,σ′i+1

· · · δσLσ′L |σ1, . . . ,σL〉〈σ′1, . . . ,σ′L|

(2.54a)

=
∑

σ1,...,σL,σ
′
i

W σiσ
′
i |σ1, . . . ,σi, . . . ,σL〉〈σi, . . . ,σ′i, . . . ,σL| (2.54b)

In the local Hilbert space of a single site the operator Ô and therefore W σiσ
′
i is just a d×d

matrix O. Thus

〈φ|Ôi |ψ〉 = (2.55a)

= Tr

(∑
σ1

M̃σ1∗ ⊗Mσ1

)
· · ·

∑
σiσ′i

O
σiσ
′
i

i M̃σi∗ ⊗Mσi

 · · ·(∑
σL

M̃σL∗ ⊗MσL

) .

(2.55b)

Because the Hamiltonian (2.1) only consists of products of local operators, this is all that
is required for our method at this point.

2.2.5 Connection to DMRG

For readers familiar with the DMRG method it is insctructive, to see how the two concepts
connect. This section also shows, that DMRG's density matrix criterion is equivalent to
truncating the singular values on each bond in a MPS construction and that this approach
is optimal in a certain sense.

In his paper from 1992 [1], White started from two main ideas: First, in truncating the
dimension of a Hilbert space, it is best not to keep the lowest energy states but the most
probable ones. Secondly, an approximate state |ψ̃〉 optimally represents the expectation
values, i.e., the physics of the real state |ψ〉, if the deviation

S :=
∥∥∥ |ψ〉 − |ψ̃〉∥∥∥2

(2.56)

between them is minimal. Both lead to the same DMRG formalism that can be elegantly
formulated using MPS.

We recall the way chain models are usually handled in numerical renormalization methods.
A given system of length ` is recursively expanded to size `+ 1 by adding a single lattice
site as shown in Fig. 2.5.

Figure 2.5: Handling of chain models in numerical renormalization methods:
The system is built up by adding one site at a time.
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Once the dimension of the Hilbert space reaches a certain limit, the basis of the newly
formed block A′ is truncated using a suiteable criterion. A major drawback in Wilson's
NRG for chain models was the poor handling of the boundary conditions in the build up
of such blocks. White solved this by means of his superblock ansatz.
In addition to increasing the system size in each step, he added another block called
environment. System and environment together form the superblock (see Fig. 2.6). Then,
the Hamiltonian of this superblock is diagonalized and its states are projected onto the
system block. This has the advantage that at the time site `+ 1 it is added to the system,
is not a free end but a site in the bulk of a larger system.

Figure 2.6: Expansion scheme in standard DMRG: In each step one (or two)
sites are added. System and environment are combined into the
superblock.

Note that, as Fig. 2.6 shows, one can also add an additional site to the environment block
at each step. A comment on terminology is in order at this point. In applications, the
physical system of interest is the superblock (sometimes also called �world�). The splitting
in �system� and �environment� is methodical, not physical.

The question is now how to project the superblock states onto the extended system block
and how to truncate the system block basis to avoid exponential growth. Both questions
lead to the use of the density matrix, more precisely to the reduced density matrix of the
system block (of length `+ 1).

For simplicity the superblock will be assumed to be in a pure state |ψ〉, but the argument
also holds for mixed states [34]. Let { |i〉} with i = 1, . . . ,dS be a complete orthonormal
basis of the system's Hilbert space and { |j〉} with 1, . . . ,dE one of the environment's Hilbert
space. Then the superblock state is given by the product state

|ψ〉 =
dS∑
i

dE∑
j

ψij |i〉 ⊗ |j〉 =
∑
ij

ψij |i〉 |j〉 with ψij = 〈j|〈i|ψ〉 . (2.57)

Consider an observable operator that acts only on the system block and is the identity on
the environment. Its spectral representation is

ASB = AS ⊗ 1E =
∑
ii′j

Aii′ |i〉 |j〉〈j|〈i′| . (2.58)
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Its expectation value with respect to |ψ〉 is

〈A〉 = 〈ψ|AS ⊗ 1E |ψ〉 = 〈ψ|

∑
ii′j

Aii′ |i〉 |j〉〈j|〈i′|

 |ψ〉 (2.59)

=
∑
i′′j′′

∑
i′′′j′′′

∑
ii′j

ψ∗i′′j′′ψi′′′j′′′Aii′〈j′′|〈i′′|i〉 |j〉〈j|〈i′|i′′′〉 |j′′′〉 (2.60)

=
∑
ii′j

Aii′ψ
∗
ijψi′j =

∑
ii′

Aii′
∑
j

ψ∗ijψi′j (2.61)

= Tr(ρA) . (2.62)

The last equality de�nes the object

ρii′ =
∑
j

ψ∗ijψi′j (2.63)

as the reduced density matrix of the system block. This matrix holds all information of
the superblock state |ψ〉 needed to compute the expectation value of any A that acts only
on the system.
Let the eigenvalues of ρ be wα and the corresponding eigenvectors |uα〉. The |uα〉 form a
valid basis of the system block Hilbert space because as a density matrix ρ is hermitian and
positife-seminde�nite. The wα are assumed to be ordered w1 ≥ · · · ≥ wdS . By de�nition
of the density matrix, the eigenstates with the largest wα are the most probable states. If,
in accordance with the initial idea, the D most probable states2 of the system block are
kept, the approximate superblock state can be rewritten as

|ψ̃〉 =
dE∑
j

D<dS∑
α

ajα |uα〉 |j〉 =
∑
α

|uα〉
∑
j

ajα |j〉 =
∑
α

aα |uα〉 |vα〉 . (2.64)

Thus, the expansion coe�cient ψ̃ij with respect to the complete basis |i〉 |j〉 is given by

ψ̃ij := 〈j|〈i|ψ̃〉 =
∑
α

aα〈i|uα〉〈j|vα〉 =
∑
α

aαu
α
i v

α
j . (2.65)

Note that this has the form of an element in a product of three matrices (UAV †)ij , where
A is a diagonal matrix with Aαα = aα. In terms of the expansion coe�cients the deviation
S becomes

S =
∑
ij

∣∣∣ψij − ψ̃ij∣∣∣2 =
∑
ij

∣∣∣∣∣ψij −∑
α

uαi aαv
α
j

∣∣∣∣∣
2

(2.66)

or on a matrix level

S =
∥∥∥Ψ− Ũ ÃṼ †

∥∥∥2

F
(2.67)

where the F denotes the Frobenius norm. This form of Ψ̃ looks very much like the SVD
from theorem 2.1. Indeed, linear algebra proves S to be minimal if Ũ ÃṼ † is chosen as the
SVD of ψ̃ij interpreted as dS × dE matrix. Details can, e.g., be found in Ref. [35].

By construction, Ṽ † describes the environment block and Ũ the system block. The aα are
the singular values on the bond connecting the two parts. Also, by the properties of the
SVD UU † = 1 and V †V = 1. This is exactly the form of a mixed canonical MPS as seen

2In DMRG literature D is referred to as m most times.



20 Model and general approach

in Eq. (2.42). This means that any state occurring in a block buildup algorithm can be
decomposed into a mixed-canonical MPS. From Eq. (2.42) also follows that

〈ψ̃|ψ̃〉 = Tr(S†S) =
∑
α

S2
αα = Tr(ρ) =

∑
α

wα (2.68)

⇒ wα = S2
αα . (2.69)

So the eigenvalues of the reduced density matrix ρ are the squares of the singular values
on the bond between system and environment. Moreover, keeping the D most probable
states is therefore equivalent to the aforementioned MPS truncation scheme of keeping the
D largest singular values on each bond.

The DMRG method proves especially powerful for �nite systems. When the superblock
has reached the desired system size, the result can be further improved, because during
the buildup the truncated basis is not chosen optimally with respect to the target system
of �xed size.

Figure 2.7: Scheme of a DMRG sweep. In each phase, the shading marks the
block that is expanded.

The optimization is done by iteratively moving the boundary between system and environ-
ment blocks through the chain. At every step, one site of the system and possibly one site
of the environment, too, is reintroduced with its full local Hilbert space dimension. The
physical state of the rest of the chain is kept �xed. It can be described using block basis'
that are already available from previous calculations. Then the superblock is built again,
the Hamiltonian diagonalized, its target state(s) projected onto the system block and the
basis is truncated according to the density matrix criterion.
The process of moving the boundary from the initial position at the center of the chain
to the right edge, then to the left edge and back to the center is called a sweep. It is
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illustrated in Fig. 2.7. Several sweeps can be necessary to reach convergence. The limiting
factor in the accuracy that can be achieved �nally is the number of states D kept in each
step.

2.3 E�ective models

The spin language is very intuitive to describe magnetic properties of electronic systems.
However, it is not well suited to understand dynamic properties of the excitations.
Therefore, a controlled, systematic way is needed to map the spin-picture Hamiltonian to
an e�ective Hamiltonian in the quasiparticle-picture

He� = E0 +
∑
ij

tij c
†
icj + [higher terms] . (2.70)

The low energy sector at zero temperature is mostly dominated by states with a single
quasiparticle. The �higher terms� in (2.70) describe any multi particle interaction. Two-
particle states can be handled in much the same way shown for one particle below. But
this is beyond the scope of the present thesis.

The e�ective one-quasiparticle model then reads

He� = E0 +
∑
ij

tij c
†
icj . (2.71)

This model describes a single excitation moves through the system.
In a translationally invariant system, the e�ective hopping element tji only depends on the
relative coordinate j − i but not on the absolute positions. Therefore it is simply�ed to

tij = tj−i = tδ with δ := j − i . (2.72)

As an example consider the strong �eld limit (J = 0) of the ITF. Let |ψi〉 be a state with
one spin �ipped from the polarized ground state on site i which directly corresponds to a
one-particle state. The hopping element is then de�ned by

tj−i = 〈ψj |(H − E0) |ψi〉 . (2.73)

In a translationally invariant system a momentum space basis also proves very useful

|ψq〉 :=
1√
L

∑
j

eiqrj |ψj〉 . (2.74)

The e�ective Hamiltonian acts on such a state in the following way

He� |ψq〉 =

E0 +
∑
ij

tjc
†
i+jci

 1√
L

∑
n

eiqrn |ψn〉 (2.75a)

= E0 |ψq〉+
1√
L

∑
ijn

eiqrn tj c
†
i+jci |ψn〉︸ ︷︷ ︸
δn,i |ψi+j〉

(2.75b)

= E0 |ψq〉+
∑
j

tj e
−iqrj

∑
i

1√
L
eiq(ri+rj) |ψi+j〉︸ ︷︷ ︸
|ψq〉

(2.75c)

=

E0 +
∑
j

tje
−iqrj

 |ψq〉 , (2.75d)
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assuming the thermodynamic limit. Thus |ψq〉 is an eigenstate of the e�ective Hamiltonian
with the eigenvalue

Eq = E0 +
∑
j

tje
−iqrj =: E0 + ωq . (2.76)

Therefore, the one particle energy dispersion is just the Fourier transform of the hopping
elements tj and can be obtained as

ωq = 〈ψq|(H − E0) |ψq〉 =

 1√
L

∑
j

e−iqrj 〈ψi|

 (H − E0)

(
1√
L

∑
i

eiqri |ψi〉

)
(2.77a)

=
1
L

∑
ji

eiq(ri−rj) 〈ψj |(H − E0) |ψi〉︸ ︷︷ ︸
=:Hj−i

=
∑
j

eiqrjHj . (2.77b)

If the momentum eigenstates |ψq〉 are not normalized, this can be solved by setting

|ψ̃q〉 :=
1√
Nq

1√
L

∑
j

eiqrj |ψj〉 . (2.78)

The normalization constant Nq follows from

1 != 〈ψ̃q|ψ̃q〉 =
1
Nq

1
L

∑
ij

eiq(ri−rj) 〈ψj |ψi〉︸ ︷︷ ︸
=:Nj−i

=
1
Nq

∑
j

eiqrjNj (2.79a)

⇔ Nq =
∑
j

eiqrjNj . (2.79b)

Then the dispersion reads

ωq =
〈ψq|(H − E0) |ψq〉

〈ψq|ψq〉
=

∑
j e

iqrjHj∑
j e

iqrjNj
=:

Hq

Nq
. (2.80)

All this is also true in the general case. However, in general

|ψi〉 = a†i |ψ〉 (2.81)

where |ψ〉 is the ground state and a†i is the creation operator for a more complex particle
and is yet to be speci�ed. To do this for cases that are not as easy as the strong �eld limit
of the ITF is precisely the goal of the method presented here.



Chapter 3

Ground state energy

In this chapter an adaptation of the concepts in Sect. 2.2 for in�nite, translationally invari-
ant systems is shown. Based on that, a variational algorithm to �nd an MPS representation
of the ground state for such systems is presented. In the last section, numercial results are
compared to the exact result.

3.1 Matrix product states for in�nite systems

Like for all variational methods, the �rst goal is to minimize the energy functional

E =
〈ψ|H |ψ〉
〈ψ|ψ〉

(3.1)

by varying a set of parameters. Here these parameters are the elements of the local matrices
Aσi . To compute (3.1), expressions of the form 〈ψ|Ô |ψ〉 and 〈ψ|ψ〉 need to be evaluated.
They result in tensor networks those given in Eq. (2.48a) and (2.55a).

The method is designed for translationally invariant systems. The Hamiltonian operator
of such a system is given by a local term hi that acts on a �nite number n of lattice sites.
The full Hamiltonian is just the sum over L such terms, one for each lattice site (cf. Eq.
(2.1))

H =
∑
i

hi . (3.2)

As the method is designed to explicitly handle in�nite systems, the lattice sites will be
labelled j = −∞, . . . ,∞, with site j = 0 in the middle. For most purposes, the chain or
the tensor network is split into three sections: A left half-in�nite part, a right half-in�nite
part and a �nite section, close to or around site j = 0.

Figure 3.1: Splitting of the tensor network of an in�nite system into three
parts
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The main idea behind working directly in the thermodynamic limit is that there are very
simple expressions for the right and left half in�nite parts of the the chain, obtained via a
transfer matrix. The idea dates back at least to the solution of the Ising model by transfer
matrices [36] and it was adopted for MPS, e.g., in [11]. It is also used in iPEPS [23] and
the MPS approaches for in�nite systems in Ref. [19, 20]. The latter is very similar to the
methods in this section.

Clearly, in general only a variational ansatz is possible, since matrices for an exact descrip-
tion of the system would have to be of in�nite dimension. However, assuming translational
invariance, the problem becomes much less complicated. In this case, the local matrices
for all lattice sites are equal in the ground state, and only one set of local matrices mus be
optimized. In some cases even an exact description may be possible with a matix dimenion
as low as D = 2 (see e.g. the examples in Ref. [26]).

From hereon, the local matrices describing the ground state will be labelled As with
s ∈ {1, . . . ,d}1. Matrices associated with excited states will be labelled Bs. They all
are of dimension D ×D where D is �nite and �xed throughout the calculation.

3.1.1 Calculating the norm

First, the norm 〈ψ|ψ〉 will be calculated. For non-canonical MPS it follows from the overlap
in (2.48) for 〈φ| = 〈ψ|. The handling of the boundary conditions is moved to two auxiliary
systems of local dimension D with states |α〉 and |β〉, which leads to a slightly modi�ed
ansatz

|ψ〉 =
∑
α,β

∑
s1,...,sL

Tr
(
aTαA

s1 · · ·AsLbβ
)
|s1, . . . ,sL〉 |α〉 |β〉 . (3.3)

Assuming translational invariance, the norm becomes

〈ψ|ψ〉 =
∑

αβ,α′β′

∑
s1,...,sL, s

′
1,...,s

′
L

Tr
(
aT∗α As1∗ · · ·AsL∗b∗β

)
Tr
(
aTα′A

s′1 · · ·As′Lbβ′
)

× 〈α|α′〉︸ ︷︷ ︸
δαα′

〈β|β′〉︸ ︷︷ ︸
δββ′

〈s1, . . . ,sL|s′1, . . . ,s′L〉︸ ︷︷ ︸
δs1s′1

··· δsLs′L

(3.4a)

= Tr

(∑
α

aT∗α ⊗ aTα

)(∑
s

As∗ ⊗As
)
· · ·

(∑
s

As∗ ⊗As
)∑

β

b∗β ⊗ bβ


(3.4b)

From (3.4) a new object is de�ned, the transfer matrix (or transfer operator)

T :=
∑
s

As∗ ⊗As . (3.5)

It corresponds to one rung in the ladder-like diagram in Fig. 3.1 and is a D2×D2 matrix.
The name derives from the idea, that if the right (left) part of the diagram is known,
applying T (T †) to it transfers the end one site to the left (right).
The objects built from aα, bβ and their complex conjugates are D2-dimensional vectors.

1For the transverse Ising model s ∈ {↑ , ↓}
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They encode the boundary conditions and also turn the expression into a scalar, so that
the trace operation can be omitted2.
In terms of T , the norm becomes

〈ψ|ψ〉 = Tr(~a†TL~b) = ~a†TL~b = (T †
L
2 ~a)†(T

L
2~b) , (3.6)

where L is again the number of lattice sites. Eventually only the thermodynamic limit
L→∞ will be considered.
Independently of its complete diagonalizability, T has an eigenvalue Λ with largest absolute
value (which for the moment will be assumed to be unique) and a corresponding right-
eigenvector ~v0. The power method for �nding eigenvalues shows that

lim
L→∞

TL

ΛL
~b = β0 ~v0, with β0 ∈ C . (3.7)

The hermitian conjugate T † of T has the same eigenvalues as T , especially its eigenvalue
with largest absolute value is also Λ. The corresponding eigenvector is labelled ~u0

lim
L→∞

T †L

ΛL
~a = α0 ~u0, with α0 ∈ C . (3.8)

Therefore, under the assumption that Λ is unique α and β are �nite, the norm is dominated
by

〈ψ|ψ〉 = ΛL ~u†0~v0 α
∗
0β0 . (3.9)

Expanded in the - not necessarily orthogonal - respective eigenvectors ~vi of T and ~ui of T †

the boundary vectors ~a and ~b are given by

~b = β0~v0 +
D2−1∑
i=1

βi~vi, ~u = α0~u0 +
D2−1∑
i=1

αi~ui . (3.10)

Note, that if ~v0 is an eigenvector of T , then so is β0~v0. Therefore, the eigenvectors ~v0 and
~u0 will be assumed normalized such, that α0 = β0 = 1. These renormalized eigenvectors
are labelled ~v and ~u, whereby the norm becomes

〈ψ|ψ〉 = ΛL ~u†~v . (3.11)

As long as the system has a unique ground state, it is plausible to assume that Λ is unique
and that the boundary conditions are irrelevant for an in�nite system. Therefore, the norm
always takes the form in Eq. (3.11) independently of the actual form of ~a and ~b and the
boundary conditions they describe. Thus, ~a and ~b can be chosen in a way convenient for
the further discussion of the method.

Often, it is advantageous to adopt an alternative interpretation of T and ~v. Instead of a
D2-vector, ~v can be seen as a D ×D square matrix v, and T as a superoperator that acts
on such matrices. This leads to the following de�nition.

2In other notation, e.g., in Ref. [24] the trace operation is kept and ~a and ~b are combined in a so called

boundary matrix Q := ~b~a†.
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De�nition: Vectorization of a matrix: Let A be a m× n matrix, which is a 1× n
block matrix of its columns A = (~a1 · · · ~an). Then the vectorization of this matrix is
de�ned as

vec(A) = ~A :=

 ~a1
...
~an

 . (3.12)

With a combined index (α,α′) where α designates the column-vector and α′ the element
within the vector, the relations

vec(A)αα′ = ATαα′ = Aα′α (3.13)

follow. A compatible indexing scheme for mn×mn block matrices is

Bαα′,ββ′ with α,β ∈ {1, . . . ,n}, α′,β′ ∈ {1, . . . ,m} (3.14)

so that (α,β) designates the block and (α′,β′) the element within the block.

A scalar product for matrices compatible with the above vectorization is de�ned as follows:

De�nition: Scalar product for matrices: For two m×n matrices u and v, a scalar
product is de�ned by the hermitian form

(u,v) := Tr(u†v) =
∑
αβ

u∗βαvβα = vec(u)† · vec(v) , (3.15)

which is equivalent to the standard inner product of Cmn.

From its de�nition in Eq. (3.5) an element of the transfer matrix is given by

Tαα′,ββ′ =
∑
s

As∗αβA
s
α′β′ . (3.16)

Applying T to a vector ~v yields

(T~v)αα′ =
∑
β,β′

Tαα′,ββ′~vββ′ =
∑
β,β′

∑
s

As∗αβA
s
α′β′v

T
ββ′ (3.17a)

=
∑
s

∑
ββ′

Asα′β′vβ′βA
s†
βα =

(∑
s

AsvAs†

)
α′α

. (3.17b)

From Eq. (3.17) follows for T in the superoperator interpretation

T (v) =
∑
s

As v As† . (3.18)

This form of applying T has two advantages, especially for larger D. First, it eliminates
the necessity of actually computing and storing a D2 × D2 matrix, as the Lanczos algo-
rithm can be used to obtain Λ, v and u. Secondly, multiplying a D2 ×D2 matrix with a
D2 vector requires O(D4) operations, whereas the form (3.18) takes O(2d2D3) operations.
This is a clear speed up if 2d2 < D.
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By de�nition of the hermitian conjugate

(u,Tv) = (T †u,v) (3.19)

(u,Tv) = Tr

[
u†

(∑
s

AsvAs†

)]
= Tr

(∑
s

As†uAs

)†
v

 = Tr
[
(T †u)†v

]
(3.20)

⇒ T †u =
∑
s

As† uAs (3.21)

⇒ T † =
∑
s

As†∗ ⊗As† , (3.22)

which means that T † is constructed from As† the same way that T is constructed from As.

To ensure that the norm is well de�ned, i.e., 〈ψ|ψ〉 ≥ 0, both factors in Eq. (3.11) have to
be non-negative. To see that (u,v) ≥ 0, it will be shown that T is an endomorphism of the
(anti-)hermitian D ×D matrices and also of the positive-semide�nite D ×D matrices.

(Tu)αβ =

(∑
s

AsuAs†

)
αβ

=
∑
s

∑
µν

AsαµuµνA
s†
νβ

(Tu)†αβ =

(∑
s

AsuAs†

)†
αβ

=

(∑
s

Asuj†As†

)†
αβ

=
∑
s

∑
µν

Asαµu
†
µνA

s†
νβ

=

{
(Tu)αβ if u† = u

−(Tu)αβ if u† = −u
. (3.23)

As for the positive-semide�nite matrices, it needs to be shown that

v†T (u)v ≥ 0 ∀ v if ṽ†uṽ ≥ 0 ∀ ṽ .

First, note that the dyadic product formed from a C-vector ~v and its hermitian conjugate
is always positive-semide�nite

~u†(~v~v†)~u = (~u†~v)(~v†~u) = (~u†~v)(~u†~v)∗ = |~u†~v|2 ≥ 0 ∀ ~u (3.24)

with equality, if at least one of the vectors is the nullvector of if ~u ⊥ ~v. In the eigenbasis
of vv†, this means all eigenvalues λi are greater than or equal to zero. Therefore, in the
respective eigenbasis' { |α〉} of u and { |β〉} of vv†,

v†T (u)v = Tr(T (u)vv†) = Tr

∑
s

As

(∑
α

µα |α〉〈α|

)
As†

∑
β

λβ |β〉〈β|

 (3.25a)

= Tr

∑
αβ

µαλβ
∑
s

〈β|As |α〉〈α|As† |β〉

 =
∑
s

∑
αβ

µαλβA
s
βαA

s†
αβ (3.25b)

=
∑
αβ

µαλβ
∑
s

AsβαA
s∗
βα (3.25c)

=
∑
αβ

∑
s

µαλβ|Asαβ|2
{
≥ 0 if µα ≥ 0 ∀ α
≤ 0 if µα ≤ 0 ∀ α

, (3.25d)

where µα are the eigenvalues of u and the λβ those of vv†. This also proves that T is an
endomorphism of the negative-semide�nite D ×D matrices.
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It follows that the number of nonzero eigenvalues of T (u) is equal to the number of nonzero
eigenvalues of u if the As do not have a common nontrivial nullspace. In this case especially
the following holds

u > 0 ⇒ Tu > 0 . (3.26)

The chain of equalities in (3.25) also shows that if �xed, positive-de�nite matrices u and
v are given, the expression

(B|A) := Tr

(∑
s

vBs†u†As

)
(3.27)

de�nes as scalar product (inner product) for two sets of local matrices. Positivity is proven
in (3.25), sesquilinearity and hermitianity are apparent from Eq. (3.25c).

As established earlier, the vectors ~a and ~b in the expression for the norm 〈ψ|ψ〉 in Eq. (3.6)
can be chosen rather freely. A reasonable and conveniently simple choice is the identity
matrix

~a = ~b = vec(1D×D) , (3.28)

as it is obviously hermitian and positive-de�nite. Therefore, it will be assumed, that the
eigenmatrices v and u of T and T † belonging to the eigenvalue with largest absolute value,
Λ, have nonzero coe�cients in the expansion of the identity according to Eq. (3.10)3. Then
v and u are both hermitian and positive-de�nite.
Let again { |α〉} be the eigenbasis of u and { |β〉} the eigenbasis of v. Let further {µα} and
{λβ} be the respective eigenvalues of u and v. It follows then that

(u,v) = Tr(u†v) = Tr

(∑
α

|α〉〈α|

)∑
β

λβ |β〉〈β|

 (3.29a)

=
∑
αβ

µαλβTr( |α〉〈α| |β〉〈β|) =
∑
αβ

µαλβ(〈β|α〉 〈α|β〉) (3.29b)

=
∑
αβ

µαλβ |〈α|β〉|2 > 0 . (3.29c)

Now it is easy to see from the de�nitions, that

Λ (u,v) = (u,Tv) = Tr

(∑
s

u†AsvAs†

)
= (A|A) > 0 (3.30)

⇒ Λ ∈ R+ (3.31)

⇒ 〈ψ|ψ〉 ∈ R+ . (3.32)

Thus, under the assumptions that Λ is unique - also in its absolute value - and the correct
boundary conditions have �nite overlap with 1, the norm (3.4) is well de�ned.

This also constitues the key to handling systems in the thermodynamic limit. Every norm
element or expectation value requires the computation of a right and a left half-in�nite
tensor network as seen in Fig. 3.1. This section shows, that computing these parts comes
down to �nding the eigenvalue Λ of the transfer matrix T with the largest absolute value,
and the corresponding eigenvectors ~v of T and ~u of its hermitian conjugate T †.

3If this is not the case, the ground state explicitly depends on the boundary conditions. This case will
be delt with in future studies.
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In other words, one can work on the �nite central part with moderate e�ort, while the
e�ects of the system being in�nite are completely contained in Λ, u and v.

Note, that formally in�nite powers of Λ lead to dirvergence if |Λ| 6= 1. However, since
any quantities that are actually computed are of the form in Eq. (3.1), the norm and
any expectation values can be formally devided by ΛL. This results in a factor of Λ−m in
expectation values, where m is the number of lattice sites spanned by the central part of
the network. See also Sect. 3.2.2 on the normalization of Λ. This division by ΛL will be
implied in all matrix elements and overlaps from here on.

3.1.2 Local operators

Next, a suitable expression for oparators is needed, so that expectation values and matrix
elements can be calculated as well.
Since all operators considered in this thesis consist of products of a �nite number of local
operators, the tensor networks are of the form (2.55a). Let Ôj be a local operator acting
on site j and O its local matrix representation, which is of the size d× d. For example for
the z-component of the spin operator

Ôj = S z
j → O =

1
2
σz . (3.33)

As seen in Eq. (2.55b), an operator tensor object of the form shown in Fig. 3.2 is given
by the expression

O
(M̃,M)
j :=

∑
ss′

Oss′M̃
s∗ ⊗M s′ . (3.34)

Figure 3.2: Diagram for a local matrix product operator in a matrix element
calculation, cf. Eq. (2.55)

Again, it is instructive to look at the tensor network, as it suggests to apply objects of
the type (3.34) to one end of the tensor network in much the same way as T and T † are
applied. Let Ôj be the identity operation 1 and M̃ s = M s = As. Then (3.34) becomes

1
(A,A)
j =

∑
ss′

1ss′A
s∗ ⊗As′ =

∑
s

As∗ ⊗As = T , (3.35)

i.e., the transfer operator T is nothing but an identity operation between two As matrix
sets. Therefore, local operators can be applied as (cf. Eq. (3.18))

O
(A,A)
j v :=

∑
ss′

Oss′A
s′vAs† , (3.36)

which can be proven in analogy to Eq. (3.17). If the states providing the matrices M̃ s and
M s are not the ground state, this generalizes to

O
(B,A)
j v =

∑
ss′

Oss′A
s′ v Bs† (3.37a)

O
†(B,A)
j v =

∑
ss′

O†ss′A
s† v Bs′ (3.37b)
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where Bs labels the set of local matrices taken from the bra-side of the diagram and As

the matrix set taken from the ket-side.

In this way, products of local oparators can be applied by successively applying objects of
type (3.34) to one end of the network.
Let v be the eigenmatrix of T that represents (up to powers of Λ) the right end of the
chain, and Ô and P̂ be operators acting on a local site. Then the expectation value of
ÔjP̂j+1 is given by

〈ψ|ÔjP̂j+1 |ψ〉 = (u, O(A,A)
j (P (A,A)

j+1 (v))) Λ−2 = (O†(A,A)
j (u), P (A,A)

j+1 (v)) Λ−2 , (3.38)

where the sites are labelled for book-keeping only. The way the operators are applied is
independent of their actual location. The factor of Λ−2 results from the fact that T is
applied to all but the two sites where the local operators act and division by ΛL is implied.
The expectation value of ÔjP̂j where both operators act on the same site, can be calculated
by de�ning Qj = OjPj and applying

(u, Q(A,A)
j v)Λ−1 =

(
u,
∑
ss′

Qss′A
s′vAs†

)
Λ−1 . (3.39)

Note that if Ô is hermitian, O(A,A)
j - like T - is an endomorphism of the (anti-)hermitian

D ×D-matrices

(O(A,A)
j v)† =

(∑
ss′

Oss
′
As
′
vAs†

)†
=
∑
ss′

Oss
′†Asv†As

′† = O
(A,A)
j v , (3.40)

where the last equality holds if O and v are hermitian.

3.2 Variational ground state search

3.2.1 Local variation

If the Hamiltonian consists of local terms hi that are the same for each lattice site, as it is
the case for the ITF, the variational ground state energy per site is given by

E0,var

L
=
〈ψ(As)|hi |ψ(As)〉
〈ψ(As)|ψ(As)〉

. (3.41)

By the methods of the previous section, this is

e0(As) :=
E0,var

L
=

(u(As), h(A,A)
i v(As))

Λ(As)n (u(As), v(As))
, (3.42)

where n is the number of sites that the local Hamiltonian hi acts upon, and all of Λ, v
and u are determined by the local matrix set As. This is a highly non-linear function
in the coe�cients of As. Interpreting these as a single vector, e0(As) can be treated as
a minimization problem on CdD2

using standard algorithms. But, since the derivative of
e0(As) cannot be computed and the energy landscape may be of arbitrary shape, it is hard
to ensure convergence in reasonable time. This approach can be called �global variation�
as the matrices on all sites are optimized simultaneously.
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Another method is similar to DMRG: Minimize e0 by varying the matrices of only one
lattice site. Then, adopt this result on all other sites and start the optimization for the
single site again. Repeat this, until no further improvement can be reached. This �local
variation� approach will now be explained in detail, because it is also the basis for the
subsequent treatment of excitations.

Let |ψj〉 be the state that has As matrices at each site except for site j, where As is
replaced by a di�erent set Bs, that will be depicted by triangular symbols. Then the norm
of this state is

〈ψj |ψj〉 =

= (u, 1(B,B)
j v) Λ−1 = (B|B) Λ−1 > 0 . (3.43)

The factor Λ−1 arises, because there is one transfer operator T on every rung but j. There,
instead of T is an object that has the same structure as T , but it is built from the Bs. The
series of equalities in (3.35) shows that such an object is equal to an identity operator on
site j.

The energy expectation value is bit more complicated, because the exchanged matrix set
Bs at site j breaks the translational invariance of the system and the relative location of
the local Hamiltonian hi to site j becomes important. Instead of the local term hi, one
has to look at the full Hamiltonian H =

∑
i hi now. For an in�nite system, H will always

produce an in�nite constant ground state energy E0 = Le0 that has to be subtracted in
order to obtain a well de�ned result. In each step the current best estimate for the exact
e0, i.e., the e0(As) computed from the last available As is used.
Therefore, the function to be minimized in the local variation process is

E(As,Bs) :=
〈ψj(As,Bs)| [

∑
i {hi − e0(As)}] |ψj(As,Bs)〉

〈ψj(As,Bs)|ψj(As,Bs)〉
. (3.44)

The explicit dependence on As will be dropped in further notation, as the coe�cients are
�xed during one variational step.

As an example, let hi consist of only one local operator Ôj . Then the energy as function
of Bs is given by

E(Bs) =
∑
j

(
Ej

(B|B) Λ−1
− e0

)
(3.45a)

with Ej =


Λ−|j|−1 (u,O(A,A)

j T |j|−11
(B,B)
0 v) if j < 0

Λ−1 (u,O(B,B)
0 v) if j = 0

Λ−j−1 (u,1(B,B)
0 T j−1O

(A,A)
j v) if j > 0

. (3.45b)

It is to be expected that the terms Ej − e0(B|B)Λ−1 will converge to zero su�ciently
quickly for |j| � 1. When interpreting the coe�cients of Bs as a single vector

~B :=

 vec(B1)
...

vec(Bd)

 , (3.46)
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the minimization of E(Bs) subject to the constraint of |ψj〉 being normalized yields the
bilinear form

~B†M ~B − µ~B†N ~B = 0 , (3.47)

where residual powers of Λ are absorbed into the scalar lagrange multiplier µ. The matrix
N represents the normalization constraint for |ψj〉. Therefore, the variation leads to a
generalized eigenvalue problem (EVP) of dimension dD2

∂

∂ ~B†
( ~B†M ~B − µ~B†N ~B) = 0 ⇔ M ~B − µN ~B = 0 . (3.48)

Note that due to the properties of the vectorization operator vec(·) the derivative of (3.47)
with respect to ~B† corresponds to the derivative of (3.45a) with respect to the coe�cients
of Bs∗ (without transposing).

To make the clouds of indices that will arise in de�ning M and N a little easier to un-
derstand, it will �rst be shown how the indexing scheme (3.14) extends by another level
where sets of local matrices are concerned

A~B =


A11 · · · A1d

...
. . .

...

Ad1 · · · Add




~B1

...

~Bd

 . (3.49)

The additional block-level coming from the physical index s will be labelled by superscript
indices. Thus, on this physical block level, an element of the resulting vector reads

(A~B)s =
∑
s′

Ass
′ ~Bs′ . (3.50)

Each of these blocks Ass
′
�ts the indexing scheme (3.14) again, so that an element of A is

identi�ed by a triple row index (s,α,α′) and by an analogous column index (s′,β,β′). An
element of the product A~B is given by

(A~B)sαα′ =
∑
s′,β,β′

Ass
′

αα′,ββ′B
s′
ββ′ . (3.51)

Starting with the normalization constraint, the matrix N is de�ned by

∂

∂Bs∗
αα′

(B|B) !=
(
N ~B

)s
αα′

(3.52a)

∂

∂Bs∗
αα′

Tr

(∑
s

Bs†u†Bsv

)
=

∂

∂Bs∗
αα′

∑
s

∑
αα′ββ′

Bs†
α′αu

†
αβB

s
ββ′vβ′α′ (3.52b)

=
∑
s

∑
ββ′

u†αβvβ′α′B
s
ββ′ =

∑
ss′

∑
ββ′

δss′u
†
αβv

T
α′β′B

s
ββ′ (3.52c)

=
∑
s

∑
ββ′

(∑
s′

δss′u
†
αβv

T
α′β′

)
Bs
ββ′ =: N ss′

αα′,ββ′B
s
ββ′ (3.52d)

⇒ N ss′
αα′,ββ′ =

∑
s

δss′u
†
αβv

T
α′β′ (3.52e)

⇒ N = 1d ⊗ u† ⊗ vT . (3.52f)
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As an example on how to construct M , take the j = 0 term from (3.45b)

∂

∂Bs∗
αα′

(u, O(B,B)
0 v) !=

(
M [j=0] ~B

)s
αα′

(3.53a)

∂

∂Bs∗
αα′

Tr

(
u†
∑
ss′

Oss
′
Bs′vBs†

)
=

∂

∂Bs∗
αα′

Tr

(∑
ss′

Oss
′
Bs†u†Bs′v

)

=
∂

∂Bs∗
αα′

∑
ss′

Oss
′ ∑
αα′ββ′

Bs†
α′αu

†
αβvβ′α′B

s′
ββ′

=
∑
s′

∑
ββ′

(∑
s

Oss
′
u†αβv

T
α′β′

)
Bs′
ββ′ (3.53b)

⇒ M
[j=0]ss′

αα′,ββ′ =
∑
s

Oss
′
u†αβv

T
α′β′ (3.53c)

⇒ M [j=0] = O ⊗ u† ⊗ vT . (3.53d)

For j 6= 0 the contribution M [j] is constructed in exactly the same way with some minor
modi�cations

M [j 6=0] = 1d ⊗ u′† ⊗ v′T (3.54a)

with v′ =

{
T j−1O

(A,A)
j v if j > 0

v if j < 0
(3.54b)

and u′ =
{
u if j > 0
T †|j|−1O†(A,A)u if j < 0

. (3.54c)

The full matrix M is then given by

M =
∞∑

j=−∞
(M [j] − e0N) . (3.55)

Obviously, for numerical calculations, the sum has to be cut o� at some point. For �nite
correlation length, this can be done when∥∥∥M [i] − e0N

∥∥∥ < ε (3.56)

for some threshold value ε. If the system shows critical behaviour, i.e. diverging correlation
length, this point will never be reached and a hard cuto� at some jmax has to be made.
This leads to truncation errors.

Now the case of a more complex local Hamiltonian hi remains to be covered. If hi is a sum
of local operators acting on a single site i

hi =
n∑
k=1

Oki (3.57)

it easy to see that

Ej=0 =
n∑
k=1

(u, Ok,(B,B)
0 v) (3.58)

and for j 6= 0 analogously. If hi is a product for local operators acting on adjacent sites

hi = O1
jO

2
j+1 · · ·Onj+n−1 , (3.59)
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the single term for j = 0 in (3.45b) is replaced with a sum of n terms, as can be seen easily
from the tensor networks in Fig. 3.3.

Ecenter =
∑
k

Ek =
∑
k

(u,O1,(A,A) · · ·Ok−1,(A,A)︸ ︷︷ ︸
u′

Ok,(B,B)Ok+1,(A,A) · · ·On,(A,A)v︸ ︷︷ ︸
v′

) (3.60)

These Ek result in contributions to M of the form

M [k] = Ok ⊗ u′† ⊗ v′T − e0N . (3.61)

Figure 3.3: Example for the tensor networks arising from the local Hamilto-
nian hi acting on site 0 where As is replaced with Bs. Here hi acts
on n = 3 lattice sites. This could e.g. be a next-nearest neighbour
interaction hi = S x

i 1i+1S
x
i+2.

Note that N is always hermitian if v and u are hermitian

N † = (1⊗ u† ⊗ vT )† = 1† ⊗ u⊗ (vT )† = 1⊗ u† ⊗ vT = N . (3.62)

If additionally all the local operators appearing in H are hermitian, so is M , as local
operators map hermitian matrices to hermitian matrices, and therefore all v′ and u′ are
hermitian. Then, for any contribution to M the relation

M [j]† = (O ⊗ u′† ⊗ v′T )† = O† ⊗ u′ ⊗ (v′T )† = O ⊗ u′† ⊗ v′T = M [j] (3.63)

holds.

The basic idea of the local variation approach is to solve the generalized EVP

M ~B = µN ~B (3.64)

for the eigenvalues µα and the corresponding eigenvectors ~Bα. The µα will be assumed to
be orderd µ0 ≤ µ1 ≤ · · · ≤ µdD2 in the subsection discussions. The eigenvector ~B0 with
the lowest lying eigenvalue is used as the new local matrix set As in the next variation
step. This can be repeated until convergence is reached i.e. ~B0 ≡ vec(As).

There is no rigorous proof that using the eigenvector with the lowest local energy (the
lowest eigenvalue µ0) on every site in the next step will improve the result in this iterated
process. But this is found to be the case, given that the generalized EVP can be solved.
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3.2.2 Notes on implementation

In some cases, when hi is of simple form, the matrices M and N are sparse and the EVP
can become ill-conditioned. The problem can be stabilized for numerical calculations by
transforming it into a standard EVP. Let N = Q†DNQ so that DN is diagonal. Because
N is hermitian, Q is unitary i.e. Q−1 = Q†.

M ~B = µNB ⇔ M ~B = µQ†DNQ~B (3.65a)

⇔ M ~B = µQ†
√
DN1

√
DNQ~B (3.65b)

⇔
√
DN

−1QMQ†
√
DN

−1︸ ︷︷ ︸
=:M ′

√
DNQ~B︸ ︷︷ ︸
=: ~B′

= µ
√
DN

~B′ (3.65c)

⇔ M ′ ~B′ = µ~B′ ⇒ ~B = Q†
√
DN

−1 ~B′ . (3.65d)

The last form is a hermitian standard EVP (in caseM and N are real it is even symmetric)
and it is better suited for numerical solution.
In some cases, e.g., in the strong �eld limit of the ITF, convergence of the local variation
algorithm is very slow. It can then be advantageous to use the global variation method
instead if the energy landscape is of simple engough shape.

Also, to make calculations easier, it is advantageous to have Λ = 1, which for unique Λ
can always be achived by the transformation

As → Ãs :=
As√

Λ
. (3.66)

If Λ is degenerate in its absolute value, di�erent Λi will be of absolute value 1. This avoids
introducing new errors when multiplying or deviding by large powers of Λi. Especially
division is important, since every explicitly applied operator - including T - comes with
a factor of Λ−1. The easiest way to assure the correct powers of Λ is to implement this
division directly into the application of operators.

The scalar product of the eigenvectors v and u can also be renormalized to 1 by setting

v → ṽ :=
v√

(u,v)
, u → ũ :=

u√
(u,v)

. (3.67)

To check for convergence in the M [i] instead of using the criterion Eq. (3.56) the sum can
be cut when

T j−1h
(A,A)
i v u T j−2h

(A,A)
i v (3.68)

within a reasonable tolerance. Equation (3.56) holds, if hi acts far away from the pertur-
bation Bs and thus its in�uence is negligible. The same is also true, if moving one site
further away from Bs does not change the result anymore which is re�ected in Eq. (3.68).
This has the advantage, that the matrices in Eq. (3.68) are much smaller than those in
Eq. (3.56).

The convergence behaviour of the ground state search can be stabilized further if not just
~B0 is used as the new As in each step, but a linear combination of the given As and the
resulting ~B0. This linear combination is determined by another linear minimization

min
x

[
e0( cos(x)vec(As) + sin(x) ~B0 )

]
. (3.69)

This variant ensures, that the energy decreases monotonously. According to our results
it is, however, more prone to get stuck in areas of the energy landscape with very little slope.
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3.2.3 Algorithm

From the above sections, a variational algorithm to �nd an approximation of the ground
state in a given MPS class can be de�ned. It is given in Tab. 3.1.

The actual criterion used to detect convergence is the change in the ground state energy

∆e0 := e0(Asn)− e0(Asn+1) (3.70)

from step n to step n + 1. If ∆e0 is smaller than some threshold value ε1, the algorithm
breaks. As mentioned above, this can also happen when it gets in a near �at part of the
energy landscape. In this case however, usually ~B0 6= vec(As). Therefore, the additional
criterion

~B0 u vec(As) ⇔

∥∥∥∥∥∥ TA√
Tr(T †ATA)

− TB√
Tr(T †BTB)

∥∥∥∥∥∥ < ε2 (3.71)

has to be satis�ed, where TA and TB are the transfer operators build from As and ~B0

respectively and ε2 is another threshold value that has to be chosen several orders of mag-
nitude larger than ε1.

Table 3.1: Local variation algorithm

0. Initialization: Set an initial value for As. If nothing better is available, use random
matrices.

1. Compute Λ, v, u, e0 for the given As.
2. Construct matrices M and N for generlized EVP. Solve M ~B = µN ~B.
3. If ∆e0 < ε1 and As u ~B0 convergence is reached. Break.

If ∆e0 < ε1 but As 6= ~B0 start from step 0.
4. Else set As := mine0(x)(cos(x)vec(As) + sin(x) ~B0) and start from step 1

As mentioned above, in some cases the generalized EVP is numerically unstable. Also,
if the initial value of As is chosen poorly, convergence may be very slow. Therefore, the
current implementation uses a slightly more complex version of the algorithm which is
given in Tab. 3.2 where n is a positive integer with n ≈ 50.

Table 3.2: Extended ground state search algorithm

1. For a maximum of n times try the local variation algorithm in Tab. 3.1.
If it does not converge within n iterations, break and use a new random
initial guess.

2. If the local variation algorithm fails to produce a result after n runs,
switch to the global variation method, i.e. minimize e0 using a standard
minimization algorithm.
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3.3 Results

This section shows the results for the ground state energy per site obtained from the
method in comparision to the exact solution (2.18b).
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Figure 3.4: Ground state energy per lattice site E0/L as function of parameter
λ

Figure 3.4 shows the ground state energy as function of the parameter λ. Even for a value
of D as small as 3 the agreement is remarkably good. Rather more telling, however, is the
deviation from the exact result

∆E :=
E0,var

L
− E0,exact

L
(3.72)

which is shown in Fig. 3.5. There, wild oscillations for small λ can be observed. This
is due to the fact that close to the free spin limit, especially the norm matrix N is very
sparse, because u and v contain many near-zeor values, cf. Eq. (3.52f). This results in
many near-zero eigenvalues of N , making the generalized EVP ill-conditioned and ampli-
fying numercial noise.
Also the quality of the results from the global variation method strongly depends on the
starting vector in the current implementation.
For larger λ the deviation increases rather smoothly, peaks at a value close to but smaller
than 1 and decreases again. Although the result for each value of λ is used as a starting
vector for the next higher one, this form of the deviation curve is not a hysteresis e�ect.
The peak occurs at the same position if the sweep is done from higher to lower values of λ.
So the method picks up the critical point, marked by the peak in the deviation, but does
so at a too low value of λ. However, for increasing D this point moves towards λ = 1.
Note that although the ground state shows a twofold degeneracy for λ > 1, the method is
able to �nd one of the realizations with increasing precision for higher λ.
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Figure 3.5: Deviation of the variational results for the ground state energy
form exact solution (2.18b)

3.4 Existing methods

The ground state energy of an in�nte one-dimensional system can also be obtained from a
multitude of other methdods, including those mentioned in Chap. 1.

Especially �nite size scaling with by now highly optimized real space DMRG algorithms is
known to yield very accurate results for a large variety of models.
Vidal's iTEBD [18] and the MPS approach in Ref. [19] work directly in the thermodynamic
limit, but rely on imaginary-time evolution to �nd the ground state, which is ine�cient
[16].
McCullochs iDMRG method, that is conceptionally similar to our approach, also yields
results for in�nte systems. The MPS algorithm in Ref. [20] uses a slightly di�erent MPS
format, but is basically equivalent to the global variation ground state search.
And �nally, �nite size scaling from the methods in Ref. [22, 24] are of course possible
although, at the cost of several runs.



Chapter 4

Dispersion

This chapter shows how the matrices B from the ground state search algorithm in Sect.
3.2 describe excitations so that the one-particle dispersion ωq is obtained. The numerical
results will be compared to the analytical expression (2.18a). In the last section existing
methods to achive this will be discussed, especially MPS based approaches.

4.1 Description of excitations

4.1.1 Momentum space variation

When a ground state approximation As for given D has been found, the eigenvector ~B0

of the generalized EVP in Eq. (3.64) with the lowest eigenvalue µ0 describes the ground
state again. Since (3.64) arises from the energy functional (3.1), it is not far fetched to
assume that solutions with higher lying eigenvalues µα>0 describe excitations in the system.

Let |ψαj 〉 be the state that has the ground state matrix set As everywhere but on site j,

where the set formed from the eigenvector ~Bα (α > 0) is inserted instead.
Especially, if an elementary excitation is localized to a single lattice site, one would expect
the eigenvector ~B1 with the second lowest eigenvalue µ1 to represent this excitation. The
one-particle dispersion could then be obtained as shown in Sect. 2.3

ω(α)
q =

〈ψαq |(H − E0) |ψαq 〉
〈ψαq |ψαq 〉

∣∣∣∣
α=1

(4.1a)

with |ψαq 〉 :=
1√
L

∑
j

eiqrj |ψαj 〉 . (4.1b)

Note that the normalization 1√
L
is actually never computed in practice, as it always cancels

out when evaluating expectation values in a translationally invariant system.

At the free spin limit λ = 0, there are no dispersive e�ects and any excitation has the en-
ergy ω ≡ Γ, independently of the wave vector q. This is found to be correctly represented
by ~B1 up to deviations that can be regarded as numerical artefacts. But, for increased
spin-spin coupling J , the assumption no longer holds. This is not surprising, since for λ > 0
a �ipped spin is expected to create a polarization cloud, so the elementary excitation is no
longer completely localized.
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By construction any |ψα>0
j 〉 is orthogonal to the ground state |ψ0〉

〈ψα>0
j |ψ0〉 = ~Bα>0N ~B0 = 0 ∀ j . (4.2)

Therefore, assuming the ground state was calculated su�ciently exactly, the dispersion can
be obtained by variation in its orthogonal complement, i.e., the subspace spanned by the
~Bα>0.

For two eigenvectors ~Bα and ~Bβ at the lattice sites i and j, the overlap and the matrix
element of the Hamiltonian (corrected by the ground state energy) are de�ned as

Nαβ
ji := 〈ψαj |ψ

β
i 〉 (4.3a)

Hαβ
ji := 〈ψαj |(H − E0) |ψβi 〉 . (4.3b)

Since the system is in�nite and translationally invariant but for the local perturbations Bs
α

and Bs
β , the matrix elements Hαβ

ji and Nαβ
ji depend only on the relative coordinate j − i,

but not on the actual locations j and i. Therefore, from now on i = 0 will be assumed.
This leads to the simpli�ed expressions

Nαβ
j := 〈ψαj |ψ

β
0 〉 (4.4a)

Hαβ
j := 〈ψαj |(H − E0) |ψβ0 〉 . (4.4b)

See Sect. 4.1.2 on how to compute these matrix elements.

Unfortunately, the |ψαi 〉 do not form an orthogonal basis, i.e.,

〈ψαi |ψαj 〉 6= δij . (4.5)

This can be solved by using the momentum space basis de�ned in Eq. (4.1b) which is
orthogonal with respect to q

〈ψαq |ψ
β
q′〉 ∝ δqq′ . (4.6)

Figure 4.1 shows the dispersion computed from

ω(α)
q =

〈ψαq |(H − E0) |ψαq 〉
〈ψαq |ψαq 〉

=
Hαα
q

Nαα
q

(4.7a)

with Hαα
q :=

∞∑
j=−∞

eiqjHαα
j , Nαα

q :=
∞∑

j=−∞
eiqjNαα

j (4.7b)

for several α. The plot shows two important things. First, not only ~B1 contributes to the
dispersion, but serveral other ~Bα too. However, no single curve alone is a good approxi-
mation. Secondly, there are distinct peaks where the Fourier transform of the norm, Nαα

q ,
has near-zeros.
This indicates, that the |ψαq 〉 are still not orthogonal with respect to α. Also, some of them
can hold redundant information.

The best estimate for the one-particle dispersion ωq can now be determined by minimizing

ωq =
〈φq|(H − E0) |φq〉

〈φq|φq〉
(4.8a)

with |φq〉 :=
∑
α

v(α)
q |ψαq 〉 . (4.8b)
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Figure 4.1: Results from naive dispersion approach Eq. (4.7) for various eigen-
vectors ~Bα. Matrix dimension is D = 5, parameter is λ = 0.8.
Note from the curve α = 4 that the eigenvectors with the low-
est local energy µα are not always those with the most signi�cant
contributions to the dispersion. The remaining 9 curves for α > 8
have been left out, as they are all well above the lower boundary
of the two-quasiparticle continuum (dashed red line).

This leads to a bilinear form in the vector vq and subsequently to the generalized EVP

Hqvq = ωqNqvq , (4.9)

in which the elements of the matrices Hq and Nq are given by

Hαβ
q :=

∑
j

eikjHαβ
j , Nαβ

q :=
∑
j

eikjNαβ
j . (4.10)

Computing these coe�cients Hαβ
j is by far the most time consuming part of the calcula-

tion. Therefore, it is desirable to restrict the dimension of the momentum space EVP to a
dimension F < D2d− 1.

Note, that Hq and Nq are hermitian and therefore an orthonormal eigensystem exsits. This
follows from Eq. (4.21). Instead of solving the generalized EVP (4.9) directly, again the
approach of transforming it into a standard EVP is chosen. To do this, �rst the norm
matrix Nq is diagonalized.

Figure 4.2 shows the �rst 8 eigenvavlues n(α)
q of Nq. It is easy to see that there is one

eigenvalue that is very small and likely to cause numerical problems. This was also noted
by Verstraete et al. in Ref. [24]. It is caused by the afore-mentioned redundancy in the ~Bα
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which means, they are not orthogonal in momentum space. Due to this over-counting, the
dimension of the space e�ectively spanned by the ~Bα is less than dD2− 1, causing close to
zero eigenvalues of the norm matrix.
However, if these lowest eigvenvalues are well separated from the others, as it is the case
in Fig. 4.2, their eigenspaces can be discarded without signi�cant loss of precision.
The energy matrixHq then has to be projected onto the subspace e�ectively spanned by the
~Bα, where the norm is well behaved. For larger D, the number of such problematic norm
eigenvalues is expected to grow. Let f be the number of eigenvalues of Nq that are smaller
than some threshold value for all q in the Brillouin zone and which are well separated from
the rest. The n(α)

q are assumed to be in ascending order n(1)
q ≤ n

(2)
q ≤ · · · ≤ n

(F )
q . The

corresponding eigenvectors are labelled ~κ(α)
q . The energy matrix is then transformed as

H̃q = K†HqK, with K =

 ~κ
(f+1)
q√
n

(f+1)
q

· · · ~κ
(F )
q√
n

(F )
q

 . (4.11)

This leads to the standard EVP
H̃qṽq = ωqṽq , (4.12)

whose lowest eigenvalue is the best estimate for the dispersion relation. The meaning of
the corresponding eigenvector vq will be discussed in Chap. 5.

Figure 4.1 also shows remaining major problem. It is clear that only a few ~Bα signi�cantly
contribute to the dispersion and most of them do not. But other than manually looking
at the diagonal elements in q-space, no failsafe way could be found to determine which α
are the relevant ones.
Increasing the EVP dimension F increases the chance of including all relevant ~Bα. But
it also increases the chance of the low-lying n(α)

q intersecting with the higher ones. This
makes it di�cult to �nd and discard super�uous eigenspaces of the norm matrix.

At this point, it is not fully understood how exactly the information is distributed amoung
the ~Bα. At low matrix dimensions and low values of λ the relevant information appears to
be contained in the eigenvectors with the lowest local energy. Increasing F beyond these
relevant contributions does not signi�cantly improve the result.
For increased parameter λ, there is a higher probability to �nd non-relevant eigenvectors
inbetween the important ones (see the α = 4 curve in Fig. 4.1), so that local energy alone
is not a su�cient criterion. Also, it appears that for larger D the information becomes
more widely scattered across the D2d− 1 eigenvectors.

The exact properties of the eigenvectors and the way the quality of the result depends on
the choice of them will be subject of detailed investigations in the future.

4.1.2 Computing the matrix elements

The tensor networks for the norm elements are of the form shown in Fig. 4.3 and lead to
the following expressions

Nαβ
j =


Λ−|j−i|−1 (u, 1(Bα,A)

j T |j−i|−11
(A,Bβ)
0 v) if j < 0

Λ−1 (u, 1(Bα,Bβ)
0 v) if j = 0 (cf. Eq. (3.43))

Λ−|j−i|−1 (u, 1(A,Bβ)
0 T j−i−11(Bα,A)v) if j > 0

. (4.13)
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Figure 4.2: Eigenvalues n(α)
q of the norm matrix Nq from Eq. (4.9). Note that

the lowest eigenvalue n(1)
q is smaller than 10−5 in the whole Bril-

louin zone and well seperated from the others. Its subspace can be
discarded in calculating ωq. Also note that there are intersections
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carding all eigenvalues up to n(3)
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give unpredictable results (cf. Eq. (5.3) an comments).

Figure 4.3: Tensor network for norm element Nαβ
j

The energy matrix elements are more complex. Since again translational invariance is
broken by the local perturbations, the full Hamiltonian has to be taken into account. Thus

Hαβ
j =

∑
i

(
〈ψαj |hi |ψ

β
0 〉 − e0N

αβ
j

)
=:
∑
i

(
hαβi − e0N

αβ
j

)
. (4.14)

Again, it is to be expected that if both Bs are far away from the site i the local Hamiltonian
acts on, the in�uence is negligible. This means, that the summands should converge to
zero su�ciently quickly. At and close to criticality, again truncation errors occur.
The Hamiltonian matrix element is given by a sum of tensor networks of the kind shown
in Fig. 4.4.
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Figure 4.4: Representative contributions to the matrix element hαβj

Three possible situations need to be distinguished.
(i) The term hi acts outside the network block enclosed by the two Bs matrix sets (diagram
Fig. 4.4a). This leads to scalar products of the form

h
[i]αβ
j =

 (u′, 1(Bα,A)
j T |j|−11

(A,Bβ)
0 v′) if j < 0

(u′, 1(A,Bβ)
0 T j−11

(Bα,A)
j v′) if j > 0

(4.15)

with v′ =

{
v if i < 0
T i−max(j,0)−1h

(A,A)
i v if i > 0

(4.16)

and u′ =

{
T † |i|−|min(j,0)|−n−1h

† (A,A)
i u if i < 0

u if i > 0
. (4.17)

(ii) hi acts on site 0 or site j (diagram Fig. 4.4b) or both (diagram Fig. 4.4c). This
works in close analogy to the local term (j = 0) covered in the previous chapter. These
�transition terms� yield expressions such is

h
[i]αβ
j =

 (u, O1,(A,A) · · ·Ok,(Bα,A)
i=j · · ·On,(A,A) T |j|−1−(n−k) 1

(A,Bβ)
0 v) if j < 0

(u, O1,(A,A) · · ·Ok,(A,Bβ)
i=0 · · ·On,(A,A) T |j|−1−(n−k) 1

(Bα,A)
j v) if j > 0

(4.18)

with k ∈ {1, . . . ,n}

for the left side perturbation at site min(j,0), and analogously for the right side. If |j| < n,
another type of addition appears, where hi acts on both Bs

h
[i]αβ
j =

 (u,O1,(A,A) · · ·Ok,(Bα,A)
i+k−1=j · · ·O

k+|j|−1,(A,Bβ)
0 · · ·On,(A,A)v) if j < 0

(u,O1,(A,A) · · ·Ok,(A,Bβ)
i+k−1=0 · · ·O

k+|j|−1,(Bα,A)
j · · ·On,(A,A)v) if j > 0

(4.19)

with k ∈ {1, . . . ,n− |j|} .

(iii) for |j| > n a di�erent type occurs, where hi is completely enclosed between both Bs

(diagram Fig. 4.4d). This results in contributions of the form

h
[i]αβ
j =

 (u,1(Bα,A)
j Tmh

(A,A)
i T |j|−1−n−m1

(A,Bβ)
0 v) if j < 0

(u,1(A,Bβ)
0 Tmh

(A,A)
i T |j|−1−n−m1

(Bα,A)
j v) if j > 0

(4.20)

with m ∈ {0, . . . ,|j| − 1− n} .
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All hαβj acquire an additional factor of Λm where m is the number of lattice sites spanned
by the central part of the network.

Computing these Hαβ
j is by far the most time consuming part of the calculation. Therefore

it is very useful that because of translational invariance the following relation holds

Hαβ
j = 〈ψαj |(H − E0) |ψβ0 〉 (4.21a)

= (〈ψβ0 |(H
† − E∗0) |ψαj 〉)∗ (4.21b)

= (〈ψβ−j |(H − E0) |ψα0 〉)∗ = Hβα∗
−j (4.21c)

and analogously for Nαβ
j . Interpreting Hαβ

j and Nαβ
j as elements of matrices Hj and Nj

this means

H−j = H†j (4.22a)

N−j = N †j , (4.22b)

which reduces the computational cost by a factor of 2.

4.1.3 Notes on implementation

A look at Eq. (4.13) suggests that Nαβ
j can be computed more e�ciently if keeping, e.g.,

the right part of the tensor network given by the D ×D matrix

v′ = T j−11
(Bα,A)
j v (j > 0) (4.23)

in memory. Then the next Fourier coe�cient Nαβ
j+1 is easily computed as

Nαβ
j+1 = (1(A,Bβ)u, Tv′) . (4.24)

For the energy coe�cients Hαβ
j , a similar approach can be used. But, since for each value

of j the local Hamiltonian hi is �moved through the network�, all occurring powers of T
and T † need to be stored. This procedure reduces CPU time from O(j2

max) to O(jmax),
but at the cost of increasing memory consumption from a constant to O(jmax).

We found that the matrix elementsHαβ
q and Nαβ

q are either purely real or purely imaginary
up to numerical noise from the Fourier transform. Also, if Hαβ

q is real, then Nαβ
q is so as

well and correspondingly for Hαβ
q being imaginary.

It is not clear if this is a property of the method or the model. We still use this property to
numerically stabilize the diagonalization process. A diagonal transformation of the form

U :=

u1 0
. . .

0 uF

 with uα =

{
1 if N1α

q ∈ R
i if N1α

q ∈ C
(4.25)

transforms Hq and Nq into real symmetric matrices

H ′q := U †HqU (4.26a)

N ′q := U †NqU , (4.26b)
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from where the calculation proceeds as sketched above. Since such a transformation is
unitary, it does not change the eigenvalues and ωq remains the same.
The corresponding eigenvector vq, however, has to be transformed back into the original
basis by

vq = U †v′q (4.27)

for further use. This also avoids relative phase shifts in vq from one value of q to the next,
which would be misleading in the analysis of its Fourier transform.

4.2 Algorithm

Although the basic idea in calculating the dispersion is simple, the above-mentioned prob-
lems require a more sophisticated algorithm. It is listed in Tab. 4.1.
The algorithm is partially �heuristic�, i.e., it is based on the observations of the previous
sections. It does not always yield the optimal result possible for a given combination of D
and F , but it balances the use of computational resources, the need for human review at
intermediate stages and the quality of the results.

Note, that the number f of small norm eigenvalues n(α)
q varies with the model parame-

ters and also with D. Also, the threshold value below which problems occur may vary.
Therefore, f from now on labels the number of norm eingenvalues actually discarded in
the computation.

In the current implementation the F eigenvalues ~Bα with the lowest local energy are used
as a starting point. But, this does not mean the same α are utilized to compute the actual
result. Observation shows, that for F ≤ 10 there is always at least one very small and well
separated eigvenvalue of Nq. Therefore, the basic algorithm discards the lowest eigenvector

n
(α)
q . However, in the calculations for Fig. 4.6 and 4.7 higher, manually determined values

of f were used.
The ordering procedure in step 2 is based on the observation in Fig. 4.1. In most cases,
the integral over the squared absolute value of the derivative is a good indicator for the
probability that an eigenvector ~Bα signi�cantly contributes to the dispersion. In this sense,
if the consistency check in step 4 detects a problem, the algorithm will drop the eigenvector
with the smallest probability.

Table 4.1: Alorithm for calculating the energy dispersion

1. Compute the Fourier coe�cients Hαβ
j and Nαβ

j for j = 1, . . . ,jmax

2. Compute the Fourier transform Hαα
q of the diagonal elements, order Hj and Nj

descendingly by
∫ π

0

∣∣∣ d
dqH

αα
q

∣∣∣2 dq

3. For q ∈ [0,π] compute and solve H̃qṽq = ωqṽq, compute vq
4. If |maxωq −minωq| > 10, reduce dimension of Hq and Nq by 1.

Start step 3. again
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4.3 Results

In this section the results for the energy dispersion of the elementary excitations obtained
from our method are presented. Figures 4.5 through 4.7 show the dispersion curve as func-
tion of wave vector q for one half of the �rst Brillouin zone, because ωq is an even function
in q. The lower part of each plot shows the deviation of the variational results from the
exact solution (2.18a). It is plotted as absolute value in a logarithmic scale for clarity.
In this representation, the downward spikes indicate intersections with the exact solution.
These mean, that the ground states was not found exactly. Otherwise, the variational
principle would guarantee ωq to be a stict upper boundary.
The calculations were done with F = 20 except forD = 3 where F = dD2−1 = 2·9−1 = 17
which is the maximum number possible.
As expected, on one hand higher local dimension D yields higher accuracy. On the other
hand, parameter values λ closer to 1 decrease precision as the correlations become longer
ranged. Of course, the failure to capture the closing energy gap at criticality is important
to note. However, the results improve for increasing D. A detailed analysis of the conver-
gence properties will require a more e�cient implementation. But at least extrapolations
of critical quantities should prove possible.

Table 4.2 compares the deviation in the ground state energy to the maximum and to the
average deviation in the dispersion. Over a large part of the disordered phase (λ ≤ 0.9) the
dispersion can be obtained to the same precision on average as the ground state energy. At
the critical point, the precision deviates by about 3 orders of magnitude. The deviation in
the dispersion is of course increased when the gap closes. Also, one should compare these
deviations with the maximum deviation in the ground state energy, as the critical point is
detected at a too low parameter value for small D.

Note, that the model shows no bound states of mulitiple particles in the thermodynamic
limit. Therefore, knowing the one-particle dispersion ωq also provides the boundaries of
multi-particle contiuna by means of Eq. (2.20) and similar expressions.

Table 4.2: Comparison of the quality of the results for the ground state energy
and for the one-particle dispersion

λ D |∆E0| max |∆ω| | 〈∆ω〉 |

0.5 3 3.73 · 10−7 3.03 · 10−6 1.47 · 10−6

4 3.01 · 10−9 2.12 · 10−8 5.53 · 10−9

5 1.22 · 10−10 5.60 · 10−10 1.50 · 10−10

0.9 3 1.62 · 10−4 7.16 · 10−4 3.94 · 10−4

4 6.20 · 10−6 1.42 · 10−4 1.26 · 10−5

5 1.68 · 10−6 4.98 · 10−5 6.13 · 10−6

1.0 3 8.95 · 10−5 1.34 · 10−1 3.37 · 10−2

4 2.34 · 10−5 5.55 · 10−2 1.29 · 10−2

5 8.40 · 10−6 2.34 · 10−2 4.89 · 10−3

Figure 4.8 shows the energy gap ∆ as a function of the parameter λ. Up to λ = 0.9, the
agreement is quite good. The inset shows a magni�cation of the region around the critical
point. Each curve shows a kink, but each of them is at a value λ < 1. The position is
consistent with the maximum in the deviation of the ground state energy, see Fig. 3.5.
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Figure 4.5: Energy dispersion for parameter value λ = 0.5. In this calculation
as well as in Fig. 4.6 and 4.7 the F = 20 lowest eigenvectors were
used except for D = 3, where the maximum number of 17 was
used.

The shading for λ > 1 emphasizes the fact that the method in its current implementa-
tion cannot be expected to give accurate results for excitations in the ordered phase. The
approach as described in Chap. 3 inherently assumes a single ground state realization at
both ends of the chain. Since elementary excitations are domain walls in the Ising regime,
this implies that there has to be an even number of excitations in any state that can be
described. Indeed, there is roughly a factor of 2 between the curve for D = 5 and the exact
solution.

Figure 4.9 shows the deviation of the numerically determined energy gap from the exact
one. Again, consistent with the deviations in the ground state energy, there are spurious
oscillations at low parameter values.
All calculations were done with F = 8. As mentioned above, for larger D the required
information is not always contained in the lowest eigenvectors. This is re�ected in the
black curve for D = 5 showing larger deviations than the blue one for D = 5 and even
some above the green line for D = 3.
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Figure 4.6: Energy dispersion for parameter value λ = 0.9
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Figure 4.7: Energy dispersion for parameter value λ = 1.0
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4.4 Existing methods

This section describes how some of the methods mentioned in Sect. 1.2 that are related to
our approach can be used to obtain a dispersion relation.

4.4.1 Momentum Space DMRG

The conventional real space DMRG method is very good at �nding ground states and
their energies. In gapped systems the quasiparticle gap is given by the energy di�erence
between the ground state and the lowest lying excited state. Since that is the ground state
in the space of excited states, its energy can also be obtained with high precision. Another
possibility is to target several states simultaniously. However, at a �xed number of kept
states D, this always comes with a loss of accuracy.
While real space DMRG is not suited very well to derive momentum dependent quantities,
it can fairly easily be adapted to work on the reciprocal lattice i.e. in momentum space
directly, which was originally done in search for an extension of DMRG to 2 spatial dimen-
sions [10, 9]. In momentum space, every bloch state with momentum q is a lattice site.
However, considerable care has to be taken in the order in which these momentum lattice
sites are integrated into the system. This ordering scheme may depend on the physical
model investigated.

In the momentum space DMRG method, overall momentum is a good (conserverd) quan-
tum number. Therefore, a quasiparticle dispersion relation can be evaluated for a given q
as

ωq = min
q
Eq − E0 (4.28)

where E0 is the ground state energy and Eq the lowest energy of an excited state with
�xed overall momentum q.

While this approach utilizes the full power of the DMRG method, there are two major
drawbacks in performance. Since this method works only in �nite size systems, results
have to be extrapolated to reach the thermodynamic limit. And, every single data point
in the dispersion curve is obtained by at least one complete DMRG run. To reach full
accuracy, even two runs are required.

A more elegant way using a real-time evolution variant of DMRG was proposed by White
in Ref. [8]. In this approach the dispersion can be obtained as the maximum of the Fourier
transform of the time and position dependent correlation function 〈S−i (t)S+

0 (0)〉. This
requires only a single DMRG run. However, this method introduces an additional Suzuki-
Trotter error in the time evolution. Also, tDRMG requires larger D and more sweeps.
And it still requires �nite size scaling analysis to derive results for the thermodynamic limit.

4.4.2 Momentum space MPS

In Ref. [24] Privu, Haegeman and Verstraete recently proposed an MPS based algorithm
for translationally invariant spin systems with PBC that produces very accurate results
for dispersion relations.
The approach is quite similar to our method. It also exploits the fact that in translation-
ally invariant systems all local matrices of an MPS representation of the ground state are
the same. However, they work strictly on �nite chains of length L and approximate the



52 Dispersion

transfer matrix T by a number of m > 1 eigenvectors only if it occours in high powers.
Also, they work directly with the momentum eigenstates |ψq〉. To this end, the Fourier
transformation is done on the level of the matrices M and N which then yields a general-
ized EVP whose eigenvectors represent states with de�nite (quasi-) momentum q.
In this picture, the energy of |ψ1

q 〉 directly corresponds to the lowest branch of the disper-
sion. In a �nite chain, this is however not always a single particle state. Therefore, in this
form the method cannot easily be extended to the derivation of e�ective models in the way
shown in chapter 5.

The precision to which the lowest but also higher branches of the dispersion can be obtained
even at criticality is impressive. Relative errors for the lowest dispersion branch in a critical
ITF chain are of order 10−6 at D = 8 compared to our 10−2 at D = 5) [24]. The drawback
is however, that, to calculate the dispersion relations for variable q the Fourier coe�ecients
have to be kept in momory. And here these are a set of L2 matrices of dimension dD2.
This currently poses a severe limitation on the chain length and / or the local matrix sizeD.

4.4.3 Projected entangled multipartite states (PEMS)

The PEPS method mention in chapter 1 still su�ers from the implicit locality of corre-
lations inherent in DMRG-like approaches, since entanglement is only fully encoded for
nearest neighbours.
The idea of projected entangled multipartite states (PEMS) [37] is to overcome this limi-
tation by adding an addtional L-dimensional auxiliary system on each physical site, that
encodes mulitpartite entanglement. Here L is the number of sites in a one-dimensional
system. However, like PEPS, the approach readily extends to higher spatial dimension
Ds, in which case the additional auxiliary systems are of dimension LDs . The multipartite
state can also convey other properties into the PEPS, e.g. give the resulting physical state
a de�nite linear momentum (see Ref. [37] for detalis).
An iterative DMRG-like algorithm can then be used to obtain the spectrum of lowest lying
eigenstates with de�nite momentum q. This yields the one particle dispersion as the energy
gap for given q as

ωq = E[1]
q − E0 (4.29)

where E0 is the ground state energy and E[1]
q the energy of the lowst excited state with

momentum q.
This method may be better suited to describe certain critical systems than conventional
DMRG and MPS based methods. However, it is limited to �nite systems, as it requires
the auxiliary systems of size L.
Therefore, this method, too, relies on extrapolation to obtain results in the thermodynamic
limit. Also, a complete run is required for every given value of q



Chapter 5

Local creation operator

and spectral weight

In this chapter it will be shown how a real space representation of the local creation oper-
ator a† for the hardcore boson excitations in the system can be obtained from the results
of the previous chapter.
As one application of the e�ective model implied by these results, the one-particle contri-
bution to the spectral weight Sxx1p(q) is calculated and compared to the closed expression
proposed by Hamer et al. in Ref [33].

5.1 Local creation operator

Consider the eigenvector vq of the momentum space EVP de�ned in Eq. (4.9). For each q

its components v(α)
q describe how the states |ψαq 〉 are mixed to form a state |φq〉, so that

|φq〉 =
∑
α

v(α)
q |ψαq 〉 = a†q |ψ0〉 . (5.1)

follows. Therefore, the Fourier transform of |φq〉 yields an expression for the action of the
local creation operator on the ground state in real space

a†i |ψ0〉 =
1

2π

∫ π

−π
e−iqri |φq〉 dq =

1
2π

∫ π

−π
e−iqri

∑
αj

v(α)
q eiq(ri+rj) |ψαi+j〉 dq (5.2a)

=
∑
αj

|ψαi+j〉
1

2π

∫ π

−π
eiqrjv(α)

q dq =
∑
αj

v
(α)
j |ψ

α
i+j〉 . (5.2b)

The unitary transformation in Eq. (4.25) implies that the components of vq are either
purely real or purely imaginary. Figure 5.1 shows an example of such an eigenvector vq,

where for each component v(α)
q the non-vanishing (real or imaginary) part is plotted.

Since for each q the vector vq is the result of an independent diagonalization, the smoothness
of the components has to be ensured by setting

vq =
v†q−∆qvq

|v†q−∆qvq|
vq , (5.3)

where ∆q is the sampling interval in q space.
We found, however, that the components of vq show discontinuities at the locations of inter-

sections of the lowest n(α)
q kept with lower ones that were discarded. These discontinuities

cannot be repaired by the phase correction in Eq. (5.3).
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Figure 5.1: Example of the components of eigenvector vq of the EVP (4.9)
belonging to the energy dispersion ωq. The components are either
purely real or imaginary. The plot shows the non-zero part of each
component. Note that the imaginary components are symmetric,
whereas the real ones are antisymmetric.

The Fourier coe�cients v(α)
j in real space are given by

v
(α)
j =

1
2π

∫ π

−π
v(α)
q e−iqj dq . (5.4)

Figure 5.2 shows them on a linear scale. They exhibit a quick decrease with distance j and
an alternating sign. A better impression of the characteristics of their decrease is given by
the logscale plot of the absolute values |v(α)

j | in Fig. 5.3. This shows exponential decay
for all components. A slight increase at the right boundary can be attributed to a residual
periodicity induced by the cuto� of the Fourier series in Eq. (4.10) at some �nite jmax.

This yields the central result of this thesis: The local creation operator a†i of elementary
excitations can be constructed in real space

a†i |ψ0〉 :=
∑
j,α

v
(α)
j |ψ

α
i+j〉 . (5.5)

Due to the exponential dercease of the coe�cients v(α)
j this expression can be well ap-

proximated with a �nite number of coe�cients. We expect a power-law decrease of the
coe�cients at criticality, which was not found in the present results at small D. How well
it is described by larger matrices will be subject to future studies.
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Note, that in the one-particle space from Eq. (5.5) also the action of the annihilation
operator ai in expressions of the type 〈ψ0|aia†j |ψ0〉 follows, as it acts on 〈ψ0| as a creation
operator.

As a measure for the non-locality of the excitations, the quantity ζ is de�ned by

Vj ∝ exp
(
−|j|
ζ

)
(5.6a)

with Vj :=
∑
α

|v(α)
j | . (5.6b)

It can be determined by linear regression over the pairs of values (j, log Vj).
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Figure 5.2: Fourier transform of the vector components in Fig. 5.1

5.2 Spectral weight

Using the de�nition (5.5), expressions such as

mj := 〈ψ0|ajS x
0 |ψ0〉 = (〈ψ0|Sx†0 a

†
j |ψ0〉)∗ (5.7)

can be evaluated. They are required for the calculation of the spectral weight Sxx1p , cf. Eq.

(2.24). Noting the Fourier transform of the creation operator a†j is given by

a†q :=
1
L

∑
j

eiqrja†j , (5.8)
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and using translational invariance Eq. (2.24) yields the one-particle contribution to the
spectral weight

Sxx1p(q) =

(∑
i

〈ψ0|Sx†i
1√
L
|ψq〉e−iqri

)∑
j

1√
L
〈ψq|S x

j |ψ0〉eiqrj

 (5.9a)

=

(∑
i

〈ψ0|Sx†i e
−iqri 1

L

∑
k

eiqrka†k−i |ψ0〉

) 1
L

∑
j

eiqrj
∑
`

e−iqr`〈ψ0|aj−`S x
j |ψ0〉


(5.9b)

=

(
1
L

∑
ik

eiq(rk−ri)〈ψ0|Sx†i a
†
k−i |ψ0〉

) 1
L

∑
j`

eiq(rj−r`)〈ψ0|aj−`S x
j |ψ0〉

 (5.9c)

=

(∑
i

〈ψ0|S x
0a
†
i |ψ0〉eiqri

)∑
j

〈ψ0|aj S x
0 |ψ0〉e−iqrj

 (5.9d)

=

(∑
i

m∗i e
iqri

)∑
j

mje
−iqrj

 (5.9e)

= |mq|2 . (5.9f)

Thus, the spectral weight Sxx1p is the square of the absolute value of the Fourier transform
of the above de�ned matrix element mj .
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From Eq. (5.5) and Sx† = S x follows

m∗j =
∑
i,α

v
(α)
i 〈ψ0|S x

0 |ψαj+i〉 . (5.10)

In terms of the matrix product formalism of the previous chapters, these matrix elements
are given by

m∗j =
∑
iα

v
(α)
i S

x(α)
j+i (5.11a)

with S
x(α)
j+i =


(u,1(A,Bα)

j+i T |j+i|−1S
x(A,A)
0 v) if j + i < 0

(u, Sx,(A,Bα)
0 v) if j + i = 0

(u, Sx,(A,A)
0 T j+i−11

(A,Bα)
j+i v) if j + i > 0

. (5.11b)

Figures 5.4 through 5.6 depict the spectral weight Sxx1p for three di�erent values of λ. The
lower part of each plot again shows the deviation from the exact result from Ref [33].
The plot interval [0,π/3] is chosen to emphasize the deviation close to q = 0. Neither the
spectral weight itself, nor the deviation reveal anything new beyond this point. All curves
follow the tendency observed in the right part of the plots. The calculations were done
with F = 25 except for D = 3, where F = 17. The actual choice of the ~Bα and the value
of f were manually adjusted to obtain the best possible results from the data.
Equation (2.25) shows that Sxx1p diverges as {λ → 1,q → 0}. As expected, this singular
behaviour is not captured very well at low matrix dimensions D. But again, increased D
improves the results.

The spectral weight is also related to the spin-spin correlation function whose real space
representation is

Sj :=
〈
S x

0S
x
j

〉
= 〈ψ0|S x

0S
x
j |ψ0〉 . (5.12)

These correlation functions are known to exhibit exponential decay

Sj ∝ exp
(
−|rj |

ξ

)
, (5.13)

where the correlation length ξ is given by

ξ :=
v

∆
=

maxq ωq
minq ωq

. (5.14)

In the subspace of one-particle states, the completeness relation

1 =
∑
i

a†i |ψ0〉〈ψ0|ai . (5.15)

holds. Thereby, the correlation function can be written as

Sj =
∑
i

〈ψ0|S x
0 a
†
i |ψ0〉〈ψ0|ai S x

j |ψ0〉 =
∑
i

m∗imi−j (5.16a)

=
∑
k`,αβ

v
(α)∗
k v

(β)
`

∑
i

〈ψ0|S x
0 |ψαi+k〉〈ψ

β
i+`|S

x
j |ψ0〉 . (5.16b)
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Taking Eq. (5.6a), (5.13) and (5.16b) togeher, one can expect a relation between the
correlation length ξ and the localization length ζ of the creation operator

ζ ∝ ξ . (5.17)

Figure 5.7 shows both ξ and ζ. Indeed, both quantities range in the same order of mag-
nitude, if the system is not critical. One would not expect that low matrix dimensions
yield results which correctly reproduce the divergence for λ → 1. Note that ζ is always
smaller than ξ. This is not very surprising, remembering the construction of the MPS rep-
resentation in Chap. 2. In an exact description of the system, the matrix dimension grows
exponentially with the distance from the chain edges. This is caused by the accumulated
information on correlations. Therefore, it is to be expected, that a highly restricted local
matrix size will lead to limited capability of describing long-range correlations.
For small λ, however, the agreement should be better. A reason for this and also the
irregularities, e.g., at D = 4,λ = 0.6, can probably be found in the choice of the basis
states ~Bα. Since they are not orthogonal, Vj may need to be replaced in the de�nition of
ζ by a more suiteable quantity in future studies.
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5.2.1 Notes on implementation

Since the computation of the Fourier coe�cients in Eq. (5.4) involves numerical integration,
it is a likely source of errors. Note that both vq and Sxx1p are q dependent quantities.
Therefore, the relevant mq can be computed directly in q space

mq =
∑
j

eiqrj mj =
∑
j

eiqrj
1
L

∑
i

〈ψ0|aj+i S x
i |ψ0〉 (5.18a)

= 〈ψ0|
1
L

∑
ji

eiqrjaj+i S
x
i |ψ0〉 = 〈ψ0|aq S x

−q |ψ0〉 (5.18b)

with aq :=
1√
L

∑
j

eiqrj aj , S x
q :=

1√
L

∑
j

eiqrjS x
j . (5.18c)

By taking the hermitian conjugate of Eq. (5.1), the action of the annihilation operator aq
on 〈ψ0| is de�ned by

〈ψ0|aq =
∑
α

〈ψαq |v(α)∗
q =

1√
L

∑
αj

v(α)∗
q e−iqrj 〈ψαj | (5.19)
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which leads to

mq = 〈ψ0|aq S x
−q |ψ0〉 =

1
L

∑
jiα

v(α)∗
q eiqrje−iqri 〈ψαj |S x

i |ψ0〉︸ ︷︷ ︸
s
(α)
j−i

(5.20a)

=
1
L

∑
jiα

v(α)∗
q e−iq(rj−ri) s

(α)
j−i =

∑
jα

v(α)∗
q s

(α)
j e−iqrj (5.20b)

=
∑
α

v(α)∗
q s(α)

q . (5.20c)

The relation in Eq. (5.20) only requires a Fourier series' evaluation to compute s(α)
q , which

can easily be done to higher precision than the integral. Therefore, it is used in the calcu-
lations in Fig. 5.4 through 5.6.





Chapter 6

Conclusions and outlook

6.1 Summary of method

In this thesis, a variational method for deriving e�ective one-dimensional models was in-
troduced. The method is based on the matrix product state formalism, which is strongly
connected to the well established DMRG method.
It was demonstrated that, assuming translational invariance, the MPS ansatz allows a very
e�cient way of working directly in the thermodynamic limit.
It was shown that the DMRG-like approach of optimizing the local matrix sets on one site
and keeping the rest of the chain �xed leads to a generalized eigenvalue problem (EVP).
In an iterative procedure, this EVP can be solved, and the solution with the lowest local
energy is adopted as new ground state approximation on all other sites in the next step.
When converged, this yields an MPS approximation of the ground state and its energy.
The eigenvectors of the ground state search problem were shown to describe excitations in
the system. By transforming the EVP and the solution into momentum space, an estimate
for the one-particle dispersion was found as the lowest eigenvalue of the EVP in momentum
space.
Finally, a real space representation of the local creation operator was constructed. This
was done by Fourier transforming the eigenvector of this EVP in momentum space that
belongs to the dispersion.
These three results constitue the e�ective one-particle Hamiltonian. As an example of its
application, the one-particle contribution to the spectral weight was calculated.

A key problem was found to be the choice of the correct eigenvectors to use in building
the momentum space EVP. At the moment, the selection of the correct eigenvectors that
contribute to the dispersion partially relies on human review of the data at an intermediate
stage. Here, a better understanding of the behaviour of the momentum space EVP has to
be achieved in order to automate this process.

The method is still at an early stage. The current GNU octave implementation leaves
plenty of opportunities for improvement, both in e�cient use of computational resources
and in the algorithms used.

6.2 Summary of results

The ground state energy could be obtained to good precision (∆E < 10−3Γ) even at low
matrix dimensions. In the Ising regime, in which the ground state is twofold degenerate,
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the method was found to produce one ground state with the same accuracy as the unique
ground state in the disordered phase.
The one-particle energy dispersion could on average be calculated with the same precision
as the ground state energy over a large part of the disordered phase. Close to the quan-
tum critical point, the deviations in the precision of the results were found to be much
larger. This is mainly due to two reasons. First, that close to criticality, the information
is widely spread over the eigenvectors of the real space EVP. And Secondly, the results
for the ground state energy and the excitation gap consistently indicate that the phase
transition is detected at a too low parameter value for small matrix sizes.

As the key goal of the new method, a representation of the one-particle creation operator
was found both in momentum and in real space. In real space, this representation is given
by the coe�cients of a superposition of states in which one local matrix set is changed
from the ground state to one of the eigenvectors of the EVP. These coe�cients were found
to show exponential decrease as functions of the distance from the lattice site where the
quasiparticle is created.

As an application of the derived e�ective model, the one-particle contribution to the spec-
tral weight was calculated, a quantity that can be directly linked to the observables in
neutron scattering experiments. The results were found to agree well with the exact result
found by Hamer et al. except for parameter values very close to the quantum critical point.
This shows, that the representation of the local creation operator is indeed correct but for
critical systems more coe�cients are required than were used in the computations for this
thesis.

6.3 Outlook

A still more detailed analysis will be required to stabilize the behaviour of the momentum
space EVP. Preferably, a property of the ~Bα themselves should be found, that identi�es
the matrices which relevant for the dispersion and the creation operator. If that proves
to be impossble, an algorithm needs to be designed, that allows us to e�ciently transform
the whole EVP into momentum space. To handle this full problem, the eigenvalues of the
norm matrix need to be analyzed over the full Brillouin zone and the number of discarded
eigenvalues must be chosen adaptively.
In further testing other problems or limitations not evident from the present ITF results
can be found and resolved. Also, a better understanding of the con�dence level of the
results can be gained.

Also, the current approach assumes that the boundary conditions are more or less irrel-
evant for in�nite systems. However, in the case of a degenerate ground state, this is no
longer true. Thefore, the e�ective model could only be constructed in the disordered phase
of the transverse �eld Ising model.
Thus, a way to implement a concrete set of boundary conditions needs to be found. Control
over the boundary conditions will enable us to treat ground state degeneracy and domain
wall excitations. Thus the present approach can then be applied to more complex models.

An extension to include the dynamics of two particles, i.e., two-particle interaction is
possible and should be feasible in future research. Finally, the concept of variationally
deriving e�ective models could be extended to two spatial dimensions.
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