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Numerically we simulate the effect of optimized coherent control pulses with a finite duration on a qubit in
a bath of spins. The pulses of finite duration are compared with ideal instantaneous pulses. In particular, we
show that properly designed short pulses can approximate ideal instantaneous pulses up to a certain order in the
shortness of the pulse. We provide examples of such pulses, quantify the discrepancy from the ideal case, and
compare their effect for various ranges of the coupling constants.
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I. INTRODUCTION

The coherent control of quantum systems continues to be
a topic of great interest. The possibility of maintaining a spin
in a coherent state is of extreme importance in fields of ap-
plication such as nuclear magnetic resonance �NMR� or the
manipulation of quantum dots. In particular, for quantum in-
formation processing, a long coherence time of the qubit is
an indispensable prerequisite for its realization.

A quantum bit �henceforth, qubit� is a two-level system
which is conveniently regarded as a spin S=1 /2. Operations
on qubits to change or to correct their state are performed
through quantum gates. Their effect on the density matrix of
the qubit can be described as a rotation in the Bloch sphere.
Experimentally, they often can be obtained by the application
of electromagnetic pulses. A one-qubit gate is generally a
single rotation about a given axis a� in spin space. The angle
of rotation classifies the type of the pulse. For instance, a �
pulse rotates the spin by 180°. These pulses find a wide range
of applications in dynamical decoupling �1–7� and in NMR
�8,9� where � /2 pulses are also crucial. In quantum informa-
tion processing the � /2 pulse in combination with a � pulse
realizes the important Hadamard gate.

The idea of dynamical decoupling �DD� �1–7� has been
developed from the spin echo technique in NMR �10–12�.
DD aims at decoupling the qubit from the environment by
means of the application of appropriate pulse sequences.
From a theoretical point of view the topic has been widely
studied and many different sequences of pulses have been
proposed. Among these we recall the series of periodic equi-
distant � pulses, called bang-bang control �BB� �1,2�, the
periodically iterated two-pulse sequence according to Carr
and Purcell, and Meiboom and Gill �CPMG� �8,11,12�, the
concatenated sequence �CDD� proposed by Khodjasteh and
Lidar �13,14�, as well as the fully optimized sequence �UDD�
derived by one of the authors �7,15�.

Experimentally, the spin echo and the CPMG sequence
are standard in NMR �8�. To our knowledge, other sequences
have not yet been tested. In realization of qubits on the basis
of semiconductor technology, so far only the spin echo tech-
nique has been implemented �16–18�, but computations for
quantum dot systems show that more elaborate pulse se-
quences are very likely to be useful in suppressing decoher-
ence �see, for instance, �5,6,19��.

Most theoretical examples, for exceptions see Refs.
�13,14�, are assumed to be ideal. This means that the pulses

are considered to be instantaneous and infinitely strong in the
sense of a � peak. In this case, one is allowed to ignore the
effect of the bath, inducing the decoherence, during the ac-
tion of the pulse because the coupling to the bath is negli-
gible relative to the amplitude of the � pulse. Hence the
rotation due to the pulse can be viewed to be completely
separate from the free evolution of the system, qubit and
bath, without pulse.

If the pulse has a finite duration ��p� so that its time of
application is comparable with the characteristic time scales
of the bath, the separation between evolution due to the pulse
and evolution of the undriven system is not valid anymore. If
we suppose that the duration �p is still small, an expansion in
�p about the limit of a � pulse is appropriate. The proposed
scenario �20� establishes an equivalence, up to corrections
expanded in a series in �p, between the real pulse and an
ideal � pulse at some intermediate instant �s with 0��s
��p �see Figs. 1–3�. Before and after the ersatz pulse at �s,
the free evolution of the system, qubit and bath, without
pulse takes place.

The corrections expanded in powers of �p depend also on
the shape of the pulse; so one can aim at making them vanish
or at minimizing them by shaping the pulses skillfully. This
is the route that we established previously �20� analytically
by the expansion in �p. In the present work, we demonstrate
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FIG. 1. �Color online� Examples of � pulses implemented in the
simulations. The ideal pulse is given by a � peak operating at the
instant �s. SGLPi is the standard pulse of constant amplitude with-
out optimization of the pulse shape. For details see Table I.
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numerically that the higher order corrections neglected in the
analytical calculations are indeed negligible. Thereby, we
have shown not only the validity of the previous analytic
calculation but we have also demonstrated that the real per-
formance of the proposed pulses is advantageous.

We draw the readers’ attention to the fact that shaped
pulses have been introduced in NMR previously �see, for
instance, Refs. �21–27� and Ref. �9� for an overview in the
field of quantum information�, but the goals of these inves-
tigations were different from ours even though it turned out
that for � pulses certain shapes with �s=�p /2 happen to co-
incide �20�.

The paper is organized as follows. In Sec. II we briefly
recall the analytical arguments for the expansion in powers
of �p; especially the expressions for the first and second or-
der corrections are given. Then we introduce a quantity to
measure the deviation of the real pulse from the ideal pulse
and compute this deviation analytically. Moreover, we relate
the two parameters of the model to the experimental situation

in various realizations of qubits. In Sec. III the spin Hamil-
tonian is introduced which serves as our system of a qubit
coupled to a decoherence bath. For this model we compute
the deviation between the real and the ideal pulse analyti-
cally and numerically. The experimentally relevant ranges of
parameters are estimated. The numerical results are dis-
cussed in Sec. IV for � and for � /2 pulses. Finally, in Sec. V
we draw our conclusions.

II. THEORETICAL PREDICTIONS

A. First and second order corrections

In order to disentangle the actual pulse and the free evo-
lution of the system we proceed as follows. The total unitary
time evolution during the real pulse is split into the time
evolution of the system alone and of the pulse alone, which
is taken to occur at �s within the interval �0,�p� �see Ref.
�20��. The time evolution of the system alone is taken to
occur before and after the evolution due to the pulse. The
evolution due to the pulse is multiplied additionally by cor-
rections coming from the noncommutation of the Hamilto-
nians of the pulse and of the system. They can be expanded
in a series in �p. It is important to stress that this technique
does not aim at eliminating the coupling between the qubit
and the bath completely, but only at separating the effect of
the pulse from that of the bath. The coupling between the
qubit and the bath remains active during the free evolution of
the system.

To be explicit, we consider the following general Hamil-
tonian

Htot = H + H0�t� , �1�

where the Hamiltonian H of the qubit coupled to the bath is

H = Hb + �A�z, �2�

where Hb is a completely general bath and A is a completely
general coupling operator acting on the bath. The Pauli ma-
trices represent operators acting on the qubit. The internal
energy scale of Hb shall be denoted by �b while � is the
coupling constant between the qubit and the bath.

Note that we assume only a coupling along the z direc-
tion. Hence the model contains only dephasing, i.e., a finite
T2. No spin flips are possible so that T1=	. Though this
represents a restriction it is well justified for large magnetic
fields along z so that all other couplings average out in the
rotating-frame approximation.

The Hamiltonian of the pulse is denoted by H0,

H0�t� = v�t��y , �3�

representing a rotation around the y axis. The pulse shape is
given by the function v�t�. Note that H0 and H do not com-
mute implying that the unitary time evolution U��p ,0� during
the application of a pulse is a nontrivial quantity.

Splitting the time evolution U��p ,0� into the time evolu-
tions during two intervals, U��p ,�s� and U��s ,0�, and for-
mally solving the Schrödinger equation for each of them
with a suitable ansatz, we eventually obtain �for details see
Refs. �20��
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FIG. 2. �Color online� Examples of � /2 pulses implemented in
the simulations. The ideal pulse is given by a � peak operating at
the instant �s. SGLPi2 is the standard pulse of constant amplitude
without optimization of the pulse shape. For details see Table II.
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FIG. 3. �Color online� Examples of � /2 pulses for which also
some of the second order corrections vanish, namely, 
21=0 and

22=0 �see the main text�. For details see Table II.
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Up��p,0� = T�e−i�0
�pHtot�t�dt�

= e−i��p−�s�He−i�y��s

�pv�t�dtUF��p,0�

� e−i�y�0
�sv�t�dte−i�sH, �4�

where UF��p ,0� represents the correction term. Without any
correction, i.e., for UF��p ,0�=1, the two exponentials of the
pulse can be combined in the middle of the right hand side of
Eq. �4� so that the unitary operator of the ideal pulse occurs

Up��p,0� = e−i��p−�s�He−i�y�0
�p v�t�dte−i�sH. �5�

The correction is expanded in a series in powers of �p,

UF��p,0� = exp�− i�
�1� + 
�2� + ¯ �� , �6�

where 
�j� is the term of order � p
j . We obtained �20�


�1� = �
11�x + 
12�z��A , �7a�


�2� = i�
21�x + 
22�z���Hb,A� + 
23�y�
2A2. �7b�

Note that �Hb ,A� is of the order of �b so that the correspond-
ing term is indeed of order ��b�p

2, thus of second order in �p
2.

This becomes manifest in the explicit integral equations for
the coefficients 
ij,


11 = ��p − �s�sin ��p
+ �s sin �0 − �

0

�p

sin �t dt , �8a�


12 = ��p − �s�cos ��p
+ �s cos �0 − �

0

�p

cos �t dt , �8b�


21 =
��p − �s�2

2
sin ��p

−
�s

2

2
sin �0 − �

0

�p

t sin �t dt ,

�8c�


22 = −
��p − �s�2

2
cos ��p

+
�s

2

2
cos �0 + �

0

�p

t cos �t dt ,

�8d�


23 = ��p − �s��s sin � − �s�
0

�p

sin��t − �0�dt

− ��p − �s��
0

�p

sin���p
− �t�dt

+
1

2
� �

0

�p

sin��t1
− �t2

�sgn�t1 − t2� dt1 dt2, �8e�

where �t=2��s

t v�t��dt�, t= t−�s, and �=��p
−�0 is the area

under the amplitude of the pulse. The angle � represents the
total angle of rotation of the qubit’s spin under the action of
the pulse.

The function v�t� and the instant �s are the free variables
which can be fine tuned to ideally make the coefficients 
ij
vanish or at least to minimize their moduli. In Fig. 1 ex-
amples of piecewise constant pulses for �=� are reported.

The pulse SGLPi is the standard pulse of constant amplitude
which has finite first and second order corrections. The
pulses UPi and ASYPi are chosen such that their first order
correction 
�1� vanishes. Their second order correction 
�2�

does not vanish. We have proven previously that 
�2� cannot
be made to vanish for a � pulse �20�. For quantitative details,
see Table I.

In analogy, Fig. 2 depicts examples of piecewise constant
pulses for �=� /2. The pulse SGLPi2 is the standard pulse of
constant amplitude which has finite first and second order
corrections. The pulses UPi2 and ASYPi2 are chosen such
that their first order correction 
�1� vanishes. Their second
order correction 
�2� does not vanish. For the quantitative
details, we refer the reader to Table II.

The pulses S2ND2 and A2NDPi2 are plotted in Fig. 3.
They are chosen such that their first order correction 
�1� and
the second order coefficients 
21 and 
22 vanish. We were
not able to find a solution which has, additionally, 
23=0, but
we have not succeeded in proving the impossibility of find-
ing such a solution either. For the quantitative details, we
refer the reader to Table II.

B. Measure of deviation

The above results represent the analytical finding that we
intend to check numerically. In order to do so we need a
measure of how well the real pulse approximates the ideal
instantaneous one. We define the operator difference 
ªUp

i −Up
r , which quantifies the distance of the ideal time

evolution �Up
i � from the real one �Up

r �. To capture this dis-
tance by a single number we define the norm

d ª
	max�eigenvalues�†�� . �9�

For a pulse of angle �, the ideal pulse reads

TABLE I. Overview of the � pulses implemented in the simu-
lations. UPi and SGLPi are symmetric pulses ��s=�p /2�. The
switching instants �i and the amplitudes are given in units of �p and
1 /�p, respectively. The column 
�2� refers from top to bottom to the
coefficients 
21, 
22, and 
23 in units of �p

2 �see Eq. �7��.

�s Amplitude�s� �i 
�2�

SGLPi

1 /2 � /2

UPi

1 /2 �7� /6 1 /7 0.04401

6 /7 0

0.12295

ASYPi

0.34085 �13� /6 3 /4 −0.00653

−0.14783

0.18087
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Up
i = e−i��p−�s�He−i��/2��ye−i�sH, �10�

while the real pulse is given by

Up
r = e−i��p−�s�He−i���p

/2��yUF��p,0�ei��0/2��ye−i�sH, �11�

such that

 = e−i��p−�s�He−i���p
/2��y�1 − UF��p,0��ei��0/2��ye−i�sH.

�12�

This implies

† = Ũ†�1 − UF
†��p,0���1 − UF��p,0��Ũ , �13�

where Ũ=e−i��0/2��ye−i�sH is a unitary operator which leaves
the eigenvalues of the product �1−UF

†��p ,0���1−UF��p ,0��
unaffected.

Next, we expand UF in �p. If the leading order is 
�1� we
have UF
1− i
�1�+O��p

2� whence

d = 	max�eigenvalues�
�1�
�1��� + O��p
3� . �14�

If the leading order is 
�2� we have UF
1− i
�2�+O��p
3�

whence

d = 	max�eigenvalues�
�2�
�2��� + O��p
5� . �15�

We deduce that in the case of finite first order 
�1��0 one
has d=O��p� while for vanishing first order, but for finite
second order 
�2��0 one has d=O��p

2�.

III. SPIN CHAIN AS DECOHERENCE BATH

A. Model

The formulas �14� and �15� for d hold for any Hamil-
tonian that can be expressed in the form �2�. Next, we
specify the model we investigate numerically. It is a spin
chain of N spins where the first spin ��̃� represents the qubit
�see Fig. 4�. The Hamiltonian considered is given by

Hs = J�̃z�z
�2� + �J�

i=2

N

�� �i� · �� �i+1�. �16�

Obviously, this Hamiltonian is an example of the most gen-
eral dephasing Hamiltonian �2�. In Eq. �16� the bath is a bath
of spins and the coupling between the bath and the qubit is
quantified by J; hence we have �=J. The internal energy
scale of the bath �b equals �J in Eq. �16�.

In order to apply our general results �14� and �15� we
have to compute 
�2� for the specific case of the spin Hamil-
tonian �16�. The bath operator A in Eq. �2� consists only of
the z component of the second spin. Hence one has A2=1.

The other term in Eq. �7b� comprises �Hb ,A�. For Eq. �16�
this commutator contains only the second and the third spin.
Hence we anticipate that the numerical results will not show
any significant size dependence in the regime where the ex-
pansion in �p is valid, i.e., for low values of � and �b, which
translates to low values of J. Explicitly we find for 
�2�,


�2� = − 2J2��
21�̃x + 
22�̃z���� �2� � �� �3��z + 
23J
2�̃y ,

�17�

where � �z stands for the z component. Because only three
spins occur, it is a basic exercise to determine for 
�2� given
by Eq. �17� the maximum eigenvalues of �
�2��2 yielding

d = J2	16�2�
21
2 + 
22

2 � + 
23
2 + O��p

5� . �18�

In this formula, the quadratic dependence of d as a function
of J has been put in evidence. The quadratic dependence on
�p is less manifest, but it becomes obvious on inspecting the
integrals in Eqs. �8� from which 
2j =O��p

2� ensues.
Once �s and v�t� are known, the coefficients 
21, 
22, and


23 can be easily computed according to Eqs. �8�. Thereby,
we have an analytical prediction for the leading order of d as
a function of J including the prefactor. For a fixed value of J,
Eq. �18� as a function of � is characterized by a constant

TABLE II. Overview of the � /2 pulses implemented in the
simulation. UPi2, SGLPi2, and S2NDPi2 are symmetric pulses ��s

=�p /2�. The switching instants �i and the amplitudes are given in
units of �p and 1 /�p, respectively. The column 
�2� refers from top
to bottom to the coefficients 
21, 
22, and 
23 in units of �p

2 �see Eq.
�7��.

�s Amplitude�s� �i 
�2�

SGLPi2

1 /2 � /4

UPi2

1 /2 �1.65765 0.13155 −0.01305

0.86845 0

0.05151

ASYPi2

0.23128 �1.39116 0.78220 −0.01279

−0.05691

0.88990

S2NDPi2

1 /2 �2.31993 0.05848 0

0.22384 0

0.77616 �0.01335

0.94152

A2NDPi2

0.61218 �2.09429 0.08361 0

0.29828 0

0.90217 �0.01659

FIG. 4. �Color online� Sketch of the spin chain representing the
qubit and the spin bath. The qubit 1 is coupled to the spin 2 of the
chain. The coupling between the qubit and the spin bath is given by
J while the internal exchange coupling within the chain is �J.
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behavior dominated by 
23 for ��1 and a linear behavior in
� for large values of the coupling constant.

B. Range of parameters

Although we are focusing here on the theoretical issues it
is helpful to have an idea about the experimental range of
parameters. In the sequel, we thus try to assess the relevant
ranges. The numbers given represent only crude estimates
since the precise values depend strongly on the particular
experimental setup. Moreover, the relevant decoherence pro-
cesses are not yet always known.

First, we consider liquid NMR such as crotonic acid or
alanine �28�. The pulse lengths �p used are in the range of
200 �s. The maximum pulse amplitude Bm for a � pulse is
thus in the range of 10 kHz. The couplings between the
nuclear spins lie between 1 and about 70 Hz. A key ratio is
J /Bm, i.e., the relative dimensionless strength of the pulse.
Here it takes values in the range of 10−4 and 10−2. The other
important parameter � is the dimensionless ratio �b /� be-
tween the internal energy scale �b of the bath and the cou-
pling between the qubit and the bath. Because the coupling
between the switched spin is typically of the same order as
the coupling between the other spins, � is roughly of the
order of 1.

Second, we consider a solid NMR system, namely, KPF6.
There, we found Bm
90 kHz and interspin couplings rang-
ing from 3.3–11 kHz �29�. This implies J /Bm
0.04−0.12
whereas � ranges between 0.3 and 3. Another system is ada-
mantane, for which we assume Bm
150 kHz and J

15 kHz so that J /Bm
0.1. The ratio � is again taken to be
of the order of 1 �30�.

Third, we consider the electronic spin in a quantum dot as
the qubit. The experimental investigation of temperature de-
pendent spin relaxation has just started �31�. The pulses are
very short ��p
1 ps�, which implies for a � pulse according
to Bm�p /�=� /2=� /2 the amplitude Bm
1 meV, but it is
much less clear which � or � one should consider. In Ref.
�31� a bosonic bath with spectral density Jeff��� is consid-
ered. Taking the Debye frequency �D=27.5 meV as upper
cutoff and deducing J from

J2 = �
0

�D

Jeff���d� , �19�

one obtains J
0.3–20 eV, which implies enormous values
for J /Bm but small values for �=�D /J.

Closer inspection of the estimates for T2 �31� reveals that
the above estimate is not the relevant one. Rather, the inter-
nal energy scale appears to be set by the energy splitting 

70 �eV of the two qubit states. The characteristic coupling
is found by restricting the integral in Eq. �19� to the interval
�0,�. Then J
1–6 neV ensues, which implies J /Bm

10−6–10−5 and �
104. Hernandez et al. �31� doubt the
relevance of the spin relaxation via Rashba and Dresselhaus
terms advocating phonon-induced dephasing �32,33�. Then
one should rather estimate J2
� with �
0.2 �eV imply-
ing J
4 �eV. Then J /Bm
0.004 and �
20. This example
illustrates that the unambiguous identification of the relevant
processes of decoherence is still a challenging task.

Fourth, we consider a qubit realized by charge states in a
superconducting device �34�. The pulse length is �p
80 ps
implying Bm
15 �eV. The coupling J is taken from the free
decay J
� /150 ps
5 �eV, while we deduce �b

0.2 �eV from the decay of the signal with an echo pulse.
So, J /Bm
0.3 and �
0.04.

Fifth and last, we look at trapped ions �35� for which we
found pulse lengths in the range of microseconds implying
Bm
1 MHz. The coupling to optical modes takes values J

20–200 kHz so that J /Bm
0.02–0.2. Less obvious is the
relevant internal energy scale �b. The energies of the optical
modes in the cavities are fairly high between 1 and 40 GHz
so that � would range in the order of 106. Thus the question
arises whether this is really the relevant scale or whether the
very fast modes average out so that a much lower effective
scale comes into play.

The above numbers provide a rough guideline in which
range today’s experiments are done. Surely, more elaborate
investigations of the relevant decoherence mechanisms are
called for.

IV. NUMERICAL ANALYSIS

Remarks on the program. The numerical data was ob-
tained using C++ routines. Many of the matrix calculations
were realized with the help of the MATPACK package �36�.
The exponentials of the matrices were calculated using rou-
tines adapted from EXPOKIT �37�, abbreviated padm. These
are techniques based on Padé summation. Note that this ap-
proach is well suited to deal with piecewise constant pulses,
whereas continuously varying pulses are not accessible.

As anticipated from the analytical calculation, only minor
finite-size effects occur. This is illustrated numerically in Fig.
5 for one particular pulse, but all other pulses show the same
behavior. Indeed, the finite-size effects are completely negli-
gible in the region of small values of J. Hence we conclude
that a moderate number of bath spins is sufficient. In the data
presented here we routinely use N=7 and N=10. For these
system sizes no particular matrix algorithms are needed.

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

J / Bm

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

N=5

N=7

N=10

ASYPi (α = 5.0)

FIG. 5. �Color online� Deviation d as a function of J /Bm �Bm is
the maximum amplitude of the pulse� for various lengths N of the
spin chain at �=5.0. The data refers to the ASY1 pulse.
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� pulses: Vanishing linear order. We consider symmetric
and asymmetric pulses with angle �=� which satisfy 
11
=
12=0 as defined in Eqs. �8�. For comparison, the standard
pulse with constant amplitude and finite 
�1� is also com-
puted.

Figure 6 shows the behavior of the deviations d as a func-
tion of J /Bm for representative values of the parameter �.
Here Bm is the maximum amplitude of the pulse. At first
thought, a plot as a function of J�p appears reasonable, but
the comparison as a function of J /Bm is fairer because the
simple pulses, for instance, the standard one SGLPi, need
only a smaller amplitude. Hence they can experimentally be
realized with a shorter duration �p if the apparatus restricts
the maximum applicable amplitude. This advantage is ac-
counted for by the plot versus J /Bm.

The quadratic behavior of ASYPi and UPi proves that the
first order corrections are completely canceled. This is not
the case for SGLPi for which the numerical data display a
linear behavior for small J. For large values of �, d starts to
deviate from the desired quadratic behavior even at relative
small values of J. This indicates that the internal energy scale
�b=�J becomes important.

The comparison between the standard pulse SGLPi and
the optimized ones, ASYPi and UPi, shows that a crossover
takes place. For low values of J the pulses with vanishing
first order outperform the standard pulse due to their steeper
decrease. At larger values of J the more complicated struc-
ture of the optimized pulses does not pay anymore and
SGLPi is slightly better. Note that the value of J where the
crossover takes place depends on the value of �. For low
values of �, ASYPi and UPi pay up to much larger values of
J than for large values of �.

Data such as presented in Fig. 6 is used to determine the
prefactors a� defined in

d = a�J2 + O�J3� �20�

by fits. The fits are made only within the range of validity of
the quadratic behavior. The results are plotted in Fig. 7. They
agree perfectly with the analytical prediction from Eq. �18�.
For the quantitative comparison the coefficients 
21, 
22, and

23 are explicitly computed for ASYPi and UPi2 by means
of Eqs. �8� �see also Table I�.

� /2 pulses: Vanishing linear order. We consider symmet-
ric and asymmetric pulses with angle �=� /2 which satisfy

11=
12=0 as defined in Eqs. �8�. For comparison, the stan-
dard pulse with constant amplitude and finite 
�1� is also
computed.

Figure 8 shows the behavior of the deviations d as a func-
tion of J /Bm for representative values of the parameter �.
Again, the comparison as a function of J /Bm is fairer for the
above mentioned reasons.

The quadratic behavior of ASYPi2 and UPi2 proves that
the first order corrections are completely canceled. This is
not the case for SGLPi2 for which the numerical data dis-
plays a linear behavior for small J. For large values of �, d
starts to deviate from the desired quadratic behavior even at
relative small values of J. This indicates that the internal
energy scale �b=�J becomes important.

The comparison between the standard pulse SGLPi2 and
the optimized ones, ASYPi2 and UPi2, shows that a cross-
over takes place. For low values of J the pulses with vanish-
ing first order outperform the standard pulse due to their
steeper decrease. At larger values of J the more complicated
structure of the optimized pulses does not pay anymore and
SGLPi2 is slightly better. Note that the value of J where the
crossover takes place depends on the value of �. For low
values of �, ASYP2i and UPi2 pay up to much larger values
of J than for large values of �.

Note that the gain of the optimized pulses over the stan-
dard pulse is most significant for low values of �, i.e., for a
slow internal bath dynamics. It is less significant for a fast
internal bath dynamics corresponding to large values of �.
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FIG. 6. �Color online� Case of � pulses. The deviation d is
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mum amplitude Bm of the pulses. The notation for the pulses refers
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Data such as presented in Fig. 8 are used to determine the
prefactors a� defined in Eq. �20� by fits. The fits are made
only within the range of validity of the quadratic behavior.
The results are plotted in Fig. 9. They agree perfectly with
the analytical prediction in Eq. �18�. For the quantitative
comparison the coefficients 
21, 
22, and 
23 are explicitly
computed for ASYPi2 and UPi2 by means of Eqs. �8� �see
also Table II�.

The errors in the fits of the prefactors for the � /2 pulses
were determined by hand for some randomly chosen data
points using various fitting ranges and fitting functions such

as bJ+a�J2 or a�J2+bJ3. This analysis provides the error
estimates of 12% at �=0.03 to 32% at �=28 for pulse UPi2
and about 10% for all � looking at pulse ASYPi2.

� /2 pulses: Partly vanishing quadratic order. In the pre-
vious work in Refs. �20� we have proven rigorously that no
� pulse can satisfy the second order Eqs. �8c�–�8e�. For � /2
pulses no such proof is known to us, but we were not able to
find a solution to all five Eqs. �8� either.

We managed, however, to find solutions which make the
first four equations �Eqs. �8a�–�8d�� vanish. The advantage is
that the first order vanishes completely and that in second
order all the terms of order ��b�p

2 vanish also. Only the term
of order �2�p

2 persists. We expect such pulses �see Fig. 3 and
Table II� to be advantageous for systems where the coupling
� between the qubit and the bath is very small, but the inter-
nal bath dynamics �b is not.

Here we propose two possible examples of � /2 pulses,
symmetric and asymmetric, for which 
11=
12=0, 
21
=
22=0, but 
23�0. From the above arguments, we expect
that for large values of �, i.e., fairly fast baths, the deviation
d�J� displays cubic behavior at least in some intermediate
range. Figure 10 provides the corresponding data. Indeed,
one clearly identifies an intermediate range where cubic be-
havior is seen. This range is fairly small for small values of
� �the upper panel in Fig. 10� but grows upon increasing �
�the middle panel in Fig. 10�. For the large values of � ana-
lyzed in the lower panel in Fig. 10 the quadratic behavior
below the cubic range is not even discernible, but we know
from Eq. �18� that it exists.

We conclude that even a partial vanishing of the second
order can be very helpful. This conclusion is supported by
the comparison to data for ASYPi2 and UPi2 which have a
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vanishing first order, but no vanishing second order terms. As
to be expected, we find that for low values of J the pulses
S2NDPi2 and A2NDPi2 outperform ASYPi2 and UPi2. For
larger values of J a crossover takes place and there is no need
to resort to the more complicated pulses S2NDPi2 and
A2NDPi2. There, all pulses behave very much alike.

Note that the crossover takes place for lower values of J if
� is large and vice versa for larger values of J if � is small.
This is related to the fact that the range of cubic behavior
occurs at larger values of J for small �. For large � the range
is larger, but shifted to smaller values of J.

V. CONCLUSIONS

We numerically simulated the effect of designed short
control pulses on a qubit coupled to a bath of spins. The
effect of the short pulse can be approximated in leading order
of the pulse duration �p as a � peak. For finite �p, however,
corrections occur which we know from previous analytical
calculations. The aim of the present work was twofold. First,
we wanted to confirm the analytical results by numerical
calculations. Second, we intended to analyze to which extent
the analytically neglected higher orders matter. Put differ-
ently, we wanted to see whether pulses, which are fine-tuned
to make the leading corrections vanish, outperform the stan-
dard pulses.

The numerical results confirm the analytical results in all
points. The fine-tuned pulses display qualitatively different
power laws in the deviation d as a function of J�p. This
deviation measures the difference between the ideal pulse,

multiplied with the evolution due to free decoherence, and
the realistic pulse. For standard pulses, one has d�J. For the
fine-tuned pulses we achieve d�J2.

In restricted parameter ranges, we obtained even d�J3 for
pulses which make certain parts of the second order correc-
tions vanish. Such pulses were not yet discussed before.
They are only possible for ���.

The second goal has also been achieved by the analysis of
the real performance in the case of the coupling to a spin
bath. We could show that the fine-tuned pulses outperform
the more standard ones in a large range of parameters. Fur-
thermore, we estimated the relevant parameters for a number
of generic experiments. These estimates show that many ex-
perimental setups are such that the fine-tuned pulses should
improve on the standard pulses, but more investigations,
both theoretical and experimental, are needed to obtain a
complete understanding of the important decoherence
mechanisms.

For the above reasons we suggest that the choice of the
optimized pulses with respect to the standard ones is in many
cases preferable. Our findings here will provide guidelines
under which experimental circumstances one should use the
optimized pulses.
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