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Abstract

This thesis is aimed at establishing the dynamic mean-field theory as a method to describe
large and thermally disordered spin ensembles. To this end, the theory is expounded
in the context of an ongoing experiment, in which the dynamics of electronic defect
spins on a diamond surface is investigated. Based on the experimental conditions, the
Hamiltonian for a dipolar spin ensemble subjected to a global static field and a local
magnetic noise is set up. Subsequently, a particular spin is considered and its local
environment is substituted by a mean-field. A key aspect of the presented approach is
that the mean-field is interpreted to be a Gaussian random variable with second moments
following from quantum-mechanical expectation values of the original spin environment.
This consideration leads to a self-consistency problem connecting the autocorrelation
functions of the particular spin to those of the mean-field. Solving this issue by iteration
requires only minor numerical effort. The finally obtained results are in a remarkable
agreement with the experimental data supporting the settled theory. Moreover, this
thesis confirms that the considered magnetic noise induces an enormous slowdown in the
longitudinal spin decay relative to the transversal spin decay.

Kurzfassung

Im Rahmen dieser theoretischen Arbeit wird die dynamische Molekularfeldtheorie als
Methode zur Erfassung großer, thermisch ungeordneter Spin Ensembles etabliert. Zu die-
sem Zweck wird die Theorie detailliert im Kontext eines aktuellen Experiments erläutert,
in welchem die Dynamik von elektronischen Defektspins auf einer Diamantoberfläche
erforscht wird. In Anlehnung an experimentelle Gegebenheiten wird der Hamiltonoperator
für ein dipolares Spinsystem betrachtet, das einem starken statischen Magnetfeld inklusive
einem lokalen magnetischen Rauschen ausgesetzt ist. Anschließend wird ein einzelner
Defektspin separat betrachtet und dessen lokale Umgebung durch ein Molekularfeld er-
setzt. Ein zentraler Aspekt des präsentierten Ansatzes ist das Molekularfeld als Gaußsche
Zufallsvariable zu interpretieren, deren Momente mit quantenmechanischen Erwartungs-
werten der ursprünglichen Spinumgebung verknüpft sind. Daraus ergibt sich schließlich ein
Selbstkonsistenzproblem für die Autokorrelationsfunktionen von Spin und Molekularfeld,
die unter geringem numerischen Aufwand ermittelt werden können. Die resultierenden
Ergebnisse stimmen sehr gut mit den experimentellen Daten überein und stützen damit
die theoretischen Grundlagen. Außerdem wird in dieser Arbeit bestätigt, dass das berück-
sichtigte magnetische Rauschen eine erhebliche Verlangsamung des longitudinalen Zerfalls
relativ zum transversalen Zerfall der Spinpolarisation induziert.
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1 Introduction

Over the past decades, many research areas dealing with spin systems, in general, gained
enormous attention due to applications in various contexts, reaching from physics and
chemistry to quantum computing science, life science or even medicine. As an intrinsic
fundamental particle property, spin interacts with the observable reality through an
associated magnetic moment. Therefore, it can be elementarily exploited in several ways,
e.g., as a reporter for local sensing targets, or as a quantum bit in the sense of quantum
computing. In both cases, the spin has to be confined in some environment so that it is
spatially localized and therefore can be readout properly as well as manipulated. For most
applications, the environment forms a rather deleterious entity because it interacts with
the spin and thereby lowers its decoherence time, i.e. the time where its initial alignment
is conserved. Thus, it is indispensable to study the environmental coupling to the spin.
In theory, this often requires to consider a large interacting spin ensemble - an issue that
cannot be solved without applying fundamental approximations.

An example of this is a confined electron or hole in a quantum dot, which is said to form a
promising candidate for a quantum bit [1, 2]. The environment of the spin is in this case
given by a bath of nuclear spins coupling to it through the hyperfine interaction [3, 4].
For potential applications concerning quantum computing, it is of essential importance to
understand the dynamics and, in particular, the decoherence induced by this interaction.
To suitably realize the physical situation in a quantum dot, the central spin model
originally introduced by Gaudin can be employed [5, 6]. Solving this model appears to be
challenging due to a large number of around 104 − 106 nuclear spins that are required to
reflect the experimental reality [4]. Indeed, many various approaches have been applied to
it in the past [3, 7–10]. It is worth mentioning that the bare central spin model does not
incorporate a dipole-dipole coupling between the nuclear spins. For most considerations,
this is unproblematic because the dipole-dipole interaction is by far weaker than the
hyperfine interaction. However, for fairly long times it should be taken into account, e.g.,
with aid of a mean-field approach [11].

Due to their potential for highly-sensitive magnetic sensors the research of nitrogen-vacancy
centers in diamond was highly pushed forward in recent years [12–14]. Their enormous
advantages to be used as quantum reporters are not only established through thermal
stability of their spin states up to the room temperature, but also due to their optical
properties allowing for optically detected magnetic resonance (ODMR) [15–18]. As the
name implies, a nitrogen-vacancy (NV) center consists of a substitutional nitrogen atom
which is adjacent to a vacancy in the diamond lattice [18]. It carries a single spin of s = 1
with a low-energy state ms = 0 and two degenerate excited states ms = ±1 [18].
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1 Introduction

For most applications in the subject of magnetic sensing, the NV center needs to be
close to the diamond surface (< 10 nm) so that proximity to sensing targets is given [19].
However, several experiments observed that the coherence time of shallow NV spins is
considerably reduced due to the presence of other spins at the surface [19–22]. Those
result from paramagnetic defects and carry an electronic spin of s = 1

2 including a Landè
factor of g ≈ 2 for properly prepared diamond surfaces [20, 23]. Due to the lowered
coherence time, the exploitability of shallow NV centers is considerably decreased so
that they become uninteressant for potential applications. To prevent this, one could
either try to mitigate the induced decoherence, or even employ the surface spins for spin
amplification [23, 24]. For several goals, it is inevitable to gain insight into the surface-spin
dynamics so that it can be influenced properly.

An ongoing experiment [25] intends to examine the dynamics at ambient conditions
through measuring the surface-spin polarizations over time. To be able to address the
surface spins and a single NV spin at different resonance frequencies, the experimental
setup contains a strong static magnetic field. In fact, the spin polarizations are measured
in the reference frame rotating at the surface-spin Larmor frequency induced by this field.
The experimental results in transversal as well as in longitudinal direction are shown
in Fig. 1.1. What strikes is the vast difference between the decay of both polarizations,
which is reasoned due to a magnetic noise induced by surface-near proton spins [25]. This
theoretical thesis intends, amongst others, to rebuild the experimental situation employing
a dipole-dipole model expanded by the strong static field and the observed noise. The
model is treated utilizing a mean-field-based approach.
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Figure 1.1: Transversal and longitudinal spin polarizations, P xx(τ + t) and P zz(τ + t),
of dipolar surface spins on a diamond surface [25].
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It is especially the non-perturbative nature that impedes the most approximations trying
to keep up with strongly correlated many-body systems, such as spin lattices. In these
cases mean-field theories (MFT) often score with their key property to be exact in the
limit of infinite spatial dimensions or number of nearest-neighbors, respectively, because
this feature allows for accessing the systems from a specific limit. Certainly, one of
the most familiar examples for a mean-field approach is the Weiss MFT applied to the
ferromagnetic Ising model [26, 27]. The main idea is to replace the environment of a single
spin by a static averaged value reducing the lattice model to an effective single-site model
with very few degrees of freedom. To study dynamics, the classical MFT is insufficient,
though, because any fluctuations are frozen out by the static substitution. In this sense,
the search for an extended MFT incorporating dynamical features is certainly motivated.
For strongly correlated fermionic systems such a dynamic mean-field theory (DMFT),
which is somehow an extension of the Hartree-Fock theory, was elaborated some decades
ago [26–28]. A spin version of this (S-DMFT) was considered in Ref. [29] by means
of a bosonic representation and with a focus on ordered phases. It is also worthwhile
mentioning that several studies in the topic of quantum “spin glasses” are strongly related
to a S-DMFT, but they rather deal with phase transitions [30–33]. In contrast, this thesis
aims at establishing S-DMFT for thermally disordered spins and represented in spin-space,
while applying it to the elucidated experimental scenario.

The structure is organized as follows. At first, the theoretical foundation is built up
in chapter 2. Thereby, S-DMFT is established by applying it to a system of dipolar
surface spins subjected to a strong static field and a local magnetic noise based on
the experiment. The approach leads to a semiclassical Hamiltonian accompained by a
self-consistency problem allowing for feasible numerical computation. At the end, the
considered system is studied in the zero-field limit utilizing the elaborated theory. In
chapter 3, the numerical procedure to solve the self-consistency problem through iteration
is furnished. Moreover, it is expounded on how to sample dynamic Gaussian random
variables and how to compute time evolution operators efficiently. Subsequently, numerical
results are presented in chapter 4. After providing an error analysis in the beginning, the
autocorrelations resulting in the strong-field regime are shown and compared with the
received experimental data. Finally, the results in the zero-field limit are also presented
and discussed. The last chapter, 5, summarizes the established theory and the obtained
results to propose an ambitious outlook at the end.
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2 Theory

In the introduction we described an experimental background concerning dipolar surface
spins on a diamond surface. In particular, we emphasized that their autocorrelation
functions1 are interesting due to considerably different timescales of the transversal and
longitudinal decays. The current chapter establishes a fundamental theoretical model by
which we capture the dynamics of the surface spins. At first, we consider a strong external
magnetic field acting on a spin ensemble. After setting up the Hamiltonian, we turn
to a rotating frame and apply a rotating wave approximation. Subsequently, a detailed
description of a dynamic mean-field approach for the considered spin system is provided.
We formulate a self-consistency problem linking the mean-field autocorrelations to the
single-spin autocorrelations. Moreover, the system and thus the self-consistency problem
is extended to include a magnetic field noise because this is observed experimentally. At
the end, we also treat the case of a zero external field by same manner. Henceforth,
operators and matrices are represented by boldface symbols and we set ~ = 1.

2.1 Spin ensemble subjected to a static magnetic field

To build the model, we start by formulating the fundamental Hamiltonian for both the
dipole-dipole coupling and the external field coupling. For an ensemble of N pairwise
interacting spin-12 the Hamiltonian is given by [34]

HDD =
∑

0≤i<j≤N−1

J (Rij)

(
R2

ij

(
~Si · ~Sj

)
− 3

(
~Si · ~Rij

)(
~Sj · ~Rij

))
. (2.1)

The distance Rij between two spins i and j is not an operator in contrast to the spin
operators Si und Sj because we consider localized spins. Furthermore, we remind the
reader that the spins and hence the distance vectors are located on a planar surface. The
coupling constant reads [34]

J(R) =
µ0γ

2
s

4πR5
, (2.2)

where we call γs the gyromagnetic ratio of the spins. In line with experimental observations
[20, 25] we adopt

γs = gsµB ≈ 2µB. (2.3)

1In our case (s = 1
2
), they are simply given by a quarter of the spin polarizations.
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2.1 Spin ensemble subjected to a static magnetic field

According to (2.1) and (2.2) we see that the interaction strength decreases with 1/R3.

In addition to the dipole-dipole Hamiltonian we consider an external static and homoge-
neous magnetic field B. Per definition we choose the z-axis parallel to this field leading to
the Zeeman coupling

HZ = γsB
N−1∑
i=0

Sz
i . (2.4)

Moreover, we assume an angle α between the normal vector of the surface and the magnetic
field so that the z-axis is not perpendicular to the surface. The total system underlying
the Hamiltonian

HT = HDD +HZ (2.5)

is illustrated in Fig. 2.1.

~B

α

~n z

Sj

Si

Figure 2.1: Schematic illustration of localized surface spins subjected to an external
magnetic field. Exemplarily, the red wavy line indicates the interaction between a pair
of spins. Corresponding to (2.1) such an interaction exists between all pairs of spins.

Due to the external field the spins precess at the Larmor frequency

ωL = γsB (2.6)

around the z-axis. As explained in the introduction, the studied autocorrelation functions
are experimentally measured in the Larmor rotating frame. For a comparison between
numerical and experimental results it is necessary to turn to this frame. Viewed from a
resting laboratory frame the time evolution of the spin operators Si is based on HT. An
observer in a reference frame rotating at ωL views an additional time evolution based on
−HZ, because from the obervers point of view the spins additionaly rotate at ωL against
the rotational direction. Therefore, the autocorrelation functions in the Larmor rotating
frame obey

〈Sα
rot(t)S

α
rot(0)〉 = 〈U

†
Z(−t)U

†
T(t)S

α(0)UT(t)UZ(−t)U
†
Z(0)S

α(0)UZ(0)〉 (2.7a)

= 〈UZ(t)U
†
T(t)S

α(0)UT(t)U
†
Z(t)S

α(0)〉, (2.7b)

= 〈U †
eff(t)S

α(0)Ueff(t)S
α(0)〉, (2.7c)
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2 Theory

where we introduced the effective time evolution operator

Ueff(t) = UT(t)U
†
Z(t) (2.8)

and

UZ(t) = e−iHZt, UT(t) = e−iHTt. (2.9)

With aid of the general differential equation

i∂tUeff(t) = Heff(t)Ueff(t) (2.10)

one obtains the effective Hamiltonian2

Heff(t) = UZ(t)HTU
†
Z(t)−HZ = UZ(t)HDDU

†
Z(t). (2.11)

Obviously, the dipole-dipole Hamiltonian is rotated backwards at frequency ωL. This
leads to a precession of the occurring spin operators according to

~Si(t) = e−iωLtS
z
i ~Si(0) eiωLtS

z
i =

Sx
i cos(ωLt) + Sy

i sin(ωLt)
Sy
i cos(ωLt)− Sx

i sin(ωLt)
Sz
i

 , (2.12a)

wherein we have used

e−iωSα
Sβ eiωSα

=

(
cos(ω) + δαβ [1− cos(ω)]

)
Sβ +

∑
γ

sin(ω)εαβγSγ . (2.13)

Correspondingly, the effective Hamiltonian reads

Heff =
∑

0≤i<j≤N−1

J (Rij)

(
R2

ij

(
~Si · ~Sj

)
− 3R2

ij,zS
z
i S

z
j −

3

2
R2

ij

(
Sx
i S

x
j + Sy

i S
y
j

)

− 3 cos(ωLt)Aij − 3 sin(ωLt)Bij − 3 cos(2ωLt)Cij − 3 sin(2ωLt)Dij

) (2.14a)

=
∑

0≤i<j≤N−1

J (Rij)

((
R2

ij − 3R2
ij,z

)
Sz
i S

z
j −

R2
ij

2

(
Sx
i S

x
j + Sy

i S
y
j

)

− 3 cos(ωLt)Aij − 3 sin(ωLt)Bij − 3 cos(2ωLt)Cij − 3 sin(2ωLt)Dij

)
,

(2.14b)

with

Aij = Rij,zS
z
i

(
Rij,xS

x
j +Rij,yS

y
j

)
+Rij,zS

z
j (Rij,xS

x
i +Rij,yS

y
i ) , (2.15a)

Bij = Rij,zS
z
i

(
Rij,xS

y
j −Rij,yS

x
j

)
+Rij,zS

z
j (Rij,xS

y
i −Rij,yS

x
i ) , (2.15b)

Cij =
1
2

(
R2

ij,x −R2
ij,y

) (
Sx
i S

x
j − Sy

i S
y
j

)
+Rij,xRij,y

(
Sx
i S

y
j + Sy

i S
x
j

)
, (2.15c)

Dij =
1
2

(
R2

ij,x −R2
ij,y

) (
Sx
i S

y
j + Sy

i S
x
j

)
+Rij,xRij,y

(
Sy
i S

y
j − Sx

i S
x
j

)
. (2.15d)

2The presented procedure corresponds to using the interaction picture. To this end, it is selected HZ to
be the non-perturbative and HDD to be the perturbative part.
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2.2 Rotating Wave Approximation

The first term in (2.1) is not affected by the precession, since both spins in the scalar
product are rotated at the same frequency. Though, Heff is time-dependent because the
second term yields several terms oscillating at ωL and 2ωL. In the following section, we
employ the common approximation to average the time dependence. Henceforth any sum
over spin sites runs from 0 to N − 1, if not explicitly restricted.

2.2 Rotating Wave Approximation

In general, a rotating wave approximation (RWA) is worth considering for systems, where
two kinds of dynamics happen at essentially different timescales [35, 36]. Then, one may
replace fast oscillations in the Hamiltonian by their temporal average to uncover the slow
dynamics3. There it applies, the larger the difference between the timescales, the better
the quality of the approximation. The RWA reveals to be suitable for our case, since the
external magnetic field is strong leading to a fast Larmor precession in the considered
experiment. To quantify this accuracy, we require a large Larmor frequency compared to
the typical frequency of the dipole-dipole interaction, i.e.,

ωL = γsB � ωDD = J(RDD)R
2
DD. (2.16)

From the experiment we roughly estimate the typical dipole field from the typical interac-
tion distance [25] according to

RDD = 5 nm, (2.17a)
ωDD ≈ 2.6 MHz, (2.17b)
BDD ≈ 15 µT. (2.17c)

Indeed, the experimental static magnetic field is approximately given by [25]

B ≈ 0.13 T (2.18)

and hence four orders of magnitude larger than the dipole field strength. Thus we conclude
that the RWA is justified.

Correspondingly, we replace the oscillating terms in the effective Hamiltonian (2.11) by
their temporal average according to

sin(ωLt)→ 0, sin(2ωLt)→ 0, (2.19a)
cos(ωLt)→ 0, sin(2ωLt)→ 0. (2.19b)

3This corresponds to a first order truncation of the Magnus expansion [36, 37].
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2 Theory

Hence, the approximated Hamiltonian reads

Heff ≈
∑
i<j

J (Rij)
((

R2
ij − 3R2

ij,z

)
Sz
i S

z
j −

R2
ij

2

(
Sx
i S

x
j + Sy

i S
y
j

))
(2.20a)

=
∑
i<j

J̃ij

(
4Sz

i S
z
j − 2Sx

i S
x
j − 2Sy

i S
y
j

)
(2.20b)

=
1

2

∑
i 6=j

J̃ij

(
4Sz

i S
z
j − 2Sx

i S
x
j − 2Sy

i S
y
j

)
, (2.20c)

where we introduced the shorthand

J̃ij =
1

4
J (Rij)

(
R2

ij − 3R2
z,ij

)
. (2.21)

Due to the RWA we eliminated any time dependence and thereby simplified the problem
essentially. However, a direct analytical or numerical treatment of the resulting Hamil-
tonian is still not accessible due to the large number of spins. Therefore, we justify and
employ a dynamic mean-field approach in the upcoming section.

2.3 Dynamic mean-field theory for spins

2.3.1 Introduction of the local Overhauser fields

To pave the way for S-DMFT, we focus on the dynamics of one particular spin and argue
that it represents the whole ensemble. At first, we introduce collective fields as

~Vj =
∑
i

i 6=j

J̃ij ~Si, (2.22)

where j can take the values from 0 to N − 1. In analogy to the Overhauser field in the
central spin model (CSM) [10], we denote these fields as local Overhauser fields due to
their similar structure. Moreover, we use them to rewrite the effective Hamiltonian

Heff =
1

2

∑
j

4Sz
jV

z
j − 2Sx

j V
x
j − 2Sy

jV
y
j . (2.23)

The local Overhauser fields clearly differ from each other because the considered spins are
randomly distributed on the surface and thus the J̃ij vary. However, the dipole-dipole
interaction is long-range since the interaction strength decreases weakly (∝ 1/R3). Because
of this, the number of spins which considerably contribute to the sum in each ~Vj is large
allowing for the following approximation: We assume that the local Overhauser fields are
equal on average and therefore neglect the local inhomogeneities of the system. Any pair
of expectation values which only differ by the local indices of the fields are assumed to be
equal, e.g.

〈~Vi〉 = 〈~Vj〉 ∀i, j.
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2.3 Dynamic mean-field theory for spins

Hence, the environment of each spin is equal on average so that we consider the dynamics
of a particular spin S0 to be valid for any of the ensemble. The Hamiltonian for this
particular spin reads

Heff,0 = 4Sz
0V

z − 2Sx
0V

x − 2Sy
0V

y, (2.24)

where

~V =
∑
i>0

J̃i0 ~Si (2.25)

denotes the corresponding local Overhauser field. We remind the reader that this Hamil-
tonian in its bare form does not capture the system adequately since interactions between
two spins in ~V are omitted. However, when replacing ~V in (2.24) by a classical field as
part of S-DMFT those interactions are implicitly considered.

In the following, we justify and employ S-DMFT in three steps:

1. At first, we expound why the local Overhauser field can be substituted by a classical
time-dependent field which we call “mean-field”.

2. Subsequently, we reason why this mean-field can be interpeted as a Gaussian random
variable with zero average.

3. Finally, the second moments of the Gaussian mean-field are determined.

Since we need to calculate several expectation values during these steps, we require the
density operator and thus the temperature of the considered system. The experiments
are executed at ambient conditions, T ≈ 300 K [25], leading to a characteristic thermal
energy of roughly

Eth = kBT ≈ 26 meV. (2.26)

By inserting the typical interaction distance (2.17a) into the general dipole-dipole coupling
we estimate the energy scale as

EDD ∝ J(RDD)R
2
DD =

µ0γ
2
s

4πR3
DD
≈ 1.7 neV. (2.27)

Since this value is about seven orders of magnitude smaller than Eth we conclude that
the system is disordered. Correspondingly, the density operator is proportional to the
identity

ρ =
1
d
, (2.28)

where d is the Hilbert space dimension. In the following subsection we discuss the first
S-DMFT step 1.

9



2 Theory

2.3.2 Substitution by a dynamic mean-field

Our goal is to justify a substitution of the local Overhauser field by a classical time-
dependent field. To this end, we show that quantum fluctuations of ~V are subdominant
and, furthermore, that back actions of ~S0 are negligible. This is done while comparing
our model to the CSM where apparently the semiclassical substitution does not succeed.
Let us first introduce the CSM.

The CSM basically describes an interaction between a single central spin S0 with a bath of
spins Si through varying coupling constants Ji, 0 < i ≤ NCSM. Its Hamiltonian therefore
reads [38]

HCSM = ~S0 ·
∑
i

Ji ~Si = ~S0 · ~P , (2.29)

where the so-called Overhauser field

~P =
∑
i

Ji ~Si (2.30)

represents the spin bath. The model is, e.g., used to capture the hyperfine coupling of an
electronic spin to a bath of nuclear spins in a quantum dot. For our comparison we focus
on a semiclassical approach for the CSM provided in Ref. [38].

First of all, we adapt an analytical argument from Ref. [38] (pp.103-105) supporting the
classical-field substitution for both models. To this end, we introduce the Frobenius norm
of an operator A

||A||2 = 1

d
Tr
(
A†A

)
. (2.31)

One may interpret it as an analogue to the absolut value of a classical vector. Since we
are interested in the behavior of the local Overhauser field, we compute the norm of a
field component V α and of the commutator of two components [V α,V β]. Inserting V α

into (2.31) one obtains

||V α||2 = 1

d

∑
i,j>0

J̃0iJ̃0j Tr
(
Sα
i S

α
j

)
=

1

d

∑
i,j>0

J̃0iJ̃0j
δijd

4
=

J2
Q
4
, (2.32)

where we introduced the quadratic dipole-dipole coupling constant

J2
Q =

∑
i>0

J̃2
0i =

∑
i>0

1

16
J2 (R0i)

(
R2

0i − 3R2
z,0i

)2
. (2.33)

Moreover, the norm of the commutator [V α,V β] obeys

∣∣∣∣∣∣[V α,V β]
∣∣∣∣∣∣2 = 1

d

∑
i,j>0

J̃2
0iJ̃

2
0j Tr

(
Sγ
i S

γ
j

)
=

1

d

∑
i,j>0

J̃2
0iJ̃

2
0j

δijd

4
∝

J4
Q

4Neff
, (2.34)

10



2.3 Dynamic mean-field theory for spins

where we consider pairwisely different components α, β, γ. Since one of the sums in (2.34)
vanishes due to the Kronecker delta, we estimate the expression by adding a factor 1/Neff
where Neff denotes the number of spins that considerably contribute to the summation.
Note that this number may be smaller than the total number of spins, but nevertheless
large due to the long-range interactions. Except for the different coupling constant one
obtains the same results for our model as for the central spin model [38]. With the same
manner, we argue that the norm of the commutator [V α,V β] is suppressed relative to
the norm of a component V α according to(∣∣∣∣∣∣[V α,V β]

∣∣∣∣∣∣2) 1
2

∝
J2

Q

2
√
Neff

� ||V α||2 =
J2

Q
4
.

In contrast, the commutator norm of a quantum mechanical angular momentum operator
(small J) is of the same order as the operator norm due to(∣∣∣∣∣∣[Jα,Jβ]

∣∣∣∣∣∣2) 1
2

=
(
||Jγ ||2

) 1
2 ∝ ||Jγ ||2

for pairwisely different components α, β, γ. Thus, the local Overhauser field ~V behaves
like a classical vector and its operator character can be neglected. The same conclusion is
drawn in Ref. [38] for the Overhauser field of the CSM. By means of this, the substitution
of ~V in our model or ~P in the CSM, respectively, by a static classical field is justified.
However, to justify this substitution for a dynamic classical field one also requires that any
back actions of S0 are negligible because they are completely neglected throughout the
substitution. This issue is treated below, where we discuss a substantial difference between
the dipole-dipole model and the CSM leading to a fundamentally different applicability of
the semiclassical substitution.

Apart from different couplings and anisotropy, the Hamiltonians (2.24) and (2.29) seem to
be similar. However, we have to keep in mind interactions between different spins included
in ~V , since they are not explicitly appearing in (2.24). In fact, the terms occurring in
(2.24) form only a tiny fraction ∝ 1/N of the total number of interactions. To comprehend
this, one may look at Fig. 2.2a. In addition to the black lines starting at ~S0 the other
spins of the ensemble are also connected with one another, illustrated by the orange lines.
In contrast, in the CSM there are only connections between the central spin and each
nuclear spin, see Fig. 2.2b. We deduce that the compared models have an essentially
different geometrical topology leading to an essentially different importance of the central
spin. Taking ~S0 out of the dipole-dipole system will hardly affect the dynamics, since
the particular spin only contributes marginally and a huge interacting ensemble remains
(orange lines in 2.2a). Thereby, the dynamics of ~V (t) can be assumed to be independent
on the particular dynamics of ~S0(t). No back action needs to be taken into account
in the model of interacting dipoles. In contrast, omitting ~S0 in the CSM leads to a
non-interacting nuclear spin ensemble without any dynamics. Assuming a time-dependent
mean-field of which the dynamics is independent of the one of ~S0 is therefore not justified.
Correspondingly, the semiclassical substitution is not successful for the CSM, see Ref.
[38].

11



2 Theory

In conclusion, we found an analytical argument supporting to treat ~V (t) as a classical
vector by means of the Frobenius norm. Moreover, we discussed why the first step
of S-DMFT is well reasoned for our model in contrast to the CSM due to substantial
differences between both. Therefore, we continue with step 2.

S0

SkSj

Si

J̃0j

J̃0i

J̃0k

J̃jk

J̃ij
J̃ik

(a) Dipole-dipole model.

S0

SkSj

Si

Ji

Jj Jk

(b) Central spin model.

Figure 2.2: Schematic representation of the interactions in the dipole-dipole model
corresponding to (2.24) and in the central spin model corresponding to (2.29).

2.3.3 Properties of the dynamic mean-field

In the last subsection we justified a substitution of ~V by a time-dependent mean-field
~V (t). The corresponding semiclassical Hamiltonian reads

Hmf(t) = 4Sz
0V

z(t)− 2Sx
0V

x(t)− 2Sy
0V

y(t). (2.35)

It is a key aspect of the approach that the fundamental properties of the mean-field result
from expectation values of the local Overhauser field due to the substitution. For a single
component we find

〈V α(t)〉qm =
∑
i>0

J̃0i 〈Sα
i (t)〉qm, (2.36)

where the index qm implies that the corresponding time evolution refers to the Hamiltonian
(2.20). Inserting the density operator (2.28) into the single spin expectation value one
obtains

〈Sα
i (t)〉qm = 〈Sα

i (0)〉qm =
1

d
Tr
(
Sα
i

)
= 0 (2.37)

and thus

〈V α(t)〉qm = 0. (2.38)

12



2.3 Dynamic mean-field theory for spins

It is obvious that a common mean-field approach where ~V is replaced by its expectation
value is trivial in our case. The Hamiltonian would simply vanish because we assume
thermal disorder. In fact, we want to study the dynamics of the spin system and not
its static magnetization. Therefore, we interpret the mean-field as a dynamic random
variable and average over different configurations to compute any expectation values of
the system. Correspondingly, we require the distribution function of ~V (t). Since the
properties of the mean-field follow from that of the local Overhauser field, we equate any
classical averages of ~V (t) to the corresponding quantum mechanical expectation values of
~V (t). This scheme is illustrated in Fig. 2.3. In what follows, we justify that the dynamic
mean-field resulting from ~V (t) follows a Gaussian distribution due to the central limit
theorem [39].

S-DMFT

=

operator ~V (t)

expectation values
〈V α(t)〉, 〈V α(t)V β(0)〉, ...

random variable ~V (t)

classical averages
V α(t), V α(t)V β(0), ...

Figure 2.3: Scheme of the random-field substitution in S-DMFT.

To this end, we have to clarify that on the one hand, ~V (t) sums over a large number
of variables and on the other hand, these variables are uncorrelated to each other. The
first condition is clearly satisfied because the local Overhauser field (2.25) sums over a
large number of spin operators. To justify the second statement, however, we have to
demand that any pair correlations between two sites vanish which is not obvious. In the
following, we discuss this issue while distinguishing between one-time pair correlations a)
and two-time pair correlations b).

a) For the first sort we find

〈Sα
i (t)S

β
j (t)〉 = 〈S

α
i (0)S

β
j (0)〉 =

1

d
Tr
(
Sα
i S

β
j

)
= 0, (2.39)

because the time evolution operator commutes with the density operator and i 6= j.
Hence, they do not violate the second condition for the central limit theorem.

b) The two-time pair correlations 〈Sα
i (t1)S

β
j (t2)〉, where i 6= j, are generally not zero.

From this point, though, we assume them to be subdominant and therefore neglect
them against the autocorrelations. An analytical argument for this assumption
is furnished in App. A. There, we introduce a Bethe lattice consisting of spins
with a nearest-neighbor interaction. We are able to show that pair correlations
are suppressed for increasing number of nearest neighbors. By means of this, we
conclude that the central limit theorem is approximately applicable.

13



2 Theory

Summarizingly, the dynamic mean-field behaves Gaussian so that we only need the first
two moments to capture it completely. The average value is already determined through

~V (t) = 〈~V (t)〉qm = 0. (2.40)

In the next subsection we compute the second moments as part of step 3.

2.3.4 Self-consistency problem for the mean-field autocorrelations

We established that the dynamic mean-field is Gaussian, since it consists of a large
number of weakly correlated variables. To quantify this behavior, we relate the mean-field
autocorrelations to the autocorrelations of the local Overhauser field via

V α(t)V β(0) = 〈V α(t)V β(0)〉qm =
∑
i,j>0

J̃0iJ̃0j 〈Sα
i (t)S

β
j (0)〉qm

=
∑
i>0

J̃2
0i〈Sα

i (t)S
β
i (0)〉qm + 2

∑
0<i<j

J̃0iJ̃0j 〈Sα
i (t)S

β
j (0)〉qm.

(2.41)

The first term sums the autocorrelations for each spin interacting with S0. Since an equal
behavior of all spins is assumed on average, we are allowed to take the autocorrelations out
of the sum and omit the site index i. The second term contains all time-dependent pair
correlations except the ones with S0. As explained in b) we neglect these contributions,
since we assume them to be subdominant. We refer to App. A for an analytical argument.
In conclusion, the mean-field autocorrelation obeys

V α(t)V β(0) = J2
Q〈Sα(t)Sβ(0)〉qm = J2

Q〈Sα(t)Sβ(0)〉mf, (2.42)

where J2
Q is the quadratic coupling constant, see (2.2). In line with our approach we

replaced the expectation value corresponding to (2.20) by a mean-field expectation value.
The latter is computed while calculating an expectation value with regard to the mean-
field Hamiltonian (2.35) multiple times for different configurations of the mean-field, i.e.
different temporal trends ~V (0→ t). We denote the expectation values corresponding to a
single configuration simply by

〈Sα(t)Sβ(0)〉 := 〈Sα(t)Sβ(0)〉
(
~V (0→ t)

)
. (2.43)

Subsequently, one averages over the single-configuration results according to

〈Sα(t)Sβ(0)〉mf = 〈Sα(t)Sβ(0)〉, (2.44)

where the line on the right-hand-side refers to an average over different configurations
~V (0 → t). Those are sampled based on a Gaussian distribution which is determined
through the autocorrelations of the mean-field (2.42). We refer to 3.2 for details about
the sampling procedure.

By (2.42) the mean-field autocorrelations are connected to the single-spin autocorrelations.
Since the computation of the second sort requires the first sort and vice versa, we call

14



2.3 Dynamic mean-field theory for spins

equation (2.42) a self-consistency condition. Indeed, this is common for mean-field
approaches due to the substitution of operators by quantities which depend on the
expectation values of the operators. Basically, to solve the self-consistency problem
numerically one selects initial functions for the mean-field autocorrelations, determines the
single-spin autocorrelations via sampling and computes new mean-field autocorrelations
with aid of (2.42) as part of the first iteration step (0)→ (1). With the same manner one
iterates from an arbitrary step (n)→ (n+ 1) to optimize the results. The procedure is
stopped when an adequate convergence is achieved. Since there are three spin components
α, β ∈ {x, y, z}, we have to consider nine autocorrelations at maximum. However, by
exploiting symmetries of the system we reduce this number considerably in the following
subsection.

2.3.5 Simplification of the self-consistency problem by symmetries

Generally, for the symmetry discussion we consider the full q.m. Hamiltonian (2.20) in
the rotating frame without mean-field approximation. The first thing we realize is that
all autocorrelations are invariant to shifts in time because of

〈Sα(t1)S
β(t2)〉 = 〈U †(t1)S

α(0)U(t1)U
†(t2)S

β(0)U(t2)〉 (2.45a)
= 〈U †(t1 − t2)S

α(0)U(t1 − t2)S
β(0)〉 (2.45b)

= 〈Sα(t1 − t2)S
β(0)〉, (2.45c)

where we used the group property of the time evolution operator and the fact that any
operator commutes with the density operator since the latter is proportional to unity.
Secondly, we study the behavior of the autocorrelation functions under time reversal. To
this end, we introduce the antiunitary time reversal operator [40]

Θ = −
(
Θ†
)−1

(2.46)

acting on quantum mechanical states as

Θ |Ψ(t)〉 = |Ψ(−t)〉 . (2.47)

Spin operators or general angular momentum operators transform as

ΘSαΘ−1 = −Sα (2.48)

due to their fundamental commutator relations. Since the Hamiltonian is bilinear in
spin operators, it commutes with Θ. Thus, the time evolution operator is transformed
according to

ΘU(t)Θ−1 = U(−t). (2.49)
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2 Theory

Note that this does not hold anymore when an external field is applied to the system.
Using (2.48) and (2.49) we find

〈Sα(t)Sβ(0)〉 = 〈Θ−1ΘU †(t)Θ−1︸ ︷︷ ︸
U†(−t)

ΘSα(0)Θ−1︸ ︷︷ ︸
−Sα(0)

ΘU(t)Θ−1︸ ︷︷ ︸
U(−t)

ΘSβ(0)︸ ︷︷ ︸
−Sβ(0)Θ

〉 (2.50a)

= 〈Θ−1Sα(−t)Sβ(0)Θ〉 (2.50b)
= 〈Sα(−t)Sβ(0)〉 (2.50c)

and thus time-reversal symmetry for all autocorrelations. Furthermore, we notice that
the Hamiltonian (2.20) is isotropic with respect to the x- and y-components of the spins.
Applying a spin rotation of π/2 around the z-axis results in

Sx −→ +Sy, Sy −→ −Sx, (2.51)

which does not affect Heff since the crucial terms do not change

Sx
i S

x
j + Sy

i S
y
j −→ Sy

i S
y
j + Sx

i S
x
j . (2.52)

In summary, we found three important symmetries of the system, namely time translation
invariance (TTI), time reversal symmetry (TRS) and π/2-spin-rotational symmetry around
z (SRZ). Combining them we obtain

〈Sx(t)Sy(0)〉 SRZ
= −〈Sy(t)Sx(0)〉 TRS

= −〈Sy(−t)Sx(0)〉 (2.53a)
TTI
= −〈Sy(0)Sx(t)〉 = −〈Sx(t)Sy(0)〉, (2.53b)

and hence

〈Sx(t)Sy(0)〉 = 〈Sy(t)Sx(0)〉 = 0. (2.54)

Moreover, one finds

〈Sx(t)Sz(0)〉 SRZ
= 〈Sy(t)Sz(0)〉 SRZ

= −〈Sx(t)Sz(0)〉, (2.55a)

〈Sz(t)Sx(0)〉 SRZ
= 〈Sz(t)Sy(0)〉 SRZ

= −〈Sz(t)Sx(0)〉, (2.55b)

and by this,

〈Sx(t)Sz(0)〉 = 〈Sy(t)Sz(0)〉 = 〈Sz(t)Sx(0)〉 = 〈Sz(t)Sy(0)〉 = 0. (2.56)

Furthermore, the rotational symmetry implies the eqivalence of two of the three remaining
functions

〈Sx(t)Sx(0)〉 SRZ
= 〈Sy(t)Sy(0)〉. (2.57)

Since the mean-field autocorrelations are given by the single-spin autocorrelations according
to (2.42), clearly the symmetry relations hold for them as well. The resulting self-
consistency problem reads

vxx(t) = vyy(t) = J2
Q gxx(t), (2.58a)

vzz(t) = J2
Q gzz(t), (2.58b)
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2.4 Extension to a local magnetic noise

where we denoted

gαβ = 〈Sα(t)Sβ(0)〉qm = 〈Sα(t)Sβ(0)〉mf, (2.59a)

vαβ = V α(t)V β(0). (2.59b)

Below we will extend the system and thus the self-consistency condition to magnetic field
noise to capture the experimental setup.

2.4 Extension to a local magnetic noise

As mentioned in the introduction, there is a local magnetic noise resulting from proton
spins near the surface [25]. For simplicity, we assume this noise to be Gaussian. This
assumption is justified by the central limit theorem because the magnetic field at each
surface spin consists of many rather independent contributions. Since the electronic
Larmor frequency is in general considerably larger than that of the protons due to

γs = 2µB � γp ≈ 0.003µB, (2.60)

we assume the noise to be approximately static at timescales of the electronic spin dynamics.
To consider this noise in our theoretical approach we include the additional term

HN = γs
∑
i

~bi · ~Si (2.61)

in the fundamental Hamiltonian (2.5), where ~bi represents the static noise vector varying
in space. Note that ~bi is not considered to be an operator but a real vector because we do
not consider back actions of the surface spins on the noise. Indeed, we interpret it as a
random variable so that we basically have to average over multiple configurations {~bi}.
By turning to the Larmor rotating frame and applying a RWA the x- and y-components
of the noise vanish. This is the case because they acquire oscillating prefactors sin(ωLt)
and cos(ωLt) in the rotating frame which are zero on average. We stress that we do not
consider a precession of the noise itself, since the protonic Larmor frequency is considerably
small. In line with Sec. 2.2, the effective Hamiltonian reads

Heff,N = Heff + γs
∑
i

bziS
z
i . (2.62)

Corresponding expectation values are averaged over different noise configurations according
to

〈A(t1, t2, ...)〉qm,N =

(
N−1∏
i=0

∫ ∞

−∞
dbzi

(√
2π b2

N) e−
(
bzi
)2(

2b2
N)−1

)
· 〈A(t1, t2, ...)〉qm ({bzi }) ,

(2.63)

where b2
N
:= (bzi )

2
N
,∀i, denotes the variance of the noise and the expectation value in

the integral refers to a single noise configuration {bzi }. One may realize that due to the
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magnetic noise the Hamiltonian (2.62) is not time-reversal invariant anymore. Applying
time reversal to it induces a sign in front of the noise sum. However, since the expectation
values are determined through noise averaging (2.63), this sign can simply be eliminated
by substitution. Correspondingly, the physical results are time-reversal invariant and any
symmetries observed in 2.3.5 hold for the extended system as well. Thus, we still only
require gαα(t) and vαα(t) for α ∈ {x, z} in the following.

For the dynamic mean-field approach we include the magnetic noise in the z-component
of the local Overhauser fields as

V z
N,j = γsb

z
j + V z

j = γsb
z
j +

∑
i

i 6=j

J̃ij S
z
i . (2.64)

Then, the Hamiltonian for a particular spin reads

Heff,N,0 = 4Sz
0V

z
N − 2Sx

0V
x − 2Sy

0V
y. (2.65)

We emphasize that by this definition the expectation values of V z
N,j are still independent

of j when neglecting local inhomogenities since the noise is averaged out. Moreover,
the three steps in 2.3 to justify the dynamic mean-field approach are still valid, because
the included noise is assumed to be Gaussian with zero average. Thus, it conserves the
fundamental behavior of the mean-field. The self-consistency condition for the longitudinal
autocorrelation needs to be recalculated, though. We obtain

V z
N(t)V

z
N(0) = V z(t)V z(0) +

1

4
γsb

N
(
V z(t) + V z(0)

)
+

1

16
γ2s b

2
N (2.66a)

= V z(t)V z(0) +
1

16
γ2s b

2
N
, (2.66b)

where the index N denotes a pure noise averaging. Therefore, the mean-field Hamiltonian
reduces to

Hmf,N(t) = 4V z
N(t)S

z
0 − 2V x(t)Sx

0 − 2V y(t)Sy
0 , (2.67)

which is equal to (2.35) apart from the adjusted second moment of the mean-field
z-component. Eventually, the self-consistency problem reads

vxx(t) = vyy(t) = J2
Q gxx(t), (2.68a)

vzz(t) = J2
Q (gzz(t) + C) , (2.68b)

where we introduced the unitless constant

C =
1

J2
Q

1

16
γ2s b

2
N
, (2.69)

and set vzz(t) := V z
N(t)V

z
N(0). In conclusion, the numerical implementation is not hampered

by the magnetic noise because we only have to consider a constant offset in vzz(t). However,
by C we have to consider another phenomenological parameter which influences the results.
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2.4 Extension to a local magnetic noise

In the following, we furnish an approximate analytical expression for the autocorrelation
functions in the case of large C.

We completely neglect the time-dependent terms in (2.65) relative to the strongly fluctu-
ating magnetic noise b so that

Heff,N,0 ≈ γsbS
z
0 . (2.70)

Since this expression is time-independent, one simply calculates the single-spin autocorre-
lations with aid of the time evolution operator given by

U(t, 0) = e−iγsbtSz
0 . (2.71)

Inserting this we find

gxx(t) = 〈Sx
0 (t)S

x
0 (0)〉

N
=

1

2
Tr
([

Sx cos(γsbt)− Sy sin(γsbt)
]
Sx
)N

=
1

4
cos(γsbt)

N
.

(2.72a)

To carry out the averaging, we use the assumed Gaussian noise distribution

pN(b) =
(
2πb2

N)− 1
2 e−b2

(
2b2

N)−1

, (2.73)

Then, the autocorrelation fulfills

gxx(t) =
1

4

∫ ∞

−∞

(
2πb2

N)− 1
2 e−b2

(
2b2

N)−1

cos (γsbt)db (2.74a)

=
1

4

(
2πb2

N
γ2s

)− 1
2

∫ ∞

−∞
e−ω2

(
2γ2

s b
2

N)−1

eiωtdω (2.74b)

=
1

4
e−8CJ2

Qt2 . (2.74c)

Furthermore, we find

gzz(t) = 〈Sz
0(t)S

z
0(0)〉

N
=

1

2
Tr (SzSz)

N
=

1

4
. (2.75)

Clearly, even for very large C we do not expect a static gzz(t) because the time-dependent
mean-field contributions are non-zero leading to decoherence at some time. Though, we
expect its decay to slow down when the noise strength is raised. Moreover, through (2.74c)
we predict a Gaussian behavior of gxx(t) for large C.

In chapter 3 we present an algorithm to solve the self-consistency problem through iteration.
In the next section we estimate J2

Q by means of a continuum limit.
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2.5 Quadratic coupling constant

We remind the reader of the quadratic coupling

J2
Q =

∑
i>0

J̃2
0i =

∑
i>0

1

16
J2 (R0i)

(
R2

0i − 3R2
z,0i

)2
. (2.76)

The z-component of the distance vector clearly depends on the alignment of the magnetic
field ~B, since the z-axis is per definition parallel to ~B. Before considering the continuum
limit, we express Rz,0i by polar coordinates (R,ϕ) on the surface, see 2.4.

~n
~B

~ex

ϕ

α ~R

Figure 2.4: Schematic plot of polar coordinates on the considered planar surface. The
x-axis is choosen perpendicular to ~B and ~n without loss of generality.

The polar angle results from

~R0i · ~ex = Rx,0i = R cosϕ, (2.77)

while the normal vector of the surface plane is given by

~n =

 0
− sin(α)
cos(α)

 . (2.78)

By means of this, we obtain

~n · ~R0i = −Ry,i0 sin(α) +Rz,i0 cos(α) (2.79a)

= −
√
R2 sin2 ϕ−R2

z,i0 sin(α) +Rz,i0 cos(α) !
= 0 (2.79b)

Solving for Rz,i0 leads to

Rz,i0 = R sin(α) sin(ϕ), (2.80)

and eventually

J2
Q =

∑
i>0

1

16
J2 (R0i)R

4
0i

(
1− 3 sin2(α) sin2(ϕi0)

)2
. (2.81)
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Now, we replace the sum by a two-dimensional integral over the surface according to

J2
Q ≈ 2πI(α)n0

∫ ∞

rmin

dR 1

16
J2(R)R5, (2.82a)

I(α) =
1

2π

∫ 2π

0
dϕ
(
1− 3 sin2(α) sin2(ϕ)

)2
, (2.82b)

where n0 is the spin density and rmin stands for the average distance between two
neighbor spins. Since the considered system is two-dimensional, these quantities are
related through

n0 =
1

r2min
. (2.83)

For the ϕ-integration we find

I(α) =

(
27

8
sin4(α)− 3 sin2(α) + 1

)
, (2.84)

while the r-integral yields

n0

∫ ∞

rmin

dR 1

16
J2(R)R5 =

n0µ
2
0γ

4
s

(16π)2

∫ ∞

rmin

dR 1

R5
=

µ2
0γ

4
s

(16π)2
1

4r6min
, (2.85)

leading to

JQ(α) =
√

2πI(α)
µ0µ

2
B

8π

1

r3min
. (2.86)

We plotted
√
I(α) vs. α in Fig. 2.5. At the magic angle

αmag = arcsin
√

2

3
≈ 0.304π, (2.87)

where the autocorrelations are measured in experiment [25], the angular function yields√
I(αmag) =

1√
2
. (2.88)

In the following section we will consider the surface-spin system in the zero-field limit.
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Figure 2.5: Plot of the angular dependence of
√

I(α).

2.6 Zero-field limit

To the end of this chapter, we deal with a dipolar surface-spin system subjected to a local
static magnetic noise. In contrast to the previously considered system, we do not consider
any static fields and thus stay in the resting reference frame. Any other properties of
the previous system, such as ambient conditions, are taken over. Correspondingly, the
fundamental Hamiltonian reads

HZF = HDD +HN (2.89a)

=
∑
i<j

J (Rij)

(
R2

ij

(
~Si · ~Sj

)
− 3

(
~Si · ~Rij

)(
~Sj · ~Rij

))
+ γs

∑
i

~bi · ~Si. (2.89b)

Again, the noise shall be Gaussian with zero average and for simplicity, we assume it to
be isotropic and on average equal at each site

(bαi )
2

N
=: b2

N
, ∀α, i. (2.90)

Moreover, any of its autocorrelations shall vanish

bαbβ
N
= 0, ∀α 6= β. (2.91)

This restriction is supported by the fact that the noise results from disordered proton spins
with dynamics at considerably larger timescales than the electronic dynamics. According
to these assumptions, any physical expectation values of the system are determined
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2.6 Zero-field limit

through

〈A(t1, t2, ...)〉N =

(∏
α

N−1∏
i=0

∫ ∞

−∞
dbαi

(√
2π b2

N)−1
e−

(
bαi

)2(
2b2

N)−1
)

· 〈A(t1, t2, ...)〉
(
{~bi}

)
,

(2.92)

where the expectation value in the integral is computed from the Hamiltonian (2.89) with
the inserted noise configuration {~bi}.

Since we do not consider an external field, we simply set the z-axis perpendicular to the
surface so that the distance vectors read

~Rij =

Rx,ij

Ry,ij

0

 = Rij

cos(ϕij)
sin(ϕij)

0

 . (2.93)

By means of this, the Hamiltonian simplifies to

HZF = HN +
∑
i>j

R2
ijJ(Rij)

(
Sz
i S

z
j +

(
1− 3 cos2(ϕij)

)
Sx
i S

x
j

+
(
1− 3 sin2(ϕij)

)
Sy
i S

y
j − 3 sin(ϕij) cos(ϕij)

(
Sx
i S

y
j + Sy

i S
x
j

))
.

(2.94)

In order to apply S-DMFT, we introduce local Overhauser fields ~Vj each representing the
environment of a single spin ~Sj . From the Hamiltonian (2.94), their components read

V x
j =

∑
i 6=j

R2
ijJ(Rij)

((
1− 3 cos2(ϕij)

)
Sx
i − 3 cos(ϕij) sin(ϕij)S

y
i

)
, (2.95a)

V y
j =

∑
i 6=j

R2
ijJ(Rij)

((
1− 3 sin2(ϕij)

)
Sy
i − 3 cos(ϕij) sin(ϕij)S

x
i

)
, (2.95b)

V z
j =

∑
i 6=j

R2
ijJ(Rij)S

z
i , (2.95c)

and

~Vj,N = ~Vj + γs~bj , (2.96)

with included noise. In fact, V x
j and V y

j are essentially different from the original
Overhauser field components (2.22) due to the additional terms ∝ SxSy in the Hamiltonian
(2.94). In the original system, these terms are eliminated through the strong field and the
RWA. Though, it is still justified to neglect local inhomogeneities due to the large number
of contributions in (2.95). The Hamiltonian for the particular spin S0 reads

HZF,0 = ~V0,N · ~S0. (2.97)
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2 Theory

Henceforth, the site index (0) of the Overhauser field is omitted. In the following, we
employ S-DMFT according to the steps presented in Sec. 2.3.1.

The first step is to justify that the Overhauser field in (2.97) can be replaced by a classical
mean-field. To do so, we stress that although the new and the original Overhauser field
(2.22) differ from each other, their fundamental structure, namely a large sum over terms
that are linear in spin operators, is the same. Therefore, the Frobenius norms of the
commutators are still suppressed relative to the norms of the components. Moreover,
back actions of S0 can still be neglected so that concludingly, the first step of S-DMFT
is justified. The Overhauser field ~VN is replaced by a time-dependent mean-field ~V (t)
resulting in

HZF,mf(t) = ~V (t) · ~S0. (2.98)

The second step of S-DMFT aims at determining the behavior, i.e., the distribution of
the mean-field. Completely analogous to Sec. 2.3.3, we find that it behaves Gaussian with
zero average due to the central limit theorem. Note that the analytical argument provided
in App. A is done for arbitrary couplings ∝ SαSβ and thus also serves for this case.

Finally, as part of the third step, we calculate the mean-field autocorrelations and thereby
formulate a self-consistency problem. At first, we discuss the symmetries of the system to
figure out, whether any single-spin autocorrelations vanish:

(i) Since the density operator is proportional to the unity, time translation invariance
(TTI) still holds (see (2.45)).

(ii) Applying time reversal to the Hamiltonian (2.94) leads to a sign in front of HN,
as it is linear in spin operators. However, this sign does not affect any physical
expectation values due to the noise averaging (2.92). Thus, time reversal symmetry
(TRS) is also valid in the zero-field limit (see (2.50)).

(iii) In contrast to this, π/2-spin-rotational symmetry around z (SRZ) is not given
here because the Hamiltonian (2.94) is clearly not invariant by the corresponding
transformation. However, we remind the reader that any local inhomogeneities of
the system are neglected so that every spin has the same environment on average.
According to this, it is certainly justified to assume the system to be invariant
under a real-space rotation at π/2 around z. Applying this rotation in both the spin
space and the real space (BRZ) leaves the dipolar part of the Hamiltonian (2.89)
invariant because obviously all of the scalar products remain unchanged. In the
noise Hamiltonian, on the other hand, the rotation leads to

bxi S
x
i + byiS

y
i −→ bxi S

y
i − byiS

x
i (2.99)

which, again, does not harm any physical expectation values due to the noise
averaging (2.92). In conclusion, BRZ symmetry is fulfilled in the zero-field limit.
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2.6 Zero-field limit

With aid of these observations, we deduce

gαβ(t) = 0, ∀α 6= β, (2.100a)
gxx(t) = gyy(t), (2.100b)

with the same manner as in Sec. 2.3.5. This leads to

V x(t)V z(0) = V z(t)V x(0) = V y(t)V z(0) = V z(t)V y(0) = 0, (2.101)

because they only consist of vanishing single-spin autocorrelations (2.100a). Note that this
conclusion cannot be drawn for V x(t)V y(0) and V y(t)V x(0) at this point because they
could contain non-zero contributions through gxx(t) and gyy(t). In summary, we derive
self-consistency conditions connecting three single-spin autocorrelations to five mean-field
autocorrelations. While neglecting correlations between different sites and assuming each
spin to behave the same on average, we obtain

V x(t)V x(0) = 〈V x
N (t)V x

N (0)〉 = 〈V x(t)V x(0)〉+ 〈γ2s (bx)
2〉 (2.102a)

=
∑
i>0

R4
i0J (Ri0)

2
((

1− 3 cos2(ϕi0)
)2 〈Sx

i (t)S
x
i (0)〉

− 3
(
1− 3 cos2(ϕi0)

)
cos(ϕi0) sin(ϕi0)〈Sx

i (t)S
y
i (0)〉

− 3
(
1− 3 cos2(ϕi0)

)
cos(ϕi0) sin(ϕi0)〈Sy

i (t)S
x
i (0)〉

+ 9 cos2(ϕi0) sin2(ϕi0)〈Sy
i (t)S

y
i (0)〉

)
+ γ2s b

2
N

(2.102b)

(2.100)
=

∑
i>0

R4
i0J (Ri0)

2
((

1− 3 cos2(ϕi0)
)2

+ 9 cos2(ϕi0) sin2(ϕi0)
)
〈Sx

i (t)S
x
i (0)〉+ γ2s b

2
N

(2.102c)

= J2
⊥,1 g

xx(t) + γ2s b
2

N
, (2.102d)

where we defined

J2
⊥,1 :=

∑
i>0

R4
i0J (Ri0)

2
((

1− 3 cos2(ϕi0)
)2

+ 9 cos2(ϕi0) sin2(ϕi0)
)

(2.103a)

=
∑
i>0

R4
i0J (Ri0)

2 (1 + 3 cos2(ϕi0)
)
. (2.103b)

With the same manner, the other mean-field autocorrelations yield

V y(t)V y(0) = J2
⊥,2 g

xx(t) + γ2s b
2

N (2.104a)

V z(t)V z(0) = J2
‖ gzz(t) + γ2s b

2
N (2.104b)

V x(t)V y(0) = V y(t)V x(0) = J2
c gxx(t) (2.104c)
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wherein

J2
⊥,2 =

∑
i>0

R4
i0J (Ri0)

2 (1 + 3 sin2(ϕi0)
)
, (2.105a)

J2
‖ =

∑
i>0

R4
i0J (Ri0)

2 , (2.105b)

J2
c =

∑
i>0

R4
i0J (Ri0)

2 3 cos(ϕi0) sin(ϕi0). (2.105c)

However, we stress that the introduced couplings must be invariant under rotation at π/2
around z, since this symmetry is assumed in (iii). Applying the transformation leads to

J2
⊥,1 −→ J2

⊥,2, J2
⊥,2 −→ J2

⊥,1, (2.106a)
J2

‖ −→ J2
‖ , J2

c −→ −J2
c . (2.106b)

Thus, we find that

J2
⊥,1 = J2

⊥,2 =: J2
⊥, (2.107a)

J2
c = 0, (2.107b)

in consistency with our previous assumptions. By means of the continuum limit, we
estimate the remaining coupling constants

J2
‖ ≈ n0

∫ 2π

0
dϕ
∫ ∞

rmin

dRR5J(R)2 =
µ2
0γ

4
s

32π

1

r6min
, (2.108a)

J2
⊥ ≈ n0

∫ 2π

0
dϕ
(
1 + 3 sin2(ϕ)

) ∫ ∞

rmin

dRR5J(R)2 =
5

2
J2

‖ . (2.108b)

Furthermore, we choose

J‖ =
µ0µ

2
B√

2π

1

r3min
= 4
√
2JQ(αmag) (2.109)

to be the natural energy scale so that the time is measured in units of J−1
‖ . Finally, by

introducing the unitless quantity

CZF =
1

J2
‖
γ2s b

2
N (2.109)

=
C

2
, (2.110)

the self-consistency conditions reduce to

vxx(t) = vyy(t) = J2
‖

(
CZF +

5

2
gxx(t)

)
, (2.111a)

vzz(t) = J2
‖ (CZF + gzz(t)) . (2.111b)
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2.6 Zero-field limit

Similar to Sec. 2.4, we consider the case of a large CZF analytically. To this end, we
neglect all other interactions against that of the noise so that

H0,N = ~S0 ·~b, (2.112)

where ~b follows from the distribution

p(~b) =
(
2πb2

N)− 3
2 e−

(
~b
)2(

2b2
N)−1

. (2.113)

Basically, this issue was also treated in Ref. [8] in a different context. There, the hyperfine
interaction between an electron spin and an ensemble of nuclei is described through the
CSM. To gain access to the short-time dynamics, the Overhauser field is replaced by a
static isotropic Gaussian random field leading to the same theoretical issue. We adopt
their results for the averaged electron-spin polarization [8]

〈~S0(t)〉 =
~S0(0)

3

(
1 + 2

(
1− 2

t2

T 2
∆

)
e
− t2

T2
∆

)
, (2.114)

where

T∆ =
1

µBgs∆B
, ∆B =

√
2b2

N
. (2.115)

Thus, we find

gααapp(t) =
1

12

(
1 + 2

(
1− 2t2J2

‖CZF
)

e−t2J2
‖CZF

)
(2.116)

in the zero-field limit and for large C. In Sec. 4.3, this analytical prediction is compared
to our numerical results. The following chapter treats the numerical implementation of
the derived self-consistency problems.
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3 Methods

In the previous chapter we applied S-DMFT to the considered surface spin system
and derived self-consistency conditions linking single-spin autocorrelations to mean-field
autocorrelations. In the current chapter we intend to provide a numerical iteration
procedure by which the autocorrelations can be computed. At first, we present a step-by-
step pseudo-algorithm to solve the self-consistency problem. Subsequently, we expound on
how to sample dynamic Gaussian random variables which obey an autocorrelation given at
equidistant time steps. Finally, an efficient method to compute time evolution operators
is furnished. Technical refinements concerning the choice of the numerical parameters
are discussed in the next chapter during an error analysis in Sec. 4.1. It is necessary to
mention that we denote matrices by double underlined letters throughout this chapter.

3.1 Pseudo-algorithm for the self-consistency problem

As already mentioned, we solve the self-consistency problem through numerical iteration.
To this end, one sets the initial mean-field autocorrelations vαβ(0)(tm) on an equidistant time
domain tm := mδt,m ∈ [0, 1, ..., L], while regarding starting conditions and symmetries
of the system. Subsequently, they are inserted to the algorithm and optimized during
the iteration-steps (n)→ (n+ 1). The iteration stops, when the error between the latest
(n+ 1) and the previous (n) results exceeds a certain error threshold. The estimation of
the iteration-error ∆I(n+1) and the choice of the threshold ∆Ith is discussed in Sec. 4.1.

Basically, the algorithm (1) consists of three nested loops: one for the iteration, one for
the statistical simulation and one for the time evolution. At first during an iteration-step,
the covariance matrix is constructed from the latest mean-field autocorrelations according
to

Mαβ
m1m2

= vαβ(n)(|tm1 − tm2 |), m1,m2 ∈ [0, ..., L], (3.1)

and then diagonalized by

D = O>M O. (3.2)

Right after this, the loop for the statistical simulation starts. Each of the M runs begins
with drawing a single temporal course

~V(i)(0→ tL) :=
{
~V(i)(0), ..., ~V(i)(tL)

}
(3.3)
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3.1 Pseudo-algorithm for the self-consistency problem

of the mean-field through D and O. For details about the construction of the covariance
matrix and the mean-field sampling, see Sec. 3.2. Next, the loop for the time evolution
starts. Throughout every run, the time evolution operator propagating from tm to tm+1 is
computed from the considered mean-field Hamiltonian at both times. We refer to Sec. 3.3
for an efficient method to perform this. Moreover, the time evolution operator propagating
from 0 to tm+1 is determined using group property. The final step in the loop for the time
evolution is to compute the single-spin autocorrelations at tm+1 for the drawn sample (i)
through

g̃αβ(n+1),(i)(tm+1) = 〈Sα(tm+1)S
β(0)〉. (3.4)

With aid of the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.5)

as well as

U(t, 0) =

(
U11 U12

U21 U22

)
, (3.6)

the autocorrelations can be simplified yielding

g̃xx(t) = 1
4Re

(
U11U22 + U12U21

)
, (3.7a)

g̃yy(t) = 1
4Re

(
U11U22 − U12U21

)
, (3.7b)

g̃zz(t) = 1
4

(
|U11|2 + |U22|2 − 1

)
, (3.7c)

g̃xy(t) = 1
4Im

(
U11U22 + U21U12

)
, (3.7d)

g̃yx(t) = 1
4Im

(
U22U11 + U21U12

)
, (3.7e)

g̃xz(t) = 1
4Re

(
U11U21 − U22U12

)
, (3.7f)

g̃zx(t) = 1
4Re

(
U11U12 − U22U21

)
, (3.7g)

g̃yz(t) = 1
4Im

(
U21U11 + U12U22

)
, (3.7h)

g̃yx(t) = 1
4Im

(
U11U12 + U22U21

)
. (3.7i)

After they are computed for all time steps and samples both the time evolution and the
statistical simulation loop end. Then, the results are averaged according to

gαβ(n+1)(tm) =
1

M

M∑
i=1

g̃αβ(n+1),(i)(tm), ∀m ∈ [1, ..., L], (3.8)

where M is the number of drawn samples. Moreover, we regard the starting condition

gαβ(n+1)(0) =
1

8
Tr
(
σασβ

)
=

δαβ
4

. (3.9)

Finally, the new mean-field autocorrelations vαβ(n+1)(tm) are determined through the self-
consistency conditions (2.68). In the next section we expound on how to sample the
Gaussian mean-field to clarify lines 3,4 and 7 of the algorithm.
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Algorithm 1: Iteration procedure
1 n = 0 // iteration-step
2 do
3 construct the covariance matrix M from vαβ(n)(tm)

4 diagonalize M

5 for i = 1 to M // statistical simulation loop
6 do
7 draw ~V(i)(0→ tL)

8 for m = 0 to L− 1 // time evolution loop
9 do

10 estimate H
(
~V(i)(tm)

)
and H

(
~V(i)(tm+1)

)
11 compute U(i)(tm+1, tm)

12 U(i)(tm+1, 0) = U(i)(tm+1, tm) ·U(i)(tm, 0)

13 compute all g̃αβ(n+1),(i)(tm+1)

14 determine the average gαβ(n+1)(tm) for all time steps
15 determine vαβ(n+1)(tm) from gαβ(n+1)(tm) by the self-consistency conditions
16 n← n+ 1

17 while ∆I(n+1) > ∆Ith // iteration loop

3.2 Sampling of dynamic Gaussian random variables

To sample a Gaussian random field obeying a given autocorrelation we use the method
provided in Ref. [38] (pp.177-182). First, we discuss the case where all correlations vαβ(t)
with α 6= β vanish. There, the sampling can be handled separately for every dimension
and, thus, reduces to three one-dimensional problems.

We consider a discretized autocorrelation function

vαα(tm) = V α(tm)V α(0) (3.10)

on a time domain

tm = mδt, m ∈ [0, ..., L]. (3.11)

Our aim is, to sample a time-evolving field

~V α := (V α(0), ..., V α(tL))
> (3.12)

fulfilling the multi-dimensional Gaussian distribution

p(~V α) =
1

(2π)(L+1)/2
√

detMαα exp
(
−1

2

(
~V α
)> (

Mαα
)−1 ~V α

)
, (3.13)
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3.2 Sampling of dynamic Gaussian random variables

where Mαα is the covariance matrix and

Mαα
m1m2

= vαα(|tm1 − tm2 |) (3.14)

its elements. Note that the vector arrow in ~V α does not refer to the spatial dimensions
here but to the time discretization. In general, Mαα is non-diagonal so that the variables
V α(tm) cannot be drawn independently of each other.

In the case of white noise, however, the covariance matrix results from

hαα(|tm1 − tm2 |) = σ2
m1

δm1m2 (3.15)

and is thus diagonal due to the Kronecker delta. Thereby, the multi-dimensional Gaussian
distribution factorizes into a product of one-dimensional Gaussian distributions given
by

pwn(V
α(tm)) =

1√
2πσ2

m

exp

(
−(V α)2 (tm)

2σ2
m

)
. (3.16)

Correspondingly, one simply draws (L+ 1) independent Gaussian random variables to
sample the fluctuations ~V α. In the following, this idea is used to solve the general
problem.

The covariance matrix Mαα is real and symmetric. Hence, it can be diagonalized by an
orthogonal transformation O based on

D = O>MααO, (3.17)

where D is the diagonal matrix containing the eigenvalues dm. With aid of this, we rewrite
the multi-dimensional Gaussian distribution (3.13) corresponding to

p(~V α) =
1

(2π)(L+1)/2
√

detODO>
exp

(
−1

2

(
~V α
)>

OD−1O> ~V α

)
(3.18a)

=
1

(2π)(L+1)/2
√

detD
exp

(
−1

2

(
~Kα
)>

D−1 ~Kα

)
, (3.18b)

where we defined new random variables

~Kα := (Kα
0 , ...,K

α
L)

> = O>~V α. (3.19)

Since D−1 is diagonal, we can factorize (3.18b) into (L + 1) one-dimensional Gaussian
distributions reading

pdiag(K
α
m) =

1√
2πdm

exp

(
−(Kα

m)2 (tm)

2dm

)
. (3.20)

Correspondingly, we present the following strategy:
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1. Construct the covariance matrix based on (3.14).

2. Diagonalize Mαα according to (3.17) and estimate the eigenvalues dm and eigenvec-
tors ~om which form the columns of the orthogonal transformation O.

3. Draw Gaussian random numbers Kα
m in the diagonal basis with the variance σ2

m = dm
and zero average.

4. Calculate Gaussian random numbers obeying (3.13) through back-transformation

~V α = O ~Kα. (3.21)

In step 2 one may obtain negative eigenvalues due to numerical deviations. If their absolut
values are small (|dm|<∝10−6 − 10−5 [38]) they can be set to zero so that the variances
are well defined.

For non-vanishing autocorrelations vαβ(0)(tm), α 6= β, the three-dimensional problem is
not separable as above. Instead, we consider a (3L+ 3)-dimensional covariance matrix
according to

M =

Mxx Mxy Mxz

Myx Myy Myz

M zx M zy M zz

 . (3.22)

Its matrix elements follow from the relation

Mαβ
m1m2

= vαβ(|tm1 − tm1 |). (3.23)

The remaining steps 2, 3 and 4 are carried out with (3L+ 3)-dimensional vectors

~V =

((
~V x
)>

,
(
~V y
)>

,
(
~V z
)>)>

= (V x(0), ..., V z(tL))
> (3.24a)

~K = (K0, ...,K3L+2)
> . (3.24b)

Now that we explained the sampling procedure, lines 3,4 and 7 of the algorithm are
clarified. In what follows, we present the method of commutator-free exponential time
propagation.

3.3 Commutator-free exponential time propagation

In line 11 of the algorithm, we compute time evolution operators propagating over short
time steps. The aim of this section is to furnish a method for computing these operators
efficiently. At first, we remind the reader of the fundamental differential equation for the
time evolution operator (TEO)

i∂tU(t, t0) = H(t)U(t, t0). (3.25)
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3.3 Commutator-free exponential time propagation

In that case, where the Hamiltonian commutes with itself at different times according to

[H(t),H(t0)] = 0, ∀t, t0, (3.26)

the TEO simply yields

U(t, t0) = e−i
∫ t
t0

dτ H(τ)
. (3.27)

However, the general case where the commutator is non-zero is much more difficult and
usually not solvable without a truncation scheme. For short-step propagators it is certainly
practical to use an expansion in orders of t, such as the Magnus expansion [37, 41–43]. It
is given by

U(t, t0) = eΩ(t,t0) = e
∑∞

k=1 Ωk(t,t0), (3.28)

where the Ωk(t, t0) are multi-dimensional time integrals over nested commutators of the
Hamiltonian. An Nth-order truncation of the expansion according to

U(t, t0) ≈ e
∑N

k=1 Ωk(t,t0), (3.29)

leads to an error of the order [43]

∆q = δtN+1, (3.30)

where δt = t− t0 is the step width. Exemplarily, we provide the first three orders [42]

Ω1(t, t0) = −i
∫ t

t0

dτ H(τ), (3.31a)

Ω2(t, t0) = −
1

2

∫ t

t0

dτ1
∫ τ1

t0

dτ2 [H(τ1),H(τ2)] , (3.31b)

Ω3(t, t0) =
i
6

∫ t

t0

dτ1
∫ τ1

t0

dτ2
∫ τ2

t0

dτ3
(
[H(τ1), [H(τ2),H(τ3)]]

+ [H(τ3), [H(τ2),H(τ1)]]
)
,

(3.31c)

which indicate that the complexity strongly increases with k. Because the computation
of nested commutators in higher orders of the Magnus expansion is very costly, we turn
to another truncation scheme which avoids commutators in general. Before doing this,
however, we stress that the Magnus expansion has an important property: it preserves
operator structures such as Lie algebras [37, 43]. This is very advantageous for the
considered mean-field Hamiltonians H(t) because all of them consist of a superposition of
spin operators at any times. Clearly, any integrations and nested commutators occurring
in Ω(t, t0) do not violate this structure due to the fundamental commutator relation[

Sα,Sβ
]
= i

∑
γ

εαβγS
γ . (3.32)
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By means of this, any truncation of Ω(t, t0) is skew-hermitian so that unitarity of the
TEO is ensured. Estimating it by other methods, e.g., solving the differential equation
(3.25) directly, may lead to violation of unitarity and therefore to numerical instability.
In the following, we introduce an efficient truncation scheme which also provides unitary
TEOs.

We use the method of commutator-free exponential time propagation (CFET) from Ref.
[43]. The fundamental idea is to start from the Magnus expansion and split the single
exponential into a product of multiple exponentials by using the Baker-Campbell-Hausdorff
(BCH) formula

exp

 s∑
u=1

Xu +
1

2

∑
1≤u<v≤s

[Xu,Xv] + ...

 = eX1 ... eXs . (3.33)

By this, the numerical effort is reduced because the exponents on the right-hand side are
computed commutator-free. To implement this idea, we first expand the Hamiltonian in
the shifted Legendre polynomials which are given by recurrence

P0(t) = 1, (3.34a)
P1(t) = 2t− 1, (3.34b)

Pj+1(t) =
2j + 1

j + 1
(2t− 1)Pj(t)−

j

j + 1
Pj−1(t). (3.34c)

Usefull properties are symmetry with respect to t = 1
2 and orthogonality according to

Pj(1− t) = (−1)jPj(t), (3.35a)∫ 1

0
Pj(t)Pl(t)dt =

1

2j + 1
δjl. (3.35b)

Moreover, one finds ∫ 1

0
f(t)Pj(t)dt = 0 (3.36)

for any polynomials f(t) of degree less than j. Now, to compute a short-step propagator
U (N)(t0 + δt, t0) of order N we expand the Hamiltonian

H(t) =
1

δt

 N∑
j=1

AjPj−1

(
t− t0
δt

)
+O

(
δtN+1

) , t ∈ [t0, t0 + δt] , (3.37)

where the operator-valued coefficients read

Aj = −i(2j − 1)

∫ t0+δt

t0

H(τ)Pj−1

(
τ − t0
δt

)
dτ. (3.38)

With aid of (3.36), we conclude that the first contribution of H(τ) in the integral (3.38)
is of order δtj−1. Regarding this and the differential dτ the coefficients Aj are of order
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3.3 Commutator-free exponential time propagation

δtj so that the error in the large bracket of (3.37) is finally of order δtN+1. We insert this
expansion into the Magnus expansion (3.28) and exemplarily collect all terms up to order
δt4 resulting in

Ω(t, 0) = A1 −
1

6
[A1,A2] +O

(
δt5
)
. (3.39)

Now, to eliminate the commutators one chooses a general approach for an Nth-order
CFET with s exponentials according to

U
(N)
CF:s(t, 0) = eX1 ... eXs , (3.40)

where we defined

Xu =

N∑
j=1

fu,jAj . (3.41)

The prefactors fu,j are computed by combining the exponentials through the BCH formula
(3.33) and comparing the resulting exponential to the reshaped Magnus expansion (3.39).
This requires to work in a so-called Hall basis because the expanded terms in (3.39) are not
unique in contrast to the Magnus expansion. See Ref. [43] for more details. Summarizingly,
the use of CFETs is advantageous for our applications because the computation of TEOs
happens commutator-free and furthermore their unitarity is ensured.

In this thesis we employ a second-order CFET reading [43]

U
(2)
CF:1(t+ δt, t) = eA1 , (3.42)

which is equivalent to the first-order Magnus expansion (3.31a), and an optimized fourth-
order CFET given by [43]

U
(4)
CF:3,Opt(t+ δt, t) = exp

(
11

40
A1 +

20

87
A2 +

7

50
A3

)
exp

(
9

20
A1 −

7

25
A3

)
· exp

(
11

40
A1 −

20

87
A2 +

7

50
A3

)
.

(3.43)

Since we use an iteration procedure to compute our results, we must conserve the number
of time steps during our iteration steps. Therefore, we are limited to the Trapezoidal rule
when determining the integrals (3.38). Correspondingly, the coefficients yield

Aj = −i(2j − 1)
δt

2

(
H(t+ δt)− (−1)jH(t)

)
, (3.44)

where we used Pj(1) = 1 and (3.35a). Moreover, any CFET exponents can be written as
a superposition of the Pauli matrices (3.5) for the considered Hamiltonians according to

eXu = e−i
∑

α Fασα

= e−i~F ·~σ (3.45)

and finally simplified by

e−i~F ·~σ = cos
(
|~F |
)
σ0 − i sin

(
|~F |
) ~F · ~σ
|~F |

. (3.46)

Now that all steps of the algorithm 1 have been clarified, we proceed with presenting our
numerical results in the next chapter.
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In the previous chapters we described a theoretical model and furnished a corresponding
implementation to compute autocorrelation functions of dipolar surface spins. On this
basis, we present our numerical results including a comparison to experimental data
in the current chapter. At first, we discuss numerical errors and convergence of the
self-consistency problem. Subsequently, the results in the strong-field regime are shown
in dependence of the magnetic noise. We fit them to experimental data and determine
optimal values for energy scale and noise variance. Finally, we also present and discuss our
results in the zero-field limit, where the effect of the magnetic noise is different. Pseudo
random variables are drawn by the Mersenne twister generator mt19937 implemented in
the C++ standard library.

4.1 Error Analysis

During the modelling in 2 we already realized two error sources. While deviations by
the RWA were determined to be small, the applicability of S-DMFT was rather justified
qualitatively. This section provides a brief analysis of the numerical error sources. We
aim at a reliable and efficient choice of the numerical parameters and furthermore some
first self-checks of our algorithm. In particular, we study the statistical error, the time-
discretization error and the iteration error as well as we demonstrate convergence of the
self-consistency problem at the end.

4.1.1 Statistical error

Because a finite number of random variables is drawn to realize the mean-field fluctuations,
the results are clearly subject to a finite statistical error. Within each iteration step we
calculate the autocorrelations g̃αβ(i) (t) for every drawn sample (i) and average over the
multitude of results using

gαβ(t) =
1

M

M∑
i=1

g̃αβ(i) (t). (4.1)

Since the single-sample results g̃αβ(t) are (pseudo-) independent of each other, the variance
of the averaged autocorrelations yields [39]

σ2
average(M, t) =

1

M
σ2

sample(t), (4.2)

36



4.1 Error Analysis

where σsample is the standard deviation of a single result. Equation (4.2) is verified
numerically in the following.

We consider the strong-field regime with zero noise, insert the initial mean-field autocorre-
lations

vαβ(0)(t) = δαβ
J2

Q
4

e−|t|JQ , ∀α, β, (4.3)

and estimate gzz(t) by averaging over M different samples. In doing so, we do not iterate
over the solution, as this is not necessary for an analysis of the statistical error. Moreover,
the calculation is repeated P = 500 times each with a different set of samples. By means
of this, the variance of the averaged autocorrelation gzz(t) is computed via

σ2
average(M, t) =

(
gzz(t)− gzz(t)

)2
=

1

P

P∑
ρ=1

(
gzzρ (t)

)2 −
 1

P

P∑
ρ=1

gzzρ (t)

2

. (4.4)

Note that we added an index ρ to the averaged autocorrelation to represent a certain set
of samples. The procedure is carried out for a varying number of samples per set

M = 10k, k ∈ {0, 1, 2, 3, 4, 5, 6, 7}. (4.5)

In order to compute errorbars of the data, we determine the variance of (gzz(t)− gzz(t))2

through

Σ2(M, t) =
(
(g − g)2 − σ2

)2
= (g − g)4 − σ4 (4.6a)

= g4 − 4g3g + 8g2g2 − 4g4 − g2
2
, (4.6b)

where g := gzz(t). The variance of σ2
average is then given by

Σ2
(P )(M, t) =

Σ2(M, t)

P
, (4.7)

which is similar to (4.2). The results for σ2
average including its standard deviation Σ(P ) at

t = 4/JQ and t = 8/JQ are plotted in Fig. 4.1.

We observe a linear trend of the data in the logarithmic representation. Therefore, we
apply the fit function

log
(
σ2

average
)
= a · log (M) + log(b) (4.8a)

σ2
average = b ·Ma, (4.8b)

leading to

a(t0 = 4/JQ) = −1.000± 0.006, b(t0 = 4/JQ) = 0.021± 0.001, (4.9a)
a(t0 = 8/JQ) = −0.999± 0.003, b(t0 = 8/JQ) = 0.0206± 0.0006. (4.9b)
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Figure 4.1: Log-log plot of the variance of the averaged autocorrelation gzz(t) at two
different times in terms of M . The data are estimated from (4.4), (4.6b) and (4.7). The
resulting fit parameters are shown in (4.9).

Since we predicted a value of a = −1.0 corresponding to (4.2), the numerically estimated
values for a confirm the expectation. The prefactor b describes the time-dependent variance
of the single-sample autocorrelation. To determine its behavior, we compute

σ2
sample(t) =

1

M

M∑
i=1

(
g̃αα(i) (t)

)2
−

(
1

M

M∑
i=1

g̃αα(i) (t)

)2

, α ∈ {x, z}, (4.10)

for M = 4 · 106 samples. The results for the standard deviation are presented in Fig. 4.2.

Since the autocorrelations are forced to the value 1
4 at t = 0, clearly σsample is small at the

beginning. As t increases the standard deviation somehow converges to a certain value,
which we estimate to be

lim
t→∞

σsample(t) = 0.144 32± 0.000 05. (4.11)

We present an analytical argument for this in the following.

The first thing we realize is that the average of all autocorrelations dies out over time due
to decoherence, i.e.,

lim
t→∞

gαβ(t) = lim
t→∞

g̃αβ(t) = 0 (4.12)
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and thus

lim
t→∞

σ2
sample(t) = lim

t→∞
(g̃αβ(t))

2
. (4.13)
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Figure 4.2: Standard deviations of the single-sample autocorrelations g̃αα(t) over time.
For both autocorrelations σsample converges to an asymptote at the value (4.11).

Correspondingly, we only need to discuss the quadratic expectation value of the autocor-
relations at large times. Next, we introduce the vector signal

~̃gα =
1

2
Tr
(
~S(t)Sα(0)

)
(4.14)

and the rotational matrix R(t) resulting from

~S(t) = R(t)~S(0). (4.15)

Inserting (4.15) into (4.14) yields

~̃gα =
1

2
Tr
(
R(t)~S(0)Sα(0)

)
=

1

4
~Rα(t), (4.16)

where

~Rα(t) = R(t)~eα. (4.17)

For the square of the vector signal we obtain(
~̃gα

)2
=

1

16
~R3(t)

2 =
1

16
, (4.18)
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where we used the orthogonality of R(t), since the time evolution operator preserves
the scalar product. Obviously, this relation also holds on average. Due to (4.12) the
expectation value of the column vector ~Rα(t) vanishes at infinite times. In addition, we
assume that the variance for every component of this vector is equal for t→∞. This is
supported by the fact that at infinite times the spin-vector resulting from a single sample
is not correlated to its initial alignment anymore. By means of this, the desired standard
deviation for infinite times eventually yields

lim
t→∞

σsample(t) =
1

4
√
3
≈ 0.14434. (4.19)

This is consistent with the numerically estimated value (4.11) up to a relative error of

∆σrel = 0.01 %. (4.20)

Finally, we provide an approximate computation of the standard deviation of the auto-
correlations depending on the number of drawn samples. To this end, we replace the
single-sample standard deviation at any times by (4.19). Thereby, the statistical error
reads

σstat(M) ≈ 1

4
√
3M

. (4.21)

In the following subsection we discuss the error resulting from the time discretization and
the CFET.

4.1.2 Time-discretization and CFET error

To study the behavior of the time-discretization error, we compute gzz(t) in the strong-field
regime and C = 4.0 for different step widths

δtν = 40/JQ · 2−ν , ν ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, (4.22)

on the intervall tJQ ∈ [0, 40] by averaging over M = 4 · 105 mean-field configurations.
Our aim is basically to estimate the error between the finite-discretization results and
the exact results. However, since we cannot access exact numerical results, we take the
most accurate discretization ν = 13 as the reference result. Correspondingly, the error is
computed by

∆Q2(ν) =
1

2ν + 1

2ν∑
m=0

(
gzz(13)(mδtν)− gzz(ν)(mδtν)

)2
, ν < 13. (4.23)

This quantity certainly represents the time-discretization error for broad time steps δtν .
Though, when ν is increased we expect a growing contribution by the statistical error
σ(t) := σaverage(t) because this is also present in the subtraction. Considering this, we
replace the averaged autocorrelations by

gzz(ν)(t) = ĝzz(ν)(t)± σ(t), (4.24)
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where we call ĝzz(ν)(t) the exact autocorrelation from the statistical point of view. Inserting
this into (4.23) yields

∆Q2(ν) =
1

2ν + 1

2ν∑
m=0

(
ĝzz(13)(mδtν)− ĝzz(ν)(mδtν)

)2
± 2

2ν + 1

2ν∑
m=0

(
ĝzz(13)(mδtν)− ĝzz(ν)(mδtν)

)(
σ(13)(mδtν)− σ(ν)(mδtν)

)
+

1

2ν + 1

2ν∑
m=0

(
σ(13)(mδtν)− σ(ν)(mδtν)

)2
.

(4.25)

The first sum is the bare time-discretization error adjusted for the statistical error. To
simplify the other sums, we assume ergodicity

f(σρ)
time

= f(σ(t0))
config

, (4.26)

where on the left-hand-side, we average over time for an arbitrary set of configurations ρ
and on the right-hand-side, we average over different sets of configurations at an arbitrary
time t0. By means of this, one finds

± 1

2ν + 1

2ν∑
m=0

(
ĝzz(13)(mδtν)− ĝzz(ν)(mδtν)

)(
σ(13)(mδtν)− σ(ν)(mδtν)

)
≈ 0, (4.27)

where we assumed that ĝzz(mδtν) is only weakly varying, and

1

2ν + 1

2ν∑
m=0

(
σ(13)(mδtν)− σ(ν)(mδtν)

)2
=

2

2ν + 1

2ν∑
m=0

σ2(mδtν) = 2σ2
stat, (4.28)

where we used that the statistical errors σ(ν)(mδtν) and σ(13)(mδtν) are uncorrelated.
In conclusion, we subtract a constant offset 2σ2

stat from ∆Q2(ν) to obtain the cleansed
time-discretization error ∆Q̂2(ν).

When finding a simple functional behavior f(δt) of the remaining error, we are also able
to cleanse the data from the discretization error of ĝzz(13). To this end we estimate its
contribution in the remaining error according to

∆Q̂2(ν) =
1

2ν + 1

2ν∑
m=0

(
ĝzz(13)(mδtν)− ĝzz(ν)(mδtν)

)2
≈
(
f(δt13)− f(δtν)

)2
(4.29a)

= f(δtν)
2
(f(δt13)
f(δtν)

− 1
)2

. (4.29b)

There, we neglected the time-dependence of the discretization error in the second step
for simplicity. Later we will see that a functional behavior proportional to δt2 results.
Therefore, the bare quadratic time-discretization error is computed through

∆q2(ν) =
(
∆Q2(ν)− 2σ2

stat
)
·
(
1− 1

22(13−ν)

)2
, (4.30)
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where ∆Q2(ν) is estimated numerically through (4.23) and

2σ2
stat ≈ 1.041 · 10−7. (4.31)

Furthermore, we consider an upper limit for the time-discretization error because the
autocorrelation is restricted to −1

4 ≤ gzz(t) ≤ 1
4 . Because we observe a growing of gzz(t)

at all times as the time widths δt is increased, we only regard the upper bound for our
purpose given by

∆q2up =
1

213 + 1

213∑
m=0

(
gzz(13)(mδt13)− 0.25

)2
. (4.32)

Finally, we present the numerical results in Fig. 4.3. We provide data for the second-order
(3.42) and the optimized fourth-order CFET (3.43). For both cases the fourth-order
result for ν = 13 is taken to be the reference result. Note that some data points are
missing because they got negative by subtracting the statistical error. We conclude that
the assumption of ergodicity is a rough approximation, but sufficient enough for this
consideration. Since we have an upper limit for ∆q2, certainly the data converge to the
corresponding value at broad time steps. However, for a large intervall the data behave
linearly. By fitting

log
(
∆q2(N)(δt)

)
= m(N) log

(
δtJQ

)
+ log

(
A(N)

)
, (4.33a)

∆q2(N)(δt) = A(N)

(
δtJQ

)m(N) (4.33b)

to the selected data points, we obtain

m(2) = 3.91± 0.04, A(2) = 1.0± 0.1, (4.34a)
m(4) = 4.012± 0.007, A(4) = 1.08± 0.02, (4.34b)

where (N) denotes the CFET order. Concludingly, we have ∆q2 ∝ δt4 and thus ∆q ∝ δt2

for both CFETs. Indeed, this is surprising for the fourth-order CFET because its truncation
error is of order δt5. However, approximating the integrals with aid of the Trapez rule
according to (3.44) entails an error ∝ δt3. Through the evaluation of the product of
short-step TEOs this error increases to

Lδt3 =
t

δt
δt3 ∝ δt2, (4.35)

where L represents the number of time steps before time t. Since we are reliant on the
Trapez rule due to the self-consistency problem, this error cannot be reduced. Therefore,
the second-order CFET suffices for any applications in this thesis. Nevertheless, we use
the optimized fourth-order CFET henceforth because this does not affect the computation
time at all, but we access slightly more accuracy according to (4.34). Finally, we formulate
a simple rule-of-thumb for the approximate time-discetization error

∆q(δt) ≈
(
δtJQ

)2
. (4.36)

The next section deals with the iteration-error and the covergence of the self-consistency
problem.
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Figure 4.3: Log-log plot of the squared time-discretization error (4.30) vs. the step
width δt. Shown are the data for the second-order and the optimized fourth-order CFET.
Moreover, fits of the crossed data points according to (4.33) and the parameters (4.34)
are plotted. The upper limit is estimated with the help of (4.32) and the statistical error
is given by (4.31).

4.1.3 Iteration-error and convergence

The presented algorithm 1 reveals how to solve the self-consistency problem through
numerical iteration. Basically, one inserts arbitrary initial autocorrelations and optimizes
them during the iteration-steps (n)→ (n+ 1). After reaching a certain error threshold,
the algorithm is stopped and the latest results are adopted. This threshold should be
chosen cleverly so that efficiency and reliability of the results is ensured. We define the
iteration-error by

∆Iαβ(n+1) =
1

L

L∑
m=1

|gαβ(n+1)(mδt)− gαβ(n)(mδt)|, (4.37)

where (n) denotes the previous and (n+ 1) the latest result. This error is computed for
all non-vanishing autocorrelations and for every n > 0 and subsequently compared to a
proper error threshold ∆Ith. When setting this threshold, one must regard the statistical
error of the computation because it limits the accuracy. From our practical experience we
recommend

∆Ith =
3

2
σstat(M), (4.38)

43



4 Results

where σstat(M) is given by (4.21). When all considered errors exceed ∆Ith during an
iteration-step, the iteration-error is of the same magnitude as the statistical error. Thus,
the accuracy is maximized and the iteration should be stopped.

We provide some results at different iteration-steps and for different initial autocorrelations
in order to illustrate the convergence during the iterations. To this end, we consider
the strong-field regime including a finite noise C = 4.0. Moreover, we draw M = 4 · 105

samples leading to a threshold of

∆Ith ≈ 0.000 34, (4.39)

and set the step width to δt = 0.02/JQ. The computation is repeated for a step width
of δt = 0.002/JQ to obtain a higher resolution of gxx(t). In Fig. 4.4 and 4.5 we present
results for different sets of initial autocorrelations vαβ(0)(t) given by

fExp(t) = δαβ
J2

Q
4

e−tJQ , (4.40a)

fGau(t) = δαβ
J2

Q
4

e−t2J2
Q , (4.40b)

fLin(t) = δαβ
J2

Q
4
. (4.40c)

Furthermore, we listed the corresponding iteration-errors in Tab. C.1 and C.2. Fortunately,
the convergence occurs very fast in around 4− 5 iteration steps. We compute the errors
between the resulting autocorrelations for different initial functions fi through

Eαβ(f1, f2) =
1

L

L∑
m=1

|gαβ(f1)(mδt)− gαβ(f2)(mδt)|, (4.41)

where gαβ(fi) is the final autocorrelation corresponding to fi. This results in

Exx(fExp, fGau) = 0.000 14, Ezz(fExp, fGau) = 0.000 12, (4.42a)
Exx(fGau, fLin) = 0.000 35, Ezz(fGau, fLin) = 0.000 39, (4.42b)
Exx(fLin, fExp) = 0.000 33, Ezz(fLin, fExp) = 0.000 33, (4.42c)

which is of the same magnitude as the statistical error. Therefore, the final autocorrelations
are equal up to numerical constraints, indicating that the algorithm is stable.
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Figure 4.4: Plot of the autocorrelations gxx(t) during the iteration-steps (n)→ (n+ 1)
for different initial functions (4.40) to illustrate the convergence of the self-consistency
problem. In each plot the curves for n = 1, 2, 3 lie above each other.
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Figure 4.5: Plot of the autocorrelations gzz(t) during the iteration-steps (n)→ (n+ 1)
for different initial functions (4.40) to illustrate the convergence of the self-consistency
problem. In each plot the curves for n = 2, 4 lie above each other.
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4.2 Results in the strong-field regime

In chapter 2 we considered a surface-spin system subjected to a strong static field and a
magnetic noise. By means of a RWA and S-DMFT, we derived a mean-field Hamiltonian
(2.67) and corresponding self-consistency conditions (2.68). We provided an algorithm to
solve this issue numerically through iteration in chapter 3. Based on this, we present and
discuss our numerical results in the following.

4.2.1 Zero-noise results

At first, we consider a noise of C = 0 and set the numerical parameters to

M = 4 · 105, δt = 0.01 J−1
Q . (4.43)

Corresponding to the error analysis in Sec. 4.1 the standard deviation of the averaged
autocorrelations gαα(t) is around 3 · 10−4. The results are plotted in Fig. 4.6 and 4.7. We
find that gxx(t) decays faster than gzz(t) and by another trend. This difference between
the autocorrelations clearly results from the anisotropy in the Hamiltonian (2.67). We fit
a Gaussian function

fxx(t) =
1

4
e−µt2 (4.44)

to gxx(t) and obtain

µ = (2.528± 0.003) J2
Q. (4.45)

The plot in Fig. 4.6 and the small least square error

χ (fxx) :=
1

L+ 1

L∑
m=0

(
fxx(mδt)− gxx(mδt)

)
= 2.57 · 10−6 (4.46)

confirm the Gaussian behavior of gxx(t) very well. Furthermore, we fit two exponential
functions

fzz
1 (t) =

1

4
e−νt, (4.47a)

fzz
2 (t) =

1

4
e−ρ

[√
t2+κ2−|κ|

]
(4.47b)

to gzz(t) yielding

ν = (0.697± 0.002) JQ, χ (fzz
1 ) = 2.31 · 10−5, (4.48a)

ρ = (0.866± 0.001) JQ, χ (fzz
2 ) = 7.44 · 10−7, (4.48b)

κ = (0.324± 0.002) J−1
Q . (4.48c)
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Figure 4.6: Numerically estimated autocorrelation gxx(t) for zero magnetic noise. The
parameter of the Gaussian fit (4.44) is presented in (4.45).
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Figure 4.7: Numerically estimated autocorrelation gzz(t) for zero magnetic noise. The
parameters of the fit functions (4.47) are presented in (4.48).
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Considering this and Fig. 4.7, we deduce that the fit fzz
2 works better than the simple

exponential function, but since fzz
2 (t) converges to fzz

1 (t) for t→∞, the long-time trend
of gzz(t) seems to be exponential.

In conclusion, we find a visible difference between transversal and longitudinal decay,
though they are not decaying on essentially different timescales as observed experimentally.
In the following subsection we present our numerical results for a finite noise. According
to the analytical calculation in Sec. 2.4, we expect a growing difference between the
autocorrelations.

4.2.2 Finite-noise results

For the numerical evaluation of the finite-noise autocorrelations we choose the same
parameters as in (4.43). We repeat some calculations with shorter time steps on a small
time intervall in the beginning because the transversal autocorrelation decays essentially
faster than the longitudinal one. This is not done to reduce the error of the estimation,
but to obtain smoother curves for gxx(t). The resulting autocorrelations gxx(t) and gzz(t)
are plotted in Fig. 4.8 and 4.9 for C = 5.0, 10.0, 50.0. Analogous to the case of zero noise,
we fit a Gaussian function (4.44) to gxx(t) and find

C = 1.0 : µ = (10.71± 0.01) J2
Q, χ(fxx) = 9.56 · 10−7, (4.49a)

C = 5.0 : µ = (42.65± 0.01) J2
Q, χ(fxx) = 5.29 · 10−8, (4.49b)

C = 50.0 : µ = (403.9± 0.2) J2
Q, χ(fxx) = 5.62 · 10−8. (4.49c)

Furthermore, an exponential fit (4.47a) of gzz(t) leads to

C = 1.0 : ν = (0.3300± 0.0006) J2
Q, χ(fzz

1 ) = 1.44 · 10−5, (4.50a)
C = 5.0 : ν = (0.1598± 0.0004) J2

Q, χ(fzz
1 ) = 5.52 · 10−5, (4.50b)

C = 50.0 : ν = (0.054 07± 0.000 06) J2
Q, χ(fzz

1 ) = 2.55 · 10−5. (4.50c)

When fitting the second function (4.47b) to gzz(t), κ is forced to zero. Therefore, the
second fit approximately equals the first one and we do not discuss it further. Through
(2.74c), we predicted a Gaussian function for gxx(t) depending on the exponent

µtheo(C) = 8C J2
Q. (4.51)

Corresponding to this, we compute the relative errors between

µtheo(C = 1.0) = 8 J2
Q, (4.52a)

µtheo(C = 5.0) = 40 J2
Q, (4.52b)

µtheo(C = 50.0) = 400 J2
Q (4.52c)
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and the numerically estimated values (4.49) yielding

∆µ,theo/num(C = 1.0) = 25.3 %, (4.53a)
∆µ,theo/num(C = 5.0) = 6.21 %, (4.53b)

∆µ,theo/num(C = 50.0) = 1.0 %, (4.53c)

which is consistent with the analytical argument because we assumed a large noise and
neglected any mean-field contributions. The second analytical statement (2.75) predicted
gzz(t) to be constant over time for a large noise. Although this behavior is clearly not
visible in Fig. 4.9, gzz(t) decays essentially slower than gxx(t) for large C. Therefore, the
longitudinal autocorrelation is approximately constant at timescales of the transversal
decay in consistency with the analytical prediction. Moreover, we confirm that the
difference between the decay of gxx(t) and gzz(t) is amplified by the presence of a magnetic
noise in agreement with the experimental claim [25]. The next step is to study the
dependence of C and particularly to quantify the difference between the longitudinal
and transversal decay. Subsequently, we compare our results to experimental data and
estimate proper values for C and JQ.
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Figure 4.8: Numerically estimated autocorrelations gxx(t) for finite magnetic noises C
and corresponding Gaussian fits (dashed lines). The fit parameters according to (4.44)
are presented in (4.49).
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Figure 4.9: Numerically estimated autocorrelations gzz(t) for finite magnetic noises
C and corresponding exponential fits (dashed lines). The fit parameters according to
(4.47a) are presented in (4.50).

4.2.3 Noise effects

In order to directly compare our numerical results to the experimenal data, at first,
we have to determine an optimal value of the phenomenological parameter C, since it
affects gxx(t) and gzz(t) by a different manner. To this end, we define the typical decay
time tαα(ξ, C) describing the time at which the autocorrelation gαα(t) equals ξ, i.e., the
inverse function. We compute the autocorrelations for a proper domain of C and estimate
tαα(ξ, C) for fixed ξ < 1

4 . Since the Gaussian fit succeeds for gxx(t), we compute the decay
time by means of the fit parameter via

txx(ξ, C) =

√
1

µ(C)
ln 1

4ξ
, (4.54)

where µ(C) refers to (4.44). The decay time for gzz(t) is estimated manually, while
determining the two surrounding time steps tm and tm+1 and linearly interpolating gzz(t)
on the corresponding intervall

lm(t) =
gzz(tm+1)− gzz(tm)

δt
(t− tm) + gzz (tm) . (4.55)

Thereby, the decay time yields

tzz = tm + δt
ξ − gzz(tm)

gzz(tm+1)− gzz(tm)
. (4.56)
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In Fig. 4.10 and 4.11 we plotted the the results for ξ = 1
4e and moreover the analytical

function

T xx
app
(
ξ = 1

4e , C
)
JQ =

√
1

8C
ln 1

4ξ
=

√
1

8C
(4.57)

because we expect this behavior for a large noise according to (4.51). Considering the
fit parameters (4.49) from the previous section we observe that the absolut difference
between the predicted value 8C and the resulting exponent µ is not varying much. Hence,
we fit

T xx
fit (C) JQ =

√
1

8(C +R)
(4.58)

to txx leading to

R = 0.319± 0.001, χ (T xx
fit ) = 2.34 · 10−6. (4.59)

The corresponding curve is also shown in Fig. 4.10. We notice that T xx
app(C) is different

from the data for small C because it diverges at C = 0. For large C the function converges
to the data as expected, though. By T xx

fit (C) we provide a proper description of the decay
time even for small noises. This reveals that the mean-field contributions to the Gaussian
exponent of gxx(t) are weakly fluctuating in terms of the noise.

Since we have not found any simple and at the same time suitable fit for gzz(t), an
analytically or numerically motivated behavior of tzz is missing at this point. However,
as we see later the fraction of the decay times follows a surprisingly strong linear trend.
Therefore, we apply a fit of

T zz
fit (ξ = 1

4e , C) = (pC + w) · T xx
fit (ξ = 1

4e , C) =
pC + w√
8(C +R)

(4.60)

to the data, where R is given by (4.59) finding

p = 7.058± 0.005, χ (T zz
fit ) = 2 · 10−4, (4.61a)

w = 2.22± 0.01, (4.61b)

which turns out to be quite successful, see Fig. 4.11.

The numerical decay times txx(ξ) and tzz(ξ) cannot be compared to experimental data so
far because they are estimated in units of J−1

Q . In contrast, the fraction of them

F (ξ, C) :=
tzz(ξ, C)

txx(ξ, C)
(4.62)

is clearly unitless and thus forms a suitable parameter to characterize the system. In
particular, it measures the discrepancy between the decay of gxx(t) and gzz(t). We provide
a plot of F (ξ, C) vs. C at three different ξ in Fig. 4.12. Applying a linear fit

Ffit(ξ, C) = p(ξ) · C + w(ξ) (4.63)
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leads to the parameters

ξ = 1/4
√

e : p = 4.727± 0.003, w = 1.846± 0.003, χ (Ffit) = 0.002, (4.64a)
ξ = 1/4e : p = 7.066± 0.006, w = 2.216± 0.006, χ (Ffit) = 0.007, (4.64b)
ξ = 1/4e2 : p = 11.85± 0.02, w = 2.57± 0.02, χ (Ffit) = 0.087. (4.64c)

The suitability of the linear fit is remarkable and suggests a physical meaning, e.g., a
conserved quantity. We did not investigate this further. In the following, we compare our
numerical results for F to the corresponding fraction of the experimental data in order to
find a suitable value for JQ and C.
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Figure 4.10: Decay time txx(ξ, C) vs. the noise at ξ = 1
4e . In addition we show the

analytical approximation (4.57) and a suitable fit function (4.58).
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Figure 4.11: Decay time tzz(ξ, C) vs. the noise at ξ = 1
4e . The fit function is provided

in (4.60).

0 1 2 3 4 5 6 7 8 9 10

C

0

20

40

60

80

100

120

F
(C

)

fraction at ξ = 1/4
√

e

fraction at ξ = 1/4e

fraction at ξ = 1/4e2

Figure 4.12: Decay-time fraction F (ξ, C) at ξ = 1
4
√

e ,
1
4e ,

1
4e2 vs. the noise and linear

fit functions. The corresponding fit parameters can be found in (4.64).

54



4.2 Results in the strong-field regime

4.2.4 Comparison to the experimental results

Fortunately, we received experimental data (not published yet) from the research group
of Prof. A. Sushkov (Department of Physics, Boston University, Boston, Massachusetts
02215, USA) [25]. Their measurements for the autocorrelations are listed in Tab. B.1
and B.2 and plotted in Fig. 4.13 and 4.14. Henceforth, we denote numerical (n) and
experimental (e) results by an additional index so that they can be distinguished. We fit
a Gaussian function

qxx(t) =
1

4
e−ut2 (4.65)

to the data for gxxe (t) yielding

u = (3.3± 0.2)µs−2, (4.66)

with the error-weighted least square error

χe (q
xx) :=

1

Z

Z∑
l=1

gxxe (τl)− qxx(τl)

∆gxxe (τl)
= 1.607, (4.67)

where ∆gxxe (τl) is the standard deviation of the experimental data. We conclude that
the data approximately behave Gaussian according to the resulting fit function in Fig.
4.13. Thus, we already find a great agreement between experimental observations and
numerics because the Gaussian trend is confirmed for both transversal autocorrelations.
We access the desired decay-time fraction through an exponential fit of the longitudinal
autocorrelation

qzz(t) =
1

4
e−vt, (4.68)

which results in

v = (0.038± 0.003)µs−1, χe (q
zz) = 0.897. (4.69)

For an approximate comparison this relative error is acceptable, however, the suitability of
the exponential function is rather given at short times as we see in Fig. 4.14. Moreover, a
single data point at t ≈ 28 µs deviates strongly from the rest and shifts the fit downwards.
Therefore, we apply another exponential fit to some selected data, which are drawn in red
in Tab. B.2 and Fig. 4.14, while obtaining

v = (0.035± 0.002)µs−1, χe (q
zz) = 0.407. (4.70)
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Figure 4.13: Plot of the experimental data of the transversal autocorrelation [25]. The
parameter of the Gaussian fit (4.65) is given by (4.66).

0 20 40 60 80 100 120 140

t µs−1

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

g
z
z
(t

)

exponential fit (A)

exponential fit (B)

experimental data (B)

Figure 4.14: Plot of the experimental data of the transversal autocorrelation [25]. The
parameter of the exponential fit (4.68) is given by (4.69) for all data (A) and by (4.69)
for the selected data (B).
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By means of the fit parameters (4.66) and (4.70), we are now able to compute the
fraction

Fexp(ξ) =
tzz(ξ)

txx(ξ)
=

√
u

v

√
ln 1

4ξ
, (4.71)

and thus an optimal value C(ξ), while demanding equality of Fexp(ξ) and F (ξ, C).

Assuming an accurate agreement between theory and experiment one would find a single
optimal C independent of ξ. However, because several numerical issues, e.g., the fitting
of gzz(t) hamper the comparison, a slight depending on ξ is expected. We provide our
results for the optimal noise Copt(ξ) in Fig. 4.15. For ξ → 1

4 we observe that the optimal
value decreases abrupt. This is not surprising because both nominator and denominator
of the fractions F tend to zero. Hence, the computation gets instable and susceptible to
small differences between numerical data, experimental data and especially the applied fits.
Furthermore, by reducing ξ we find a weak decreasing of Copt. This is again unproblematic
because the suitability of the exponential fit is questionable for large times. Finally, on a
large intervall for ξ we find a plateau. Therefore, we estimate the true optimal value of
the noise to be somewhere around Copt = 6− 8. In the following, we try to determine it
with more accuracy.
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Figure 4.15: Optimal value of the noise vs. the considered decay ξ.

Since the fluctuations of the experimental data and the applied fits are considerable error
sources, we are clearly limited in accuracy. Therefore, we do not use any sophisticated
algorithm to determine the best matching between numerics and experiment. Instead, we
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simply compute the autocorrelations on a finer discretization on the estimated intervall
for C. Subsequently, we determine an optimal energy or timescale, respectively, through
minimizing the square error between the numerical and experimental data

χxx =
1

Z

Z∑
l=1

gxxn (τi)− gxxe (τi)

∆gxxe (τl)
. (4.72)

There, τi are the time steps of the experimental data in µs, Z is the total number of time
steps and ∆gxxe (τi) the standard deviation of gxxe (τi). We remind the reader that τi has
to be converted to 1/JQ before it can be inserted to gαα(τi). Because the (converted)
numerical time domain is different from the experimental one, we linearly interpolate the
numerical data to find the required gxx(τi). The coupling constants JQ, minimized errors
χxx, Gaussian fit parameters µ, resulting root-mean-squared (RMS) magnetic fields

BN :=

√
b2

N
=

4JQ
√
C

γs
=

2JQ
√
C

µB
, (4.73)

and the resulting average minimum dipole distances

rmin =

(
µ0µ

2
B

8JQ
√
π

) 1
3

(4.74)

are listed in Tab. C.3 depending on C. Furthermore, we plotted JQ in terms of the noise
in Fig. 4.16. On the considered interval for C the dependency is roughly linear. Therefore,
we apply a fit

Jlin(C) = mJC + nJ (4.75)

yielding

mJ = −0.0165± 0.0003, χ (Jlin) = 7.23 · 10−7, (4.76a)
nJ = 0.357± 0.002. (4.76b)

Now that JQ and C are somehow fixed, we are able to directly compare the corresponding
autocorrelation gzzn (t) to the experimental results gzze (τ). Analogous to (4.72), we compute
the square error χzz. We calculate this for all given experimental data (A) and a selected
couple of experimental data (B), which are drawn red in Tab. B.2. The resulting errors
χzz(C) are listed in Tab. C.4. From this, we find a minimum at C = 6.0 (A) and C = 6.8
(B). The corresponding results for these values are shown in Fig. 4.17 and 4.18 together
with the experimental data. According to the plot and the weakly varying errors, the
numerically estimated transversal autocorrelations gxxn (t) are almost equal. This is not
surprising because the rescaling shifts the Gaussian results above each other. In contrast,
the numerical results for gzzn (t) are visibly different due to the rescaling.
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Figure 4.16: Coupling constant JQ in dependence of the noise parameter C. The
parameters of the linear fit (4.75) are shown in (4.76).
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Figure 4.17: Plot of the numerical data for C = 6.0 (A) and C = 6.8 (B) including
the experimental data of the transversal autocorrelation from Ref. [25]. The timescale
is estimated from a fit of the numerical results to the experimental data for each C,
see Tab. C.3.
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Figure 4.18: Plot of the numerical data for C = 6.0 (A) and C = 6.8 (B) including
the experimental data of the longitudinal autocorrelation from Ref. [25]. The timescale
is fixed through a fit of the transversal autocorrelation for each C, see Tab. C.3. The
square error between experiment and numerics for gzz(t) is listed in Tab. C.4 for each C.

At short times, the accordance between gzzn (t) and gzze (t) for C = 6.8 is great and
better than for C = 6.0. At long times one hardly finds a statement, though, because the
experimental data are fluctuating strongly and moreover fall slightly below zero on average,
which is neither expected due to decoherence nor captured by numerics. According to
these conclusions, we finally agree on

C = 6.8± 0.8, JQ = (0.24± 0.01)µs−1 (4.77)

to be realistic values characterizing magnetic noise and energy scale. The corresponding
RMS field reads

BN = (14.52± 0.07)µs, (4.78)

while the average minimum dipole distance yields

rmin = (6.66± 0.12)nm. (4.79)

From the experimental measurements we adopt a typical distance of roughly (5± 1)nm [25]
leading to a relative error of

∆r = 25 % (4.80)
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between experimental and numerical value. Although this result is acceptable, we briefly
discuss some error sources that could be responsible for this.

At first, one clearly has to mention the neglect of local inhomogeneities and S-DMFT as
relevant error sources. Those approximations are indeed fundamentally for this thesis
and their errors cannot be quantified easily. The computation of coupling constants
through applying the continuum limit forms another error source during the modelling.
We emphasize that the value of rmin is directly affected, since its relation to JQ follows
from this. Other error sources occur in connection with the magnetic noise induced by
shallow proton spins. The assumption that the noise obeys the same variance b2 at each
site is not fully justified because in experiment the distance between the surface spins and
nearby proton spins varies slightly from site to site [25]. Therefore, the effective magnetic
field at each surface spin also varies leading to a site-dependent variance b2i .

In summary, the numerical results are in great agreement with the experimental data. By
comparing the computed typical distance to the corresponding experimental observation
we demonstrated consistency up to an acceptable deviation. The following section deals
with the zero-field limit, where the magnetic noise contributes to all spatial dimensions
contrary to the strong-field regime.

4.3 Results in the zero-field limit

In Sec. 2.6 we considered the surface-spin system in the zero-field limit while including an
isotropic magnetic noise. By means of S-DMFT, we derived self-consistency conditions
(2.111) with respect to the Hamiltonian (2.98). A brief symmetry discussion revealed that
any autocorrelations gαβ(t) or vαβ(t) with α 6= β are zero again so that we only consider
a longitudinal and transversal decay. We present our numerical results in the following.

4.3.1 Zero-noise results

We set the numerical parameters to

M = 4 · 105, δt = 0.01 J−1
‖ =

1

4
√
2
0.01 J−1

Q , (4.81)

leading to a standard deviation of roughly 2 · 10−4 due to the statistics. The analysis of the
time discretization error in Sec. 4.1.2 referred to the strong-field regime and is therefore
not reliably applicable here. We rechecked that the time discretization error for this choice
of δt does not exceed the magnitude of the statistical error. The resulting autocorrelations
for CZF = 0 are shown in Fig. 4.19. In contrast to the strong-field results for C = 0, the
longitudinal autocorrelation decays faster than the transversal autocorrelation. This is not
surprising because the prefactor 5

2 in front of gxx(t) in the first self-consistency condition
(2.111a) clearly strengthens the transversal autocorrelation. In the strong-field regime, it
is not the self-consistency problem but the Hamiltonian (2.67) containing the distorting
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4 Results

prefactors in front of the longitudinal and transversal contibutions implying anisotropy.
Transferring those factors to the self-consistency problem would lead to an amplifying
factor of 4 concerning gzz(t) relative to gxx(t). The difference between the decays is
therefore even stronger than in the zero-field limit as can be seen in the corresponding
plots in Fig. 4.6 and 4.7.

We apply Gaussian fits to the autocorrelations according to

Gαα(t) =
1

4
e−µααt2 , (4.82)

which result in

µxx = (0.333± 0.002) J2
‖ = (10.66± 0.06) J2

Q, χ(Gxx) = 5.75 · 10−5, (4.83a)
µzz = (0.686± 0.004) J2

‖ = (22.0± 0.1) J2
Q, χ(Gzz) = 3.12 · 10−5. (4.83b)

By comparing the fit parameters to (4.45) we find that gxx(t) and gzz(t) both decay faster
in the zero-field limit due to the increased energy scale J‖ = 4

√
2JQ. In the following

section we include a finite noise in our numerical computation.
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Figure 4.19: Numerically estimated transversal and longitudinal autocorrelation in the
zero-field limit and for zero magnetic noise. The parameters of the Gaussian fits are
listed in (4.83).

4.3.2 Finite-noise results

The numerical parameters are set as in (4.81). In Sec. 2.6 we introduced the noise
parameter CZF required in the zero-field limit. It is related to the noise in the strong-field
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4.3 Results in the zero-field limit

regime through CZF = C
2 at the magic angle. By means of this, we assume a value of

CZF = 3.4 to be realistic according to the result of the strong-field consideration (4.77).
Before discussing the numerical results for this CZF, at first we consider the case of a large
noise to check consistency with the analytical prediction made at the end of Sec. 2.6.

We provide numerical results for CZF = 25.0, 100.0 in Fig. 4.20. Apparently, both
autocorrelations are very similar to each other, which is again contrary to the strong-field
regime. Actually, this result is not astonishing because the magnetic noise is appearing in
both self-consistency conditions with the same strength so that both autocorrelations are
affected by it in a similar way. For large CZF the mean-field contributions get subdominant
leading to an isotropic self-consistency problem and thus to gxx(t) ≈ gzz(t). In addition
to the numerical results, we also show the analytical prediction from (2.116) in Fig. 4.20.
The numerics clearly confirm the predicted trend gααapp(t) for large CZF. We observe small
deviations in the position of the dip and some weak decay in the numerical results, which
is caused by the remaining mean-field contributions. Those were simply neglected against
the noise in the analytical consideration.
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Figure 4.20: Numerically estimated autocorrelations for two large values of CZF. The
analytical prediction gααapp(t) is given by (2.116).

In Fig. 4.21 we finally present our results for a value of CZF = 3.4. Both autocorrelations
are still very similar to each other due to the dominant contributions from the noise. Since
we found a nice accordance between prediction and numerics apart from the weak decay
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4 Results

at long times, we assume that a product of the analytical function with an exponential
decay properly reflects the results. Correspondingly, we fit

Qαα(t) = gααapp(t)e−νααt =
1

12

(
1 + 2

(
1− 2t2J2

‖CZF
)

e−t2J2
‖CZF

)
e−νααt (4.84)

to both autocorrelations, which results in

νxx = (0.203± 0.002) J‖, χ (Qxx) = 3.91 · 10−5, (4.85a)
νzz = (0.232± 0.002) J‖, χ (Qzz) = 3.06 · 10−5. (4.85b)

Overall, the applied fits work out well, see Fig. 4.21. Although there are some deviations
at the dip, we find a very nice agreement at longer times. Since gααapp(t) fastly converges
to a constant value, the long-time decay is dominated by the exponential function.
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Figure 4.21: Numerically estimated transversal and longitudinal autocorrelation in the
zero-field limit for CZF = 3.4. The parameters of the fit functions (4.84) are given by
(4.85).

In summary, the zero-field autocorrelations essentially differ from the strong-field au-
tocorrelations. For zero noise this difference basically results from prefactors in the
self-consistency conditions causing various mean-field anisotropies in both cases. Consider-
ing a finite magnetic noise in the strong-field regime increases the anisotropy because the
noise only contributes in z-direction, as the RWA eliminates its transversal components. In
contrast to this, a finite noise in the zero-field limit leads to rather similar autocorrelations
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4.3 Results in the zero-field limit

because the isotropic noise reduces the mean-field anisotropy. The final results in Fig. 4.21
are characterized by a dip in the beginning followed by an exponential decay. At short
times this trend is similar to that of an isolated spin in a static magnetic noise, which is
also relevant in the frozen-fluctuations CSM, see Refs. [8, 38].
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5 Summary and outlook

The purpose of this theoretical thesis was to establish S-DMFT, while employing it to
a system of dipolar surface spins. From the experimental point of view, the topic is
motivated by the observation that the considered surface spins affect shallow NV centers
in diamond leading to their decoherence. Due to this issue, it is certainly of interest
to gain a detailed insight into the surface-spin dynamics and in particular to the spin
autocorrelations. From the theoretical point of view, we established a model which is
capable of dealing with large disordered spin ensembles by limited numerical effort.

In chapter 2, we started with setting up the Hamiltonian for a system of dipolar spins
that are randomly distributed on a planar surface. On the basis of an experimental setup
in Ref. [25], we considered two extensions to the Hamiltonian: First, the experimentalists
applied a strong static magnetic field to the system and measured their autocorrelations in
the induced Larmor rotating frame. Second, the surface spins are affected by a magnetic
field noise resulting from proton spins near the surface. To regard this in theory, we added
the corresponding Zeeman-terms to the Hamiltonian, turned to the Larmor rotating frame,
and averaged the Hamiltonian over time with aid of the RWA. In the resulting effective
Hamiltonian only the z-component of the noise survived.

Subsequently, the effective Hamiltonian was prepared for S-DMFT, while introducing
local Overhauser fields representing the environment of each spin. We neglected any local
inhomogeneities and thus assumed equality of these fields on average. Then, we established
S-DMFT in three fundamental steps: At first, we justifed that the local Overhauser field
of a particular spin can be replaced by an unsettled time-dependent mean-field. In the
second step we replaced the local Overhauser field by a Gaussian random mean-field
with zero average, reasoned through the central limit theorem. Third, we determined
the second moments, while deriving self-consistency conditions connecting mean-field
autocorrelations to single-spin autocorrelations. Through exploiting symmetries of the
system, it was shown that only the transversal and the longitudinal autocorrelations are
non-zero. Furthermore, we elaborated that the magnetic noise is simply reduced to a
constant offset in the longitudinal condition.

After establishing S-DMFT for the system in the strong-field regime, we were also able
to employ it to the system in the zero-field limit. In doing so, we derived a similar
self-consistency problem, but with a magnetic noise contributing to both the longitudinal
and transversal conditions. In summary, S-DMFT provides a substantially simplified
Hamiltonian capturing the affect of a Gaussian mean-field on a single spin. The properties
of this field are self-consistently connected to the dynamics of the single spin.

The subsequent chapter treated the numerical implementation of the remaining issue.
We furnished an algorithm to solve the self-consistency problem through iteration and
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expounded two crucial steps in detail: the sampling of a Gaussian random field and the
computation of TEOs via CFETs. Throughout the presented procedure, three numerical
error sources occur, which were examined in the beginning of chapter 4. There, we
formulated simple rules-of-thumb for an efficient and reliable choice of the number of
drawn samples, the time-step width and the iteration-error threshold. Moreover, we
demonstrated fast convergence of the estimated autocorrelations during the iterations.

Thereby, we were finally able to compute the desired autocorrelations depending on the
magnetic noise strength. In general, we found that the presence of the noise considerably
influences the dynamics. When omitting it in the strong-field consideration, we observe
that the longitudinal decay happens slower than the transversal decay. By switching
it on, this difference is increased because the noise only contributes to the z-direction
so that the initial anisotropy is amplified. As a result, the transversal autocorrelation
accurately follows a fast-decaying Gaussian trend, while the longitudinal decay is slowed
down enormously behaving roughly exponential. From our theoretical perspective, we
can clearly agree on the experimental claim that the noise is mainly responsible for the
essential difference in the timescales. In our numerical estimation, this difference is easily
adjustable through varying the variance of the noise. By means of this, we were able
to determine an optimal value for the coupling constant and the noise variance, while
comparing our numerics to the experimental data from Ref. [25]. With respect to the
fixed parameters, the numerical results are in a great accordance with the received data
and therefore confirm the observed slowdown of the longitudinal dynamics.

With aid of the continuum limit, we estimated the average minimum dipole distance from
the obtained coupling constant. By doing so, the experimentally observed value ∝ 5 nm [25]
was slightly overestimated. As possible reasons for this deviation we named various error
sources, such as the neglect of local inhomogeneities, the usage of the continuum limit, or
the assumption of a site-independent noise variance. In future considerations one could
actually try to extend the system to a slight local variance of the magnetic noise variance
to get even closer to the experiment. Thereby, we expect the single-spin autocorrelations
to smear into a set of functions each depending on the local noise variance.

In the zero-field limit we obtain a vastly different behavior of the autocorrelations. In
fact, the transversal decay is slowed down relative to the longitudinal decay when the
magnetic noise is switched off. Through the presence of a magnetic noise, this anisotropy is
mitigated because the noise contributes to both autocorrelations in the same way contrary
to the strong-field regime. For a realistic value of it, we finally obtained two similar
autocorrelations passing a dip in the beginning followed by an exponential decay. As
an outlook, one could also consider the system in the case of an arbitrary aligned weak
field, where the RWA is not applicable. Thereby, we expect several originally present
symmetries to vanish so that the crossing autocorrelations are non-zero. Due to this the
numerical effort of the sampling is increased, though the procedure is not substantially
more complex as can be seen in Sec. 3.2.

According to the remarkable agreement between the numerical curves for the fixed
parameters and the experimental data, we conclude that S-DMFT worked very well in
the strong-field regime. Moreover, we assume the results for other noise variances and
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5 Summary and outlook

those in the zero-field limit to be valid as well, although we have no experimental data
or results from other approaches for comparison. In Sec. 2.3.2 we expounded that the
general applicability of S-DMFT highly depends on the topology of the system: while
the classical substitution is hardly justified for the CSM, the full approach appears to be
working for the two-dimensional dipole-dipole model, although mean-field approaches are
known to rather succeed in high dimensions. Beside this, we also expect the applicability
to be dependent on the interaction range because the substitution of the local Overhauser
field by a Gaussian mean-field is rather justified in the case of a long-range interaction.

From our point of view, a powerful advantage of S-DMFT is not only the low numerical
effort but also that the approach is easily expandable, as we experienced in this work.
In this sense, another outlook could be to consider externally applied pulses to the spin
system confirming or predicting further experimental observations.
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A Correlations in spin models on Bethe lattices at
infinite temperature

Our goal is to find an analytical argument supporting the assumption that pair-correlations
are subdominant in our disordered spin system. To do so, we consider a simplified model
describing spin-12 on a Bethe lattice [44] with a nearest-neighbor coupling at infinite
temperature. We try to determine the scaling of the two-time correlation functions gργk0(t),
k 6= 0, with regard to the coordination number z denoting the number of nearest neighbors.
The Bethe lattice is fully determined by z and the fact that it is loop-free [44]. In Fig. A.1
we show a cutout of it with z = 3 and with z = 4.

Figure A.1: Cutout of a Bethe lattice with z = 3 (left) and with z = 4 (right). The
sites of the lattice are represented by dots.

We consider the general Hamiltonian

HBethe =
1√
z

∑
<i,j>

∑
αβ

lαβSα
i S

β
j (A.1)

with arbitrary couplings lαβ allowing for anisotropy. Since we have infinite temperature
corresponding to ρ = 1/d, the correlation functions simplify to the trace

gργk0(t) = 〈S
ρ
k(t)S

γ
0 (0)〉 =

1

d
Tr
(
Sρ
k(t)S

γ
0 (0)

)
. (A.2)

With aid of the Heisenberg equation of motion
d
dt

A(t) = i [H,A(t)] = −LA(t), (A.3)

where L denotes the Liouville operator, we compute the first time derivative
d
dt

gργi0 (t) = 〈LSρ
k(t)S

γ
0 (0)〉 = −

1√
z

∑
j,<j,k>

∑
αβϕ

lαβεαρϕ〈
[
Sβ
j S

ϕ
k

]
(t)Sγ

0 (0)〉. (A.4)
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A Correlations in spin models on Bethe lattices at infinite temperature

Apparently, a single action of the Liouville operator onto Sρ
k multiplies another spin

operator at a surrounding site j to it. Similarly, applying L once more produces terms
with three spin operators. Therefore, multiple actions of L lead to complex clusters C
which consist of spin operators at certain sites p ∈ C of the lattice. To determine the
scaling of the correlation function gργk0(t) we require details about any of those clusters
because they are clearly connected to Sρ

k(t) through (A.3) and vice versa. Thus, it is
expedient to determine the scaling of the general correlation function

gγ(C, t) = 〈C(t)Sγ
0 (0)〉 (A.5)

rather than that of the special case. For the corresponding derivative we find

d
dt

gγ(C, t) =
1√
z

∑
C′

l
(
C,C ′) gγ(C ′, t), (A.6)

where the sum runs over any clusters C ′, that can be reached from C by a single
commutation with the Hamiltonian. The factor l(C,C ′) denotes the corresponding
coupling multiplied by any other factors resulting from the commutation. Now, it is the
strategy to claim a scaling of the general correlation functions and subsequently show
that an action of L according to (A.6) does not violate this claim. Before performing this,
we find some general statements quantifying the clusters in the following.

First of all, since s = 1
2 , any product of spin operators at a single site can be referred back

to a single spin operator or the unity because the product of two Pauli matrices obeys

σασβ = δαβσ0
+ i

∑
γ

εαβγσ
γ . (A.7)

Correspondingly, we only need to distinguish between empty or occupied sites in our
clusters.

Secondly, it is usefull to introduce a quantity

κ(C) = κ1(C) + κ2(C), (A.8)

characterizing the spread of a cluster C on the Bethe lattice. We denote κ1(C) as the
minimum number of links, that are required to reach all occupied sites p ∈ C and moreover
p = 0. The number of non-occupied sites that are covered by this set of links (henceforth
called covering) is captured by κ2(C). For clarity, we provide an example in Fig. A.2,
where we consider a cluster consisting of four spin operators. By connecting the occupied
sites and p = 0 as demanded, we count κ1 = 6 required links. Moreover, we find κ2 = 3
as the number of empty sites in this covering. Finally, this results in κ = 9. In fact, these
definitions are unique for the Bethe lattice because it is a loop-free. Considering other
lattices one possibly requires more precise constraints for them.
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0

Figure A.2: Cutout of a Bethe lattice with z = 3 and spin- 12 . A site can either be
occupied (filled circle) or empty (unfilled circle). The covering is illustrated by the green
links.

Indeed, κ(C) describes the minimum number of commutations, that are necessary to
reach the cluster C from Sγ

0 and vice versa. Particularly, at t = 0 one finds

gγ(C, 0) = 0, ∀C 6= Sγ
0 , (A.9)

and because of this

dn

dtn
gγ(C, t)

∣∣∣
t=0

= 0 (A.10)

for any n < κ(C), since Sγ
0 cannot be reached from C with less than κ(C) commutations.

In the following, we determine the scaling of gγ(C, t).

The claim is that the general correlation functions are suppressed with the number of
nearest neighbors according to

gγ(C, t) ∝ 1

zκ(C)/2
. (A.11)

We show that this is consistent with the equations of motion (A.6) by proving that the
scaling of the right-hand-side is equal to that of the left-hand-side. To this end, we consider
all possible processes leading from C to C ′. Clearly, an action of the Liouville operator
onto C only affects a single link (i, j) of the cluster. Accordingly, we consider the link
processes illustrated in Fig. A.3. The corresponding commutations read[

Sα
i S

β
j ,S

ρ
i

]
= i

∑
ω

εαρωS
ω
i S

β
j , ρ 6= α,[

Sα
i S

β
j ,S

ρ
j

]
= i

∑
ω

εβρωS
α
i S

ω
j , ρ 6= β,

(A.12a)

[
Sα
i S

β
j ,S

ρ
i S

β
j

]
=

i
2

∑
ω

εαρωS
ω
i , ρ 6= α,[

Sα
i S

β
j ,S

α
i S

δ
j

]
=

i
2

∑
ω

εβδωS
ω
j , ρ 6= β,

(A.12b)
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A Correlations in spin models on Bethe lattices at infinite temperature

where the left-hand-side represents LC while the right-hand-side represents the resulting
cluster C ′. Obviously, we do not insert the total clusters C to these equations, since only
single links are participating in the commutations.

(a)

(b)

i j i jL

Figure A.3: All possible link processes leading from C to C ′. Here, we do not distinguish
between links that are part of the covering and links that are not.

Moreover, a process where both sites are occupied before and after applying the Liouville
operator, is not considered, since the belonging commutation yields zero according to[

Sα
i S

β
j ,S

ρ
i S

δ
j

]
= [Sα

i ,S
ρ
i ] S

β
j S

δ
j + Sρ

i S
α
i

[
Sβ
j ,S

δ
j

]
(A.13a)

= i
∑
ω

εαρωS
ω
i

i
2

∑
χ

εβδχS
χ
j +

i
2

∑
ω

εραωS
ω
i i
∑
χ

εβδχS
χ
j (A.13b)

= −1

2

∑
ω,χ

εβδχ

(
εαρω + εραω

)
Sω
i S

χ
j = 0, (A.13c)

where α 6= ρ and β 6= δ. Note that we used (A.7) for this calculation and thus restricted
the spin to s = 1

2 . For larger spins this process may contribute. Turning back to the
non-zero commutators (A.12), we remind the reader of coupling constants and importantly
a z−1/2 resulting from the Hamiltonian (A.1) and not explicitly appearing in the equations.
While considering this we discuss the scaling of the link processes due to their multiplicity
below.
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The processes (A.12a) describe an occupation of an empty site next to an occupied site.
Corresponding to our characterization (A.8) we distinguish between (a.i) an occupation
expanding the covering of C over the lattice and (a.ii) an occupation at a site, which is
already part of the covering. These cases are illustrated in Fig. A.4.

(a.i)

(a.ii)

i j i jL

Figure A.4: All possible link processes of category (a). Links of the covering are drawn
in green.

(a.i) In the first case, clearly κ1 increases by one due to the additional link. The number
of non-occupied sites κ2, however, is not affected. In conclusion this leads to

κ(C ′) = κ(C) + 1. (A.14)

Furthermore, there are at maximum z neighbors of an occupied site from which C
can be expanded. This number is multiplied to the number of occupied sites

Pmax(C) = κ1(C)− κ2(C) + 1, (A.15)

which serve as an upper limit for the multitude of resulting terms. Together with
the prefactor z−1/2 by the Hamiltonian and (A.14) this leads to

Pmax(C)
z√
z

1

zκ(C′)/2
= Pmax(C)

1

zκ(C)/2
∝ 1

zκ(C)/2
, (A.16)

where we omitted Pmax(C), since it is not related to the coordination number. Thus,
the claim is not violated by this process.

(a.ii) An occupation of an empty site, which is already covered by the cluster, clearly
reduces κ2 by one and keeps κ1 constant, since the cluster is not expanded. Corre-
spondingly, the characteristic quantity of the resulting cluster yields

κ(C ′) = κ(C)− 1. (A.17)

Moreover, κ1(C) serves as an upper limit for the number of possibilities to fill an
empty site by this process. To comprehend this, consider an extremal case, e.g., a
chain with alternating occupied and empty sites. There, an occupation can take
place at every of the links. Thus, the total number of possibilities is κ1 for this case.
In conclusion, the scaling for the considered process yields

κ1(C)
1√
z

1

zκ(C′)/2
= κ1(C)

1

zκ(C)/2
∝ 1

zκ(C)/2
, (A.18)

which is again consistent with the claim (A.11).
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A Correlations in spin models on Bethe lattices at infinite temperature

Apparently, by (A.12b) an occupied site can be emptied next to another occupied site.
We distinguish between processes, where (b.i) the covering of C is decreased, and those,
where (b.ii) it stays unchanged, see Fig. A.5. Moreover, we assign any process where the
site p = 0 is emptied to case (b.ii), since p = 0 is per definition part of the covering.

(b.i)

(b.ii)

i j i jL

Figure A.5: All possible link processes of category (b). Links of the covering are drawn
in green.

(b.i) Emptying a site at the edge of the cluster leads to a reduction of κ1 by one. As κ2
is not affected, we have

κ(C ′) = κ(C)− 1. (A.19)

Furthermore, there can be at maximum ∝ Pmax possibilities for such a process for any
cluster, since the number of occupied edge sites is limited by this. Correspondingly,
we obtain

Pmax(C)
1√
z

1

zκ(C′)/2
= Pmax(C)

1

zκ(C)/2
∝ 1

zκ(C)/2
(A.20)

for the scaling, which is consistent with the statement (A.11).

(b.ii) When emptying a site without changing the covering of the cluster, clearly κ2 is
increased by one while κ1 stays constant. Hence, these processes lead to

κ(C ′) = κ(C) + 1. (A.21)

We determine ∝ 2κ1 to be the upper limit for the number of possibilities. An
extremal case for this is, e.g., a fully occupied chain. Every inner site can be emptied
through both neighbors leading to ∝ 2κ1 possibilities. In conclusion, we find

2κ1
1√
z

1

zκ(C′)/2
= 2κ1

1

zκ(C)/2+1
∝ 1

zκ(C)/2+1
. (A.22)

This scaling is clearly subdominant against the claim (A.11) and thus does not
violate it.

Summarizingly, the claim is consistent with the equations of motion (A.6). By means of
the starting conditions (A.9) and

gγ(Sγ
0 , 0) = 〈S

γ
0S

γ
0 〉 =

1

4
∝ 1, (A.23)
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we showed that

gγ(C, t) ∝ 1

zκ(C)/2
(A.24)

is valid because κ(Sγ
0 ) = 0. Thus, the pair-correlations gργk0(t), k 6= 0, are suppressed

with at least z−1 relative to the autocorrelations. Assuming a Gaussian behavior of the
dynamic mean-field is therefore certainly justified. Moreover, the second moments of the
collective field

V α(t) =
1√
z

∑
i,<i,0>

∑
γ

lαγSγ
i (t) (A.25)

yield

〈V α(t)V β(0)〉 = 1

z

∑
i,<i,0>
j,<j,0>

∑
γρ

(
lαγlβρ

)2
〈Sγ

i (t)S
ρ
j (0)〉 (A.26a)

=
1

z

∑
γρ

(
lαγlβρ

)2


∝ z︷ ︸︸ ︷∑
i,<i,0>

〈Sγ
i (t)S

ρ
i (0)〉︸ ︷︷ ︸

∝ 1

+

∝ z2︷ ︸︸ ︷∑
i,<i,0>
j,<j,0>
i 6=j

〈Sγ
i (t)S

ρ
j (0)〉︸ ︷︷ ︸

∝ z−2

 (A.26b)

=
1

z

∑
γρ

∑
i,<i,0>

(
lαγlβρ

)2
〈Sγ

i (t)S
ρ
i (0)〉+O

(
z−1
)
. (A.26c)

Thus, the sum over the pair-correlations is suppressed and can be neglected for large z.

Clearly, the Bethe lattice differs substantially from the surface-spin system considered
in this thesis. Both the topology and the range of the interaction are not comparable.
However, one could see the nearest-neighbor interaction in the Bethe lattice for large z
as a simple realization of the long-range interaction which is present in the surface-spin
system. Local fluctuations of the coupling constants could be added to the consideration
above and would not change the scaling in the end. Therefore, we adopt this appendix as
an analytical argument supporting S-DMFT for the considered surface-spin system. By
means of (A.24), we justified that the mean-field is Gaussian, see step 2, and moreover
that only the autocorrelations contribute to the dynamics, see step 3.
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B Experimental data

In this appendix we intend to list the received experimental data [25].

Table B.1: Experimental data for the spin polarization P xx
e (t) = 4gxxe (t) in transversal

direction and its standard deviation ∆P xx
e in dependence of the time [25].

t/µs P xx
e

0.122 0.969± 0.047
0.154 0.976± 0.042
0.186 0.754± 0.061
0.218 0.679± 0.06
0.25 0.851± 0.098
0.282 0.564± 0.086
0.314 0.726± 0.093
0.346 0.63 ± 0.09
0.378 0.53 ± 0.041
0.41 0.562± 0.069
0.442 0.551± 0.075
0.474 0.451± 0.039
0.506 0.578± 0.088
0.538 0.353± 0.061
0.57 0.403± 0.041
0.602 0.381± 0.082
0.634 0.286± 0.05
0.666 0.305± 0.068
0.698 0.171± 0.073

t/µs P xx
e

0.73 0.264± 0.096
0.762 0.174± 0.097
0.794 0.033± 0.076
0.826 0.051± 0.056
0.858 0.13 ± 0.072
0.89 0.133± 0.086
0.922 0.072± 0.067
0.954 0.138± 0.076
0.986 −0.015± 0.061
1.018 −0.042± 0.08
1.05 −0.04 ± 0.073
1.082 −0.025± 0.064
1.114 −0.06 ± 0.089
1.146 −0.027± 0.053
1.178 −0.043± 0.098
1.21 0.034± 0.088
1.242 0.067± 0.049
1.274 −0.142± 0.046
1.306 −0.106± 0.056

76



Table B.2: Experimental data for the spin polarization P zz
e (t) = 4gzze (t) in longitudinal

direction and its standard deviation ∆P zz
e in dependence of the time. The red data are

selected to apply optimized fits (B) [25].

t/µs P zz
e

1.8 0.982± 0.072
5.57 0.675± 0.085
9.29 0.655± 0.08

13.06 0.604± 0.093
16.83 0.553± 0.086
20.55 0.528± 0.086
24.32 0.378± 0.085
28.09 0.021± 0.091
31.8 0.287± 0.072
35.57 0.359± 0.093
39.34 0.341± 0.105
43.06 0.259± 0.097
46.83 0.206± 0.097
50.55 0.287± 0.14
54.3 0.1 ± 0.13
58.05 0.069± 0.165
61.8 0.144± 0.144
65.55 0.126± 0.185
69.3 0.04 ± 0.132
73.05 0.058± 0.153

t/µs P zz
e

76.8 0.132± 0.15
80.55 0.183± 0.166
84.3 −0.112± 0.156
88.05 0.11 ± 0.163
91.8 0.012± 0.231
95.55 0.077± 0.174
99.3 −0.075± 0.133

103.05 0.282± 0.154
106.8 0.02 ± 0.132
110.55 −0.018± 0.2
114.3 0.124± 0.157
118.05 −0.167± 0.144
121.8 −0.18 ± 0.151
125.55 −0.034± 0.139
129.3 −0.048± 0.184
133.05 0.114± 0.157
136.8 −0.131± 0.137
140.55 −0.016± 0.171
144.3 −0.335± 0.175
148.05 −0.054± 0.161
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C Numerical data

This appendix contains the values of the iteration errors discussed in Sec. 4.1.3 as well as
the final results of the comparison between the numerical and experimental data in the
strong-field regime, see Sec. 4.2.4.

Table C.1: Values of the iteration Error ∆Ixx given by (4.37) during the iteration-steps
(n)→ (n+ 1) for different initial functions (4.40). The iteration is stopped, when the
threshold (4.39) is reached.

(n+ 1) ∆Ixx(fExp) ∆Ixx(fGau) ∆Ixx(fLin)

2 0.000 87 0.000 95 0.0017
3 0.000 25 0.000 29 0.000 24

Table C.2: Values of the iteration Error ∆Izz given by (4.37) during the iteration-steps
(n)→ (n+ 1) for different initial functions (4.40). The iteration is stopped, when the
threshold (4.39) is reached.

(n+ 1) ∆Izz(fExp) ∆Izz(fGau) ∆Izz(fLin)

2 0.046 0.069 0.14
3 0.000 49 0.000 51 0.0022
4 0.000 25 0.000 25 0.000 24
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Table C.3: Values of the coupling constant JQ, transversal least-square error (4.72),
Gaussian fit parameter µ, RMS field (4.73) and average minimum dipole distance (4.74)
in dependence of the noise parameter C.

C JQ/µs−1 χxx µ/ J2
Q BN/µT rmin/nm

5.8 0.2627 1.5882 49.18± 0.02 14.39 6.5
6.0 0.2586 1.5884 50.78± 0.02 14.4 6.54
6.2 0.2545 1.5885 52.38± 0.02 14.41 6.57
6.4 0.2508 1.5883 53.98± 0.02 14.43 6.61
6.6 0.2471 1.5886 55.58± 0.02 14.44 6.64
6.8 0.2436 1.5887 57.18± 0.02 14.45 6.67
7.0 0.2403 1.5889 58.78± 0.02 14.46 6.7
7.2 0.2371 1.589 60.38± 0.02 14.47 6.73
7.4 0.234 1.589 61.98± 0.02 14.48 6.76
7.6 0.2311 1.5891 63.58± 0.02 14.49 6.79
7.8 0.2282 1.5893 65.18± 0.02 14.49 6.82
8.0 0.2254 1.5894 66.78± 0.02 14.5 6.84
8.2 0.2228 1.5893 68.38± 0.02 14.51 6.87
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C Numerical data

Table C.4: Values of the longitudinal least-square error for considering all data (A) and
for considering selected data (B) in dependence of the noise parameter C.

C χzz
(A) χzz

(B)

5.8 0.9372 0.5465
6.0 0.9263 0.4835
6.2 0.9275 0.4264
6.4 0.937 0.4003
6.6 0.9481 0.3789
6.8 0.9733 0.3698
7.0 0.9944 0.3741
7.2 1.0329 0.3916
7.4 1.0759 0.4155
7.6 1.1145 0.4442
7.8 1.153 0.4819
8.0 1.2066 0.5326
8.2 1.2616 0.5901
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