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Optimization of short coherent control pulses
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The coherent control of a small quantum system is considered. For a two-level system coupled to an
arbitrary bath we consider a pulse of finite duration. We derive the leading and the next-leading order correc-
tions to the evolution operator due to the noncommutation of the pulse and the bath Hamiltonian. The condi-
tions are computed that make the leading corrections vanish. The pulse shapes optimized in this way are given

for 7 and 5 pulses.
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I. INTRODUCTION

For a long time, the coherent control of quantum systems
has been an important issue. For instance, nuclear magnetic
resonance (NMR) is a widely used technique for the analysis
of chemical compounds and for imaging techniques. Another
broad field of application is the coherent control of the state
of quantum dots, both in the charge and in the spin degrees
of freedom. In recent years, however, coherent control has
gained an even more vivid interest because it is the indis-
pensable prerequisite in quantum information processing.

In its most basic form, the quantum state of a single quan-
tum bit (qubit) is to be changed in a given way. This is called
a single qubit gate. A qubit is a two-level system which can
be conveniently seen as the S=1/2 system. So we use this
spin language to describe the qubit gates. The two most com-
mon gates are the 7 pulse, which flips the spin from up to
down and vice versa, and the /2 pulse or Hadamard gate,
which rotates the spin by 90° away from the S, direction.

The 7 pulse is particularly interesting for dynamic decou-
pling [1-8]. In a nutshell, this technique aims at decoupling
the single qubit from its environment as well as possible by
switching the qubit state by single qubit gates. Mostly, the 7
pulse is considered. The idea comes from the spin-echo tech-
nique in NMR where a 7 pulse is used to refocus the pre-
cessing magnetization. In NMR, the use of sophisticated pro-
tocols of 7 and /2 pulses is common to suppress unwanted
couplings between nuclear spins [9,10].

Experiments using 7r pulses have obtained many encour-
aging results in prolonging the coherence time of a qubit
[11-14]. More complex pulse sequences based on /2
pulses have also proved useful by diminishing the rate of
decoherence in quantum registers considerably [15].

In the theoretical treatments the generic ingredient to dy-
namic decoupling is an idealized pulse, mostly a 7 pulse,
which is considered to be instantaneous. This means that its
amplitude is infinite in the sense of a & function. This as-
sumption is convenient because the Hamiltonian H,, of the
pulse and the Hamiltonian H of the system at rest do not
commute in general. The Hamiltonian H comprises the
Hamiltonian of the qubit itself, the Hamiltonian of the envi-
ronment (henceforth called “bath”), and the coupling be-
tween the qubit and the bath which is responsible for its
decoherence. But during the pulse, H, dominates and H is
negligible, and for the rest of the time only H is present.
Hence it is relatively straightforward to deal with the time
evolution.
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Experimentally, however, this idealized situation is not
realistic. The real pulses are always of finite amplitude and
of finite length. So the question must be addressed which
effect a finite pulse duration 7, has. We want to elucidate this
issue in the present work theoretically in a fully quantum
mechanical framework.

The issue of pulses of finite duration and finite amplitude
has been considered in other papers. Viola and Knill gener-
alized their previous approach of averaging over a symmetry
group [16] by instantaneous changes of the effective Hamil-
tonian to continuous changes requiring only finite, bounded
control amplitudes [17]. But the presence of the coupling to
the bath during the pulses has not been considered.

Khodjasteh and Lidar considered the effect of finite pulse
duration in a comprehensive comparison of various schemes
for 7 pulse sequences [18]. They did not consider to make
the detrimental effects of the finite pulse duration vanish on
the level of the individual pulse, but they discussed possible
cancellations on the higher hierarchical level of the pulse
sequence. In the present work, we will choose another route
and aim at reducing the decoherence due to finite pulse du-
ration already on the level of the single pulse. As a side
remark, we note that the statement in Ref. [18] on optimized
pulse sequences [8] that they hold only for bosonic bath
operators is very likely not to be correct. It has been conjec-
tured very recently by Lee et al. [19] that the optimized
sequences apply to the most general phase decoherence
model.

Very recently, the effect of classical random telegraph
noise during pulses of finite length has been discussed nu-
merically [20]. It was shown that shaping the pulse ampli-
tude in a particular way can be used to improve its perfor-
mance. This means that one can optimize the pulse such that
its effect is closer to the desired one, e.g., a 7 pulse.

Tuning pulses by shaping them is a possibility of optimi-
zation which has been discussed intensively in the vast lit-
erature on NMR. But the objectives were mostly different
from the consideration of the effects of a bath. For instance,
Geen and Freeman aimed at frequency selectivity [21], i.e.,
the pulse should act only on spins on or close to resonance,
but leave others unchanged. Closest to our scope are the
investigations by Tycko [22], Cummins et al. [23,24], and
Brown et al. [25] where composite pulses are optimized to
be robust against off-resonance effects and pulse length in-
accuracies. Again, no dynamic but only static effects are con-
sidered. Interestingly, we will see that some of the pulse
shapes fulfilling the conditions in first order derived here for
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fully dynamical baths coincide with pulse shapes previously
derived to compensate static effects.

In this work, we present a systematic expansion in the
pulse duration 7, considering a qubit coupled to a fully quan-
tum mechanical and dynamical bath. This means that the
related energy scale w,:=1/7, (A is set to unity for simplic-
ity) is considered to be very large so that all other energy
scales, namely the coupling A between qubit and bath and the
internal energy scale of the bath wy, are small relative to w,,.
We expand in M/ w,=7,\ and ,/ ®,=7,w,. The zeroth order
is the instantaneous pulse. We compute the first and the sec-
ond order and discuss the conditions for which they vanish.
These conditions allow us to predict pulse shapes which ap-
proximate instantaneous pulses in spite of their finite pulse
duration.

We emphasize that it is not our primary aim to eliminate
the coupling between qubit and bath. On the contrary, it turns
out that the expansion around the instantaneous pulse keeps
this coupling. But the coupling to the bath is disentangled
from the actual pulse. They are expressed by separate, sub-
sequent time evolution operators. Given the thus optimized
pulse shapes, the coupling to the bath can be compensated on
the higher hierarchical level of an appropriate pulse se-
quence, i.e., by dynamic decoupling [1-8].

The paper is organized as follows. After introducing the
model (Sec. II), we start describing the method we used to
derive our general equations for the first and second order
(Sec. III). Then we discuss the results and provide various
examples for pulses that satisfy our conditions (Sec. IV). At
last we discuss our results and compare them with other pro-
posals for shaped pulses in the literature (Sec. V).

II. MODEL

We consider the time evolution operator from 7=0 to ¢

= Tp,

Uy(7,,0) = T{exp(_ ipr Hy(t)dt - iHTp) ] . (1)

0

For simplicity the pulse is chosen to start at r=0; T stands for
the usual time ordering. The control Hamiltonian of the pulse
shall be given by

Hy=v(1)o,, 2)

where v(7) stands for the pulse shape as a function of time,
see Fig. 1. The time-independent Hamiltonian of the bath
and the coupling to the qubit reads

H=H,+\Ao,, 3)

with H,, representing a generic bath and A its coupling op-
erator to the qubit. The internal energy scale of H,, shall be
denoted by w,. Note that H, and H do not commute so that
the evolution operator (1) is a nontrivial expression.

The model (3) does not include spin flips; hence it implies
an infinite lifetime 7. But the decoherence of a precessing
spin in the xy plane is described in full generality because we
do not specify for which operator A stands or the bath dy-
namics described by H,. Such a model is experimentally
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FIG. 1. (a) Plot of a generic pulse v(z). The x- and y-axis values
are expressed in units of 7, and 1/, respectively. The shaded
region represents an example for ¢(z), that is the integrated pulse
amplitude between the instant 7, and a generic instant ¢ (see text).
(b) Sketch of the approximately equivalent idealized instantaneous
pulse.

very well justified as the effective model in the limit of a
large applied magnetic field which implies that other cou-
plings between the quantum bit spin and the bath are aver-
aged out, see for instance, Refs. [26,27].

As an example only one may consider the spin-boson
model

H=2, wblb;+ 0,2, \(b] +b)) (4)

with N: =max; \;, A=,(\;/\)(b] +b;), and w,: =max; ;.
The primitive of the pulse amplitude is

e(1): = f v(t')dr', (5)

s

where the integration starts from an instant 7,E€[0,7,]. The
intended angle of rotation is given by 2 times the total area
under the curve 0:=2P=2[¢(7,)-¢(0)]. This area must be
kept constant while investigating the limit 7,— 0 so that the
amplitude v(r) must tend to infinity as v(z)*1/7,. To sim-
plify our notation later, we define also ¢(r): =2¢(z).

The aim is to replace the real pulse given by v(#) by an
approximately equivalent instantaneous pulse acting at the
instant 7,, see Fig. 1. The equivalence shall hold up to linear
order or quadratic order in 7,. We highlight that the time
evolution before and after the equivalent instantaneous pulse
shall be governed by H, i.e., including the decohering inter-
action between qubit and bath. This shall be accounted for on
the higher hierarchical level of appropriate pulse sequences.

III. METHOD AND GENERAL EQUATIONS
A. General equation

Let 7, be an arbitrary instant inside the interval [0, 7,] at
which we want to split the time evolution
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Up(Tp’O) = Up(Tp’ Ts) Up(Ts’O) . (6)

The guiding idea is shown in Fig. 1(b). We want to replace
the full evolution by a first part during [0, 7,] where only the
Hamiltonian H is active. Then the instantaneous pulse shall
follow. Finally, another interval [ 7, 7,] of the dynamics gov-
erned by H terminates the pulse. This motivates the two fol-
lowing ansitze for the two unitary operators in Eq. (6),

UP(TP’ Ts) = e_i(Tp_Tx)He_inf:f U(t)d[UZ(TI% Ts) s (721)

Uy(7,,0) = Uy (7, 0)e™ 0 v0enH, - (7b)

which define the operators U,(7,0) and U,(7,, 7). Both, U,
and U, must be seen as the corrections which are necessary
because the left-hand sides of Egs. (7a) and (7b) do not equal
the right-hand sides without them since the pulse and the
bath Hamiltonians do not commute. Note that no time order-
ing is necessary for the exponential of H because it is con-
stant. For the exponential of Hj no time ordering is necessary
despite the time dependence because the commutator
[H(2),Hy(t')]=0 for any two times ¢ and ¢’.

If the corrections are small, e.g., Uy(7,,7)U,(7,,0)=1
+0(7[2,) up to linear order in 7, this implies

Up(TP’O) — e—i('rp—'r:)He—iO'yfa}’ U(Z)dl‘e—i’TSH (8)

which corresponds to the ideal, instantaneous pulse sketched
in Fig. 1(b) at 7, while the dynamics before and after 7,
includes both the bath dynamics and the coupling between
qubit and bath.

The unitary corrections U; and U, are determined from
the Schrodinger equation. We start analyzing U, in (7a). Let
7 be a time instant in the interval |7, 7,] such that

Uy(7,7,) = e e 00y (7, 7). ©)
where we use the difference
Ax:=x— 7, (10)

generally for any variable x; here in particular for x=7. The
Schrodinger equation of U,(7,7,) is the usual one,

id,U,(7,7,) =[Hy(7) + HU,(7, 7). (11)
Inserting Eq. (9) into (11) one obtains
[ He A | ~ilH Ho( T)] ol f:SHO(z)dz Uz( T, Ts)
+ie A H O 1 (7, 7,)
= [Hy(7) + Hle e 0y (r 7). (12)

It is easy to see that the terms with H cancel so that the
differential equation for U, becomes

i,U5(7,7,) = [Ho(7) - Ho(D]U(7, 7)), (13a)

where
ﬁo(T)I - eif;‘_HO(z)dzeiArHHo(T)e—iAfHe—if;yHO(t)dt. (13b)

Formal integration leads to
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Uy(7,7y) = T[ exp(— ifTF(t)dt)} , (14a)

K

where

F(1): = Hy(r) — Hy(t). (14b)

From its definition it is obvious that F(z) vanishes identically
if Hy and H commute. This is the case if there is no coupling
between qubit and bath. Closer inspection of Egs. (13b) and
(14b) shows that F(r)=O0(s\v(t)). More generally, F(f) can
be expanded in a series of H, i.e., in the parameters 7\ and tw
which amounts up to an expansion in 7,. Thus, our approach
provides the intended expansion in the shortness of the pulse.
With the definitions

o,(A1): = eiAtHa'ye_iA’H (15)

and (5) the time-dependent operator F(r) can be written in
the compact form

F(t) = v(t)[' ¢ U},(At)e_i”«V‘P(t) -] (16)

Next, we treat U; by the analogous procedure solving the
Schrodinger equation for (7b). Let 7 be a generic instant in
the interval [0, 7,[, the ansatz for this interval is

Uh(Ts’ T) = Ul(Ty T)ew(T)(ryeiATH' (17)

To obtain the Schrodinger equation in the second time argu-
ment of U,(7,,7) it is convenient to consider the Hermitian
conjugate of (11) yielding

= i0.Up(7:,7) = Uy(7,, 1)[Ho(7) + H], (18)

where the property U;(tl,tz)zU[,(tz,tl) has been exploited.
The procedure is the same as for U, with the only difference
that now the exponentials occur on the right-hand side of U,

—i0,U\(7,,7) = Uy(7,, D F(7) (19)

with the same F(¢) as defined in (14b). Formal integration

yields
U, (7,7) = T|:exp<— i f § F(t)dt) } . (20)

Finally, we combine both corrections U; and U,,

— e_l(TP_Ts)He_l(r}'(P(n’)UF( TP,O)e“TY‘P(O)e_”SH,

(21)
where
UF( Tps O) = UZ(Tp, Ts) Ul (T.wo)
=T( il %F(r)dt) 7( el SSF(r)dr)
_ T(e—if(T)PF(t)dt) ) (22)

Thus, the total correction Uy is given by the time-ordered
product of F(r). Thereby, we have derived the general ex-
pression for the difference between the unitary action of the
real pulse as sketched in Fig. 1(a) and the idealized, instan-
taneous pulse in Fig. 1(b).
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B. Expansion to second order in 7,H

We want to find the conditions under which Up(7,,0) can
be approximated by the identity operator. Because F(r) is
O(\) for A — 0 the expansion in F is an appropriate first step.
A convenient way to obtain the nth order of an expansion in
N\ and o, is to compute up to the nth order of the Magnus
expansion from average Hamiltonian theory [9,28]. Then the
resulting expressions are expanded to nth order in A and w,,.
The advantage of this approach over a direct expansion is
that the expansion is done in the argument of the exponen-
tial.

The Magnus expansion reads as

Upr(r,.0) = T[exp(— i f ’ F(t)dt)]
0

=exp[—ir,(FV+FP+ F9 4], (23)

where F m:% JPF(1)dt is the average value of F. The next-

. 4 . . .
leading term F®) comprises the commutators of F with itself
at different times,

FO = _—ipr dtlf 1 dt)[F(t,),F(t,)]. (24)
27'[) 0 0

Thus from the Magnus expansion we know at least the two
leading orders in powers of F(r). Next, we expand F() itself
which is still a complicated quantity, see Eq. (16). To obtain
the two leading orders in H we expand F(¢) in powers of H
corresponding to an expansion in 7,. We use the identity [29]

il‘l
0y(80) =0+ 2 (A0'[[H, 0,1, (25)
n=1 """
where At is used as defined in (10). The notation stands for

[[H’O- ]]1 = [H’O-] == 2ia—x)\A7
[[H,0,],=[H.[H0o]]=-2ic \N[H,A]+40,\°A%,

[[H.o,]]s=[H,[H,[H,0]]]= """, (26)
to obtain
o,(At) — 0, =20,AMNA + (io \[H,,,A] - 20,\A%) (A1)?
+O(AP). (27)

Inserting the above expansion in Eq. (16) of F(¢) and using
the elementary relation

090 g 71090 = cos(h) o, + sin(1h) o, (28)

where /(t)=2¢(t) as well as the Magnus expansion (23) al-
lows us to compute the leading orders of Uy in exponential
representation

Ug(7,,0) = exp[— i(7'V + 5 + --)] (29)
with

7'V = (1,0, + 70 )NA, (30a)
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7 =i(m0,+ 00 )N H, Al + 77230'y)\2A2- (30b)

Note that [H,,A]=0(w,) so that % truly represents the
desired second order in the shortness of the pulse. The coef-
ficients 7; are given by the integrals

=2 fo " At vloeosl o) ldr, (31a)
— fo " At oloysinl )], (31b)
7o = f: Af(D)cos[ (1) d, (31¢)
= | " Arusnl o, G1d)

T T 1
Ny =— 2f (AD*v(t)dt + 4f dtlf dt, At Atyv v, sin(i
0 0 0

- l;b2)’ (316)

where we used ; for y(1;) and v; for v(z;) for i €{1,2} in the
last line. The differences are used as defined in (10). The last
line of (31e) results from the commutator (24) yielding

[F(fl),F(tz)] = AtlAtzvlvz([Uz,O'x]Sin l//l COS lﬂz

+ [0y, 0.]cos ¢ sin ,)\?A?,

zziAtlAtzvlvz(Ty(Sin l,[/l COS l//z
— cos i sin Yn)\?A?,

=2iA1,Aty0,0,0, sin(i — ) N?A%. (32)

This concludes the expansion up to second order in 7,H, i.e.,
in the shortness of the pulse.

IV. SHAPING THE PULSES
A. General discussion
1. Linear order

The general idea is that one can shape the pulses such that
the leading deviations in Uy from unity vanish. First, we
focus on the linear order which requires that 7" vanishes.
Hence we have two conditions given by 7,;=0 and #,,=0.
The relation v(#)=4,¢(r)/2 can be exploited to integrate the
corresponding integrals (31a) and (31b) by parts yielding

0= (7, 7)sin §(7,) + 7, sin (0) — pr sin ydt,
0

(33a)
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0= (7, - 7,)cos (7,) + 7, cos (0) — f ! cos ydt.
0

(33b)

Any pulse which fulfills these two conditions will show only
quadratic deviations from the idealized instantaneous pulse.
Note that 7, is not a priori fixed and can be considered a free
parameter which can be tuned to fulfill the above conditions.
Hence one additional free parameter is sufficient to obtain a
pulse which is ideal up to linear order. Explicit solutions will
be discussed below.

A last general property worth mentioning is the symmetry
of Egs. (33a) and (33b) under the transformation uv(¢)
—v(7,~1) which implies 7,— 7,—7, and (1) ——y(7,~1).
Thus, if v(z) fulfills Eqs. (33a) and (33b) for 7,, then v(7,
—1) fulfills them for 7,— 7, also.

2. Quadratic order

The requirement 7 in quadratic order adds another three
integrals for 7,;, 75, and 7,3. It is obvious that integration
by parts can also be used to make v(#) disappear in the ex-
pressions for 7,;, 7, and 7,5. The resulting expressions are

(T - Ts)z

2 T
Ty = —1’2—sin W7, - %sin #(0) — f Ar sin (r)dt,
0

(34a)
(7,=7)? ~ "
Ny =— —%cos W7, + 2 cos #(0) + At cos (t)dt,
0
(34b)

T

3= (Tp - Ts)Ts sin - Tsf ’ Sin['ﬁ(t) - l,[f(O)]df— (Tp

0
-7 J ! sin[yA7,) — (1) Jdr + ! f f v sin(y,
0 2 0

= )sgn(t, — tr)dtdt,, (34¢)

where we used 0=y(7,)—y/(0).

In view of the five expressions to be set to zero, one needs
at least five free parameters including 7, in order to obtain
pulses which show only cubic deviations from the idealized
instantaneous pulse. One way to approach the solution of the
above discussed conditions is to consider symmetric pulses
aiming at 7,=7,/2. Then (1) is an odd function about 7, and
the coefficients #;; and 7,, vanish by antisymmetry. Then
only three conditions remain to be solved. But the shape of
the pulse is already fixed to some extent by its symmetry.

A closer inspection reveals that 7 pulses cannot be cor-
rected in second order. This statement is proven rigorously
by the following consideration. We combine the two real
equations (34a) and (34b) to the complex equation

. . o
0=7e"V — (7,- 7)% %) +2 f Ate™dr,  (35)
0

which leads to
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T/7 .
7+ (1,— ) =- 2] AreTMO-9O0 gy
0

szf p|At|dt,
0
=7+ (1, - 7)°. (36)

The equality holds if and only if the exponential factor in the
first line of (36) changes its value from —1 to 1 abruptly at
Ar=0. This implies an instantaneous, ideal pulse with infinite
amplitude which is not experimentally realizable. Hence a 7
pulse cannot be corrected in second order. This no-go result
is very remarkable in its general validity.

For /2 pulses we found solutions which make #,; and
1, vanish. In spite of our intensive search we have not suc-
ceeded in finding solutions which additionally make 7,5 van-
ish. Hence, we conjecture that no such solution exists. But to
our knowledge, there is no mathematical proof stating the
impossibility to correct /2 pulses in second order.

In this context, the reader may wonder whether one can-
not combine two /2 pulses to obtain a 7 pulse. But this is
indeed not possible within the present framework. According
to (21) there is always some decoherent time evolution be-
fore and after the ideal pulse. Hence no direct combination of
pulses with small angles to pulses with larger angles is pos-
sible. But pulse sequences with finite time intervals between
the pulses as in dynamic decoupling are well possible [1-8].

3. Possibility of 7,=1,

We return to the corrections in linear order (33a) and
(33b). Inspired from discussions with experimentalists in
NMR, we pose the question whether it is possible to shape a
pulse such that it corresponds to an ideal, instantaneous pulse
at the end of the real pulse, i.e., 7,=7,. If such a pulse existed
it could be used to measure the response of systems at delay
times much shorter than the duration 7, of the initial pulse.
Clearly, this would represent a promising experimental tool.

Unfortunately, it is impossible to construct such a pulse.
Again, we can prove this rigorously by inserting 7,=7, into
Egs. (33a) and (33b) which we combine to one single com-
plex equation using exp(igy)=cos +i sin i,

0= 7, explig0)] - pr expliy(r)]dt. (37)
0

We find again a rigorous estimate

T

- f " explilu) — pO)Thdi = f ldi=7, ()

0 0

which is fulfilled if and only if ¢4z) is a piecewise constant
with jumps of 2. But such a ¢(r) represents via d,y(r)
=2v(¢) instantaneous pulses with infinite amplitudes. Thus,
there cannot be a real pulse with bounded amplitude which is
close to an ideal pulse at the end of its duration in linear
order of the bath parameters.
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FIG. 2. Composite 7 and /2 pulses with piecewise constant
amplitude in the symmetric case. In the 7 pulse, the sign changes
occur at 7y=7,/7 (67,/7, respectively) and the amplitude is gy
=7w/6[1/7,]. In the /2 pulse, the sign changes occur at 7y
=0.131 557, (7,—7, respectively) and the amplitude i @,y
=1.657 65[1/7,].

One can only approximate the desired situation by aiming
at a 7, close to 7,. To this end, asymmetric pulses will be
considered below.

B. Solutions

In view of the above general discussion we focus here
only on the correction in linear order. First, we consider so-
called composite pulses which consist of piecewise constant
pulses of maximally positive or negative amplitude *a,,,.
Second, continuously shaped pulses made from sines and
cosines are investigated. In each class, we look at symmetric
pulses with 7,=7,/2 first and then at asymmetric pulses.

1. Composite pulses

(a) Symmetric pulses. For symmetric pulses with 7,
=7,/2 there is only one equation to be solved, namely (33b),
because (33a) is fulfilled by antisymmetry. We need only one
free parameter and take the instant 7, at which the pulse
changes first, to be this free parameter. Another sign change
occurs by symmetry at t=17,— 7. Figure 2 depicts the solu-
tions for a 7 pulse and for a /2 pulse. The parameters are
given in the caption.

It is noteworthy that the symmetric 7 pulse found is ex-
actly the one that Cummins ef al. named SCORPSE [23,24].
Do our results reproduce theirs generally? The answer is
“no” because the goals are different. While Cummins et al.
aim at finding a pulse shape such that

Up(TpaO) = U() (39)
our aim is to approximate as closely as possible
U,(7,,0) = exp[—i(7, - 7,)H]Ugexp(-iT,H), (40)

where U, stands for the ideal 6 pulse evolution operator. In
other words, the authors of Refs. [23,24] aim at making the
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FIG. 3. Composite 7 and /2 pulses with piecewise constant
amplitude made from two elementary pulses in the asymmetric
case. For the m pulse, the sign change occurs at 7=37,/4, the
amplitude is ap.=7{1/7,], and the instant of the equivalent ideal
pulse is 7,=(7,/2)(1-1/). For the 7/2 pulse, 7;=0.782 207,, the
amplitude is @, =1.391 56[1/7,] and the instant of the equivalent
ideal pulse is 7,=0.231 287,

imperfections vanish completely while our aim is more mod-
est: We aim at separating the bath and the pulse evolution.
We are convinced that our aim is more realistic, in particular
for general dynamic baths without static components so that
no averaging to zero is possible. The compensation of the
coupling between qubit and bath for longer storage times
shall be done by dynamic decoupling [1-8] on the basis of
the optimized pulses discussed here.

But for static couplings H* o, and a m pulse with 7;
=7,/2 both aims (39) and (40) happen to coincide,

€_ITPH/2U7T e—lTpH/Z — Uﬂ. elTpH/2e—lTpH/2 — Uﬂ.. (41)

Note that the argument does not require that the pulse is
symmetric but only that the splitting time 7 is in the middle
of the pulse so that the first half of the evolution under H
compensates the second half. Indeed, the CORPSE pulse
[23,24] fulfills our conditions (33a) and (33b) as well (see
Fig. 4).

(b) Asymmetric pulses. On considering asymmetric pulses
there is no reason to restrict oneself to 7,= 7,/2. Hence, there
is another free parameter to tune. In this way, it is possible to
find composite pulses which consist only of two constant
regions. Figure 3 depicts the simplest solutions, but there can
be many more. For the 7 pulse, for instance, we have found
an infinite set of solutions with the time 7,=(2n+1)7,/(4n)
at which the jump occurs and the amplitude a,,,=mn/7,,
where n is a positive integer. The corresponding splitting
time reads 7,/7,=1/2+(~1)"/(2nm). The solution depicted
corresponds to n=1.

The pulses depicted in Fig. 3 are the most asymmetric
ones for given maximum amplitude. This is reflected by the
values for 7, which are not close to 7,/2. If one is looking for
a pulse shape which allows the measurement of a signal as
soon as possible after an ideal pulse the inverted pulses
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v(t)[units of I/Tp]
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FIG. 4. Composite 7 and /2 pulses with piecewise constant
amplitude made from three elementary pulses in the asymmetric
case. For the 7 pulse, the sign changes occur at 7;=7,/13 and at
7,=67,/13, the amplitude is ay,=137/6[1/7,], and the instant of
the equivalent ideal pulse is 7,=7,/2. For the /2 pulse, the sign
changes occur at 7;=0.448 347, and at 7,=0.808 137, the ampli-
tude is dyy,=2.800 74[1/7,], and the instant of the equivalent ideal
pulse is 7,=0.2197,.

v(7,~1) with 7,=0.77 for the /2 pulse and with 7,~0.66
for the 7 pulse should be used.

Beyond the composite pulses consisting of two constant
regions we consider also the more commonly discussed com-
posite pulses consisting of three constant regions. Figure 4
shows generic results. The 7 pulse depicted is the CORPSE
pulse proposed previously [23,24] which happens to fulfill
also our conditions as explained above. The solution is arbi-
trary in the sense that other values for 7, are also possible.

The same is true for the 7/2 pulse for which we have
chosen 7, at will. Many other values are also possible. For
7,=7,/2, however, we have not found any asymmetric solu-
tion.

2. Continuous pulses

The above composite pulses are advantageous because
they are fairly simple to generate and because they use the
maximally possible amplitudes most efficiently. But they are
not optimum in view of their frequency selectivity due to the
jumps. It is well known that the faithful representation of
jumps requires particularly broad frequency bands. Hence, it
is important to demonstrate that our conditions (33a) and
(33b) can be also fulfilled by continuous pulses. We choose
ansitze inspired from Fourier series which ensure even con-
tinuity of the derivative v'(z).

(a) Symmetric pulses. For symmetric pulses our ansatz
reads as

v(t) = 6/2 + a cos(2mt/7,) — (a+ 0/2)cos(4mt/T,). (42)

The coefficients are chosen such that v(0)=v(7,)=0 and
v'(0)=v'(7,)=0. Of course, higher cosine terms could be
added. But the constraints in linear order (33a) and (33b) can
be fulfilled already by the above ansatz. Figure 5 displays the
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FIG. 5. Continuous 7 and /2 pulses in the symmetric case.
The parameter a as defined in the ansatz (42) takes the value
—3.730 02/ 7, for the 7 pulse and the value —1.782 59/ 7, for the
/2 pulse. The horizontal lines indicate the amplitude for a totally
constant, uncorrected 7 pulse (solid line) and 7/2 pulse (dashed-
dotted line), respectively.

resulting pulse shapes. Note that the instant of the equivalent
ideal pulse is 7,=7,/2. Comparing Fig. 2 and Fig. 5 the
above statement is illustrated that the composite pulses re-
quire only smaller amplitudes. But the continuous pulses in
Fig. 5 are much smoother and, hence, do not spread so much
in frequency space. It depends on the actual constraints in
experiment which kind of pulse is the most advantageous.
(b) Asymmetric pulses. For completeness, we also con-
sider an ansatz allowing for asymmetric continuous pulses

v(1) = (0/12)[1 = cos(2mt/7,)] + a sin(2 7t/ 7,)
— (a/2)sin(4mt/7,). (43)

The resulting solutions of the conditions (33a) and (33b) are
plotted in Fig. 6. The values of the parameters are given in
the caption. Naturally, the instant of the equivalent instanta-
neous pulse is no longer in the middle of the pulse 7,# 7,,.

V. CONCLUSIONS

In this paper, we have investigated under which condi-
tions it is possible to shape the pulses implementing single
qubit gates such that they correspond to ideal, instantaneous
pulses (cf. Fig. 1). To this end, we computed the corrections
in powers of H, the Hamiltonian containing the coupling to
the bath and the dynamics of the bath, to the equivalence

U,(7,,0) = e 1Y, ¢ 1 O(H). (44)

The expansion in powers of H is an expansion in the short-
ness of the total pulse. No assumption about the nature of the
bath is made so that our results are very generally applicable.

We have derived the explicit expression for the correc-
tions in linear order in H as well as those quadratic in H. In
the evaluation of the expressions found we focused on the 7
pulse and the 77/2 pulse. They are by far the most important
ones for all kinds of applications. The 7 pulse is used to flip
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FIG. 6. Continuous 7 and /2 pulses in the asymmetric case.
For the 7 pulse, the parameter a as defined in the ansatz (43) takes
the value 3.393 08/7, and the position 7, of the equivalent ideal
pulse takes the value 0.338 067,. For the 7/2 pulse, the parameter
a is 1.547 14/ 7, and the position 7, of the equivalent ideal pulse is
0.280 93 7,,. The horizontal lines indicate the amplitude for a totally
constant, uncorrected 7 pulse (solid line) and 7/2 pulse (dashed-

dotted line), respectively.

spins or qubits. An important application are spin-echo ex-
periments and, more generally, dynamic decoupling of two-
level systems from their environment [1-8]. The /2 pulse
generates in NMR experiments the precessing magnetic field
and is used in many intricate pulse sequences to suppress the
effect of unwanted interactions [9]. In the context of quan-
tum information, the /2 pulse realizes the important Had-
amard gate.

We found and showed a multitude of pulse shapes which
are correct in linear order, i.e.,

U[’(T]ho) = e_i(Tp_TS)HUﬂ e_l'TSH + O(Hz) ! (45)

The pulses can be chosen piecewise constant which requires
the lowest amplitudes. They imply, however, jumps which
deteriorate the frequency selectivity [10]. Continuous and
continuously differentiable pulses can also be realized and
they have a much better frequency selectivity. Their draw-
back is that the maximum amplitude required is larger than
for the piecewise constant pulses.

We noted that our objective (45) happens to coincide with
the one of earlier work [22-24] for a 7 pulse with 7,=1/2
applied to a completely static bath, i.e., a bath without inter-
nal dynamics. One reason for this coincidence is that in lead-
ing order the internal bath dynamics does not play a role. The
commutators between different bath operators occur only in
second order. Hence, the corresponding CORPSE and
SCORPSE pulse fulfill also the conditions derived in the
present paper. In general, however, the coincidence does not
hold, i.e., if 7,# 7,/2 or if the bath is not static in the above
sense or if pulses with angles 6 different from 7 are consid-
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ered. Moreover, we emphasize that for dynamic baths with-
out static components, i.e., baths with internal dynamics, the
aim to make the coupling between qubit and bath vanish
altogether, i.e., U,(,,0) = Uy, cannot be fulfilled for general
angle 6+ .

Investigating the quadratic order, we could prove that 7
pulses cannot be corrected in this order. For 7/2 pulses we
have not found any solution in spite of intensive search.
Hence we are led to conjecture that no such solution exists. It
would be interesting to find a mathematical foundation for
this conjecture. Even in linear order, it is not possible to
shape the pulse in such a way that it corresponds to an ideal,
instantaneous pulse at the very end of the real pulse. This
would have been a nice property for NMR measurements
since it would have permitted us to measure directly after a
given pulse without further delay. One may, however, use
asymmetric pulses which correspond to ideal pulses at about
77% of the total pulse length.

The message from our findings is that pulses can be
shaped such that they approximate ideal, instantaneous
pulses. The required pulse shapes must fulfill rather simple
analytic integrals so that everyone can fine-tune his pulse
shape easily himself. The optimized 7 pulses are an excel-
lent starting point for optimized dynamic decoupling
schemes [8].

Mottonen er al. [20] have posed themselves a similar
question for 7 pulses as we have done. The main differences
are that they investigated classical noise numerically while
we tackled a fully quantum mechanical model by analytical
means. Another difference is that they aimed at U,(7,,0)
=~ U, whereas our goal was not to make the bath vanish, but
to disentangle it from the actual pulse, i.e., the coupling be-
tween qubit and bath is still present before and after the
idealized pulse. Of course, in a model of classical noise there
are no bath operators which do not commute so the mere
disentanglement is trivially given in the model studied by
Méttonen et al. We found that U,(7,,0)= U, and U,(7,,0)
= W2IHY e~/ 2DH coincide for baths without internal dy-
namics. For these special cases, our pulse shapes agree with
those previously found [20,23,24]. For instance, the
SCORPSE pulse appears to be a very good choice.

Further work should simulate the proposed pulse shapes
in specific models in order to understand better how impor-
tant the neglected corrections in second order really are. It is
to be expected that for small values of \ (generic coupling to
the bath) and w), (generic frequency of the bath) the corrected
pulses are superior to the simple, uncorrected ones. But if the
characteristic times of the bath are too short, presumably the
simple pulses will be better.
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