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Optimized pulses for the perturbative decoupling of a spin and a decoherence bath
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In the framework of nuclear magnetic resonance, we consider the general problem of the coherent control of
a spin coupled to a bath by means of composite or continuous pulses of duration 7,. We show explicitly that
it is possible to design the pulse in order to achieve a decoupling of the spin from the bath up to the third order
in 7,,. The evolution of the system is separated in the evolution of the spin under the action of the pulse and of
the bath times correction terms. We derive the correction terms for a general time dependent axis of rotation
and for a general coupling between the spin and the environment. The resulting corrections can be made to
vanish by an appropriate design of the pulse. For 7 and /2 pulses, we demonstrate explicitly that pulses exist
which annihilate the first- and the second-order corrections even if the bath is fully quantum mechanical, i.e.,
it displays internal dynamics. Such pulses will also be useful for quantum information processing.
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I. INTRODUCTION

The decay of the spin polarization and the occurrence of
systematic errors due to the coupling to the environment has
always been one of the main difficulties to overcome in high-
precision experiments in nuclear magnetic resonance (NMR)
and in magnetic resonance imaging (MRI). Hence it is a
long-standing issue to reduce the influence of the coupling to
the environment. One way to achieve this goal is dynamic
control, i.e., the application of suitable control pulses.

The very first step in this direction was done by Hahn [1]
in 1950 who observed that a 7 pulse after the delay time 7
evokes a spin echo at 27. Further developments comprise the
iteration of the two-pulse cycle 7-27-7-7 according to
Carr, Purcell, Meiboom, and Gill [2,3] and more sophisti-
cated sequences in NMR [4-6]. In quantum information pro-
cessing (QIP) this kind of approach was found and used un-
der the name of dynamic decoupling (DD) [7-10]. A vital
point for QIP is to consider open quantum systems which
induce the decoherence and hence the loss of information. In
particular, the instants in time, at which the 7 pulses are
applied, can be optimized [11-13] which has been verified
very recently in experiment [14].

Besides the optimization of the sequence, the individual
pulse can be designed to fit its purpose best. Theoretically,
the instantaneous & peak pulse is the optimum choice. But it
cannot be realized experimentally. Hence the design of the
real pulses matters very much in practice. Again, this was
first seen in NMR where composite pulses are discussed ex-
tensively [15,16] and their importance for quantum compu-
tation is recognized [17-22]. An efficient numerical tech-
nique to tailor pulses employed in NMR is optimal control
theory [23-27]. The main aim is to find pulses which are
robust against static resonance offsets and miscalibrations of
the pulses. Sengupta and Pryadko [28] suggested soft pulses,
i.e., pulses of continuous shape so that their frequency selec-
tivity is better, in order to mitigate the coupling to other parts
of the system or to the environment. The proposed pulses
make the second-order corrections to zero if these correc-
tions result from a static perturbation, for instance, a reso-
nance offset [29,30].
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In previous work, we investigated a similar issue [31-33].
The aim was to disentangle the pulse dynamics from the
dynamics of the system which comprised spin, bath, and the
coupling between them. This aim is the natural one if the
pulse shall be used as drop-in for an instantaneous pulse in a
DD sequence. Before and after the instantaneous & spike the
complete system including the spin-bath coupling is dynamic
in the DD sequence and the same must be true for the drop-in
unless the finite duration of the experimental pulse is ac-
counted for otherwise [34,35]. This means that the spin-bath
coupling may not be set to zero in the equivalent description
of the real pulse of duration 7,. Interestingly, for the disen-
tanglement ansatz, we found that 7 pulses can have vanish-
ing linear corrections, but it is rigorously impossible that
their second-order correction vanishes: this is the no-go theo-
rem for the disentanglement of pulse and system [31,33].

In the present work we show by explicit construction that
the no-go theorem does not apply if we aim at averaging the
coupling between spin and bath to zero during the duration
of the pulse. This is the aim pursued by many preceding
studies [15-30]. Our particular achievements are twofold.
First, we derive the corrections for general pulse shape (ar-
bitrary time dependent axis of rotation, arbitrary amplitude)
and for general coupling between spin and bath with all pos-
sible quantum fluctuations. Second, we find solutions for 7
and 77/2 pulses which are correct in all second-order correc-
tions even for a dynamical bath. Thereby, our results go sig-
nificantly beyond previous findings.

After this general introduction, the model and the motiva-
tion for our approach are discussed in Sec. II while the tech-
nique is developed in Secs. III and I'V. The general equations
are presented in Sec. V for a time dependent axis of rotation
and a general coupling. In Sec. VI we solve the equations for
the specific case of a fixed axis of rotation and a coupling
along the z axis. Finally, we conclude our study in Sec. VII.

II. MODEL AND MOTIVATION

We consider in the beginning the most general case of a
single spin coupled to a bath,
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H=Hy+6"-A, (1)

where ¢ is the vector of Pauli matrices. This is the most
general case because no spin direction is singled out. The
generality of this Hamiltonian comprises the simple case of a
spin coupled to the bath only along the z direction. This
corresponds to the common limit where the longitudinal re-
laxation time 7' is much longer than the transverse relax-
ation time 7. The internal energy scale of the bath Hj, shall
be denoted with w,=||H,|, while A=||A|| represents the aver-
age strength of the coupling between the spin and the bath.
The Hamiltonian of the control pulse reads

Hy(t)=¢a-0(1), (2)

where (1) =[v,(t),v,(?),v,(¢)] is a time dependent vector de-
fining the shape of the pulse. The axis of rotation at the
instant ¢ is given by the unit vector 7(¢)/ |7 (z)|.

We are interested in studying how the system evolves
between 0 and Tps which is the duration time of the pulse.
The total Hamiltonian is H,,,=H+H(t). The system, built
from the spin and the bath, evolves according to the evolu-

tion operator

U(7,.0) = T|:exp(— iHT i J ! Ho(t)dt)} NG

0

where T stands for the standard time ordering.
In general, we denote the rotation of the spin due to the

pulse (1) by P,. In previous papers we approximated the
time evolution operator according to the ansatz

Up(1,,0) = &7l py g7indll )

where 7, €[0,7,] represents the instant at which the ideal-
ized 6 peak must be situated to approximate the real pulse in
leading order. As mentioned already in Sec. I ansatz (4) is the
natural one for a drop-in in a DD sequence because in such a
sequence the total Hamiltonian H is active before and after
the application of the ideal instantaneous pulse.

In many studies, the goal is the approximation

Up(7,,0) = P, (5)

This is the case of CORPSE and SCORPSE pulses [17,18].
For =, 7= 7/ 2, and for an axis of rotation in the xy glane
the two approximations coincide as long as H :Ej)\jo'z) (as
an exception, we here consider an arbitrary number of spins)

due to

Up(Tp,O) — e—i(rp/2)Hﬁﬂ_ e—i(rp/Z)H (621)
:i)ﬂ_ ei(Tp/Z)He—i(TP/Z)H (6b)
=P_. (6¢)

In the present work we generalize Egs. (4) and (5) to the
approximation
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Up(7,,0) = e WMoP, (7)

where [ﬁ(,,Hb]=O holds by definition. Hence it does not
make sense to define an instant 7, at which the equivalent &
pulse is located. In other words, all values 7, € [O,Tp] are
equivalent. The difference to ansatz (4) is that the coupling
between spin and bath is averaged to zero by the pulse. The
difference to ansatz (5) is that we keep the dynamics of the
bath. The latter point is relevant only if the bath is not com-
pletely static.

Pulses which realize approximation (7) are useful in NMR
for the preparation of particular states and the subsequent
measurement of the signal decay without delay [26,27]. In
QIP, pulses of type (7) are relevant for single quantum bit
gates. For dynamic decoupling they can also be used if the
pulse sequence takes the finite pulse duration into account
[35].

III. GENERAL EQUATIONS

For the total time evolution we start from

. Tp
Uy(7,,0) =™ T eXP(—i&'fO '7(t)dt) U(,,0).

(8)

This ansatz is consistent with the general goal [Eq. (7)]. The
unitary U(7,,0) incorporates the corrections implied by the
choice of the ansatz. These corrections will be functions of
the coupling constants of the Hamiltonian and of the pulse
shape. Obviously, no corrections occur if the coupling van-
ishes (A=0) so that U(,,0) is the identity operator. For the
general case \ # 0, we search for the conditions under which
the corrections vanish. To this end, U(7,,0) must be deter-
mined from the Schrodinger equation. The prerequisite is to
know the time dependence of the pulse.

The time ordered exponential in Eq. (8) represents the
actual pulse. We describe its time dependence by

P = T{exp<—i&. fﬁ(t)dt)}, Vr 9)
0

=e—i6’-(i(T)lﬂ(T)/2. (10)

This expression represents an overall rotation around the axis
a(7) [|a(7)|=1] and about the angle (7). For 7=, the pulse
is completed and by definition we have y(7,)=6.

The pulse satisfies the Schrodinger equation

id.P,=Hy(DP, (11)

for all 7in [0, 7,]. The relation between (¢), d(¢), and (1)
can be derived by solving Eq. (11). We refer the reader to
Ref. [33] for further details. The vector 7'(¢) can be written as
a function of the axis and the angle of rotation

20(1) = ' (1)a(r) + a’ (¢)sin (1)
—[1=cos g(r)][a’(¢) X a(r)]. (12)

Multiplication with d(z) yields the derivative of ¢(r),
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u(r)-ar)=¢'(1)/2. (13)

Equation (12) can also be used to find ¢(z) and a(r) from v (z)
by integration. This is the way one has to take from an ex-
perimentally given pulse to its theoretical description.

The Schrodinger equation for the total time evolution
reads

id,;U,(7,0) = [H + Hy(7)]U,(7,0). (14)

Together with Eq. (11), the following differential equation
ensues

i9,U(7,0) = G(7)U(7,0), (15)

where
G(’T = eiHbfﬁ;l(ﬁ'-A))ﬁ,.e_iHbT. (16)

From its definition one sees that G(7) is always linear in A
and thus in A. So it vanishes if the coupling vanishes. Note
that G(7) differs from the corresponding time dependent op-
erator F(7) in Refs. [31,33] where 0(7) appeared. So the
present result is to some extent simpler than the one for
approximation (4).

At 7=7, we formally obtain for the unitary correction,

U(Tp,0)=T{exp<_iJTp G(t)dt)}- (17)
0

Further progress requires the explicit form of G(r),

G(1) = ™' H e ", (18)
with
Hy = P;'(G-A)P, (19a)
:{cos W) (G- A) - sin (1) - [a(7) X A]
-2 (t) A re > A
+2 sin T[a(t) CAlla-an] . (19b)

To derive relation (19b) the following identities are useful:

13,= cos(/2) —i(a - a)sin(/2), (20a)
(i - 3)(i - G) = 1t - 7T + iG - (7 X ), (20b)
i X (7 X D) = /G - 1) = (7 - 77), (20c)

where the time dependencies of d(r) and ¢(r) are omitted to
lighten the notation.

We again use the notation introduced previously [33] and
define

S(r) = P;'GP,. (21)

This vector operator represents a rotation of ¢ about the axis
a by the angle . Hence it can also be written as
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S(1) =Dy, (22)

where D;(¢) is the 3 X3 dimensional matrix describing the
rotation about the axis d by the angle . This leads to

Hyy= P '(G-A)P,=S(1)- A (23a)
=[D;()5]- A (23b)
=[D;(- YA]- & (23¢)
i=11,(1) - &. (234)

Note that 7i4(¢) is a vector operator acting on the bath only.
The comparison with Eq. (19b) yields

iiy(t) = cos yY(t)A — sin y(1)[a(r) X A]
+[1=cos ¢(n]a([a() - Al. (24)

IV. EXPANSION IN 7,H

We consider the case where the quantity 7,H is smaller
than the pulse term 7,H,,. Then we expand in the small pa-
rameters 7,w, and in 7,\, respectively, as they are defined

after Eq. (1). Practically, we define the vector operator A(z)
and we expand it in powers of ¢ [31,33],

- (i)

- n!

A(1) = e Ae7 it = A + [H.All,.  (25)

The notation [[H,,,A]], stands for the nested commutators
[Hy.[Hy.....[Hy.[Hy,A]]]] with H, appearing n times. Note
that in the case of a static bath one has [Hy,A]=0 and hence
A(f)=A holds.

According to Egs. (18), (23a), and (23d), the time depen-
dent operator G(1)=5(1) -A(t)=riy((t)- & has the series

G() =St - A +if[Hy,,S(t) - A] + O() (26)
in powers of ¢ or equivalently
G(t) =7, (1) - G+ it[Hy, 0 - ii,(1)] + O(F). (27)

Our aim is to make U, given formally in Eq. (17), as close
as possible to the identity operator. We use the Magnus ex-
pansion [36] to eliminate the time ordering in Eq. (17). It
reads

U(1,,0) = exp[— i) (G + GP + -], (28)

with 7,GV=[3G(1)dt and 7,GP=—(i/2)[{pdt, [{ldt,[G(1)),
G(t,)]. Combining expansions (27) and (28) yields the
wanted expansion in powers of 7, in the form U(7,,0)
=exp[—i(7'"+7?+---)] where the first two terms are

p
7= f dt G- 7iy(1), (29)
0
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p
7](2) = lJ dt I[Hb,& . ﬁA(t)]
0

i (7 1
- Ef dt, f dt{rig (1)) - 7ig(ty) — 7ig(ty) - 7ia(1))
0 0

+i0 - [74(1)) X 7ig(ty) — Fig(1y) X 7ig(t1) ]}, (30)

with 774(r) given by Eq. (24).

We consider the most general case where [A,,,A,]# 0 for
m#n with A:= ()\xgx,)\}gy,)\zgz). Equations (29) and (30)
are still operator equations. We wish to obtain a set of scalar
equations without operators. Hence we write ny,) (f)

=3, ni,j(t)gj, with i=x,y,z and \; being the strength of

J=X,Y.2
the coupling in the particular spin direction. The n; ; are op-

erator independent scalars. They represent the matrix ele-
ments of the rotation matrix D;(—) as seen from the com-
parison of Egs. (23¢) and (23d). They are given explicitly in
the Appendix. These notations lead to the three expressions,

G rig(t) = E o\ (DA;, 31)

[7ia(t)) X 7ig(ty) = 7ig(1y) X 7ig(1))];

= EijkE NNLAA,, +AADn (1)), (32)
J.k l,m

fig(ty) - g (1)) = 7ig (1) - 7ig(2))
= 2 )\j)\k[gj’gk][ni,j(tl)ni,k(IZ) _ni,j(tz)ni,k(tl)],
i<k

(33)

where € is the completely antisymmetric Levi-Civita tensor
and (); is the component i of the vector (). Each index
i,j,k,l,m takes one of the values x, y, or z. Then Egs. (29)
and (31) imply

7" =2 o, (34)
with
) = 2 )\jAjf dr n, (7). (35)

Equation (30) is conveniently split into

7% =2 o+ ) + %, (36)

i

where
—__ ("
USEDY )\j[Hb’Aj]f di tn; (1), (37)
j 0

and with the help of Eq. (32)
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(2h 27\1)\ (AIA +AmAZ)

f dtlf dlzzﬂjk”ﬂ(ll ) m(tz)  (38)

and with the help of Eq. (33)

7% = p) )\j)\k[gjagk]

i<k
7 fn

Xf dﬁf dty [n; j(t)n; 1 (1) = n; (t)n; (1))
0 0

(39)

If the components of A commute the correction 7% is zero
and Eq. (39) is fulfilled automatically.

V. DISCUSSION OF THE EQUATIONS

Approximating the ideal pulse, i.e., a d peak, by the real
pulse U(#) up to the third order in At is equivalent to impos-
ing that the corrections 7" and %® vanish. This implies the
following system of integral equations:

f " dtni =0, (40a)

0

f "t n (1) =0 (40b)
0

for all i,j e {x,y,z},

ff dt dtzE6;]k”]z(f1)nkm(fz)sgn(f1—fz) 0

(40c¢)

for all i;/=m, and
p
> dty dtyn; ((t)n; 1 (t)sgn(t; —1,) =0 (40d)
i 0

for j<k, i.e., for the three cases (j,k)=(x,y), (j,k)=(x,z),
and (j,k)=(y,z). In the most general case, i.e., without spe-

cific knowledge about the three operators A, and H,, the
system consists of 39 integral equations. But this number
reduces drastically if specific cases are considered. Examples
are a spin coupled to the bath only along the z direction, in
which case Eq. (40d) can be neglected and Eq. (40c) reduces
to three equations, or if [Hb,fi]=0, in which case Eq. (40b)
can be neglected. In the next sections we will provide and
discuss solutions for such a specific case.

One of the advantages of ansatz (8) is that no free evolu-
tion occurs after the application of the pulse. Up to the cor-
rected order in the expansion in T the effect of the pulse can
be seen as being concentrated at the very end of the interval
[O,Tp]. This is surely a promising tool to be implemented
experimentally. The possibility of designing pulses which ef-
fectively rotate the spin only at the very end of its duration
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TABLE 1. Overview of the 7 pulses satisfying all or parts of
Eqgs. (40). SCORPSE-Pi, SYM-Pi, and SYM2ND-Pi are symmetric
pulses, while CORPSE-Pi and ASYM2ND-Pi are asymmetric.
CORPSE-Pi, SCORPSE-Pi, and SYM-Pi are pulses with vanishing
first-order corrections (7;,=7,=0), while SYM2ND-Pi and
ASYM2ND-Pi make also the second-order corrections vanish
(1751=122=123=0). The switching instants 7; and the amplitudes are
given in units of 7, and 1/ 7, respectively. The SCORPSE-Pi coin-
cides with UPi in Ref. [32].

Amplitude(s) T

CORPSE-Pi
*137/6 1/13
6/13

SCORPSE-Pi
*77/6 177
6/7

SYM-Pi
*177/6 5/17
12/17

SYM2ND-Pi

+10.950120
—7.695376

0.022805
0.275269
0.724731
0.977195

ASYM2ND-Pi

*+11.364434 0.252011
0.310896
0.584781
0.752825

0.796039

allows one to measure the response of a system without de-
lay in time. This goal has been pursued numerically in Refs.
[26,27] for NMR pulses by optimal control theory. The spin
dynamics was treated classically by the equation of motion
for the magnetization; decoherence was included by a relax-
ation term.

In Refs. [31,33], a no-go theorem for the second-order
correction of a 7 pulse was proved for ansatz (4). This limi-
tation is eliminated for ansatz (7) considered in the present
work. We present pulse shapes in the following sections
which make the first- and all the second-order corrections
vanish as given in Egs. (40) (see Tables I and II).

Pryadko and co-workers [28-30] previously studied a
very similar issue. They propose pulse shapes which correct
for the second order of static baths, i.e., baths without inter-
nal dynamics [28]. Our pulses SYM2ND and ASYM2ND
(see Tables I and II) and the continuous pulses (see Fig. 7) go
beyond this level because they make also the second-order
corrections vanish for dynamic baths. The corrections com-
puted in Refs. [29,30] are special cases of our Egs. (40): only
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TABLE II. Overview of the /2 pulses satisfying all or parts of
Eqgs. (40). SYM-Pi2 and SYM2ND-Pi2 are symmetric pulses, while
CORPSE-Pi2 and ASYM2ND-Pi2 are asymmetric. CORPSE-Pi2
and SYM-Pi2 are pulses with vanishing first-order corrections
(711=112=0), while SYM2ND-Pi2 and ASYM2ND-Pi2 make also
the second-order corrections vanish (7= 7,,= 7,3=0). The switch-
ing instants 7; and the amplitudes are given in units of 7, and 1/7,,
respectively.

Amplitude(s) T

CORPSE-Pi2
+6.345849 0.033410
0.471527

SYM-Pi2

*+7.791318 0.275201
0.724799

SYM2ND-Pi2
*+11.486275 0.037279
—8.038405 0.269827
0.730173
0.962721

ASYM2ND-Pi2
+11.563810

0.231411
0.284623
0.539588
0.732138
0.779722

symmetric pulses corresponding to the rotation about a given
spin axis are considered.

Some remarks about higher orders are in order. Third-
order corrections scale like wp\?, wi\, or like N3. To make
them vanish in the fully general framework, i.e., without
prior knowledge of the operators A, requires to fulfill an
additional finite number of equations. Finding the corre-
sponding solutions is a problem of a high degree of complex-
ity because pulses with a more complicated structure must be
considered. Thus the numerical search of the corresponding
solutions becomes cumbersome. But there is no principal
reason not to tackle this issue in our approach considering a
bath with all quantum fluctuations, i.e., including all possible
effects of J couplings in the NMR language.

Before we proceed to the solutions, we mention a geo-
metrical interpretation of the corrections. Due to the identi-
fication of the n;; with the matrix elements of the rotation
matrix D;(—), one can interpret Egs. (40) as the time aver-
age over all possible rotations of the coupling term in Hamil-
tonian (1) between the spin and the bath. This is particularly
obvious in Eq. (35). For the linear order analogous interpre-
tations are quoted in the literature for discrete sets of control
pulses [37]. The second-order equations [Eqgs. (40b)—(40d)]
can be seen as weighted averages of the n; ;. An especially
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transparent geometric interpretation has been reached if only
the z coupling A, is present [33].
VI. SOLUTIONS

In order to find solutions we focus on the simplest specific
case. We consider a spin coupled to the bath only along the z

direction, E:)\A(0,0,l), and the pulse consists only of a
rotation around the y axis, @=(0,1,0). Then the vector 7i, is

ii = i = NA[ - sin (1),0,cos (1)]. (41)
Insertion in Eqgs. (40a)—(40c) yields

Ty = f: dt sin Y1), (42a)
Ty = fo " it cos o), (42b)
7 = JOTP drt t sin A1), (42¢)
Ty = JO " dt 1 cos 1) (42d)
may = f J( :pdlldfz sin[ (1) — (1) Jsen(ty 1),
(42e)

For the first-order corrections to vanish 7;;=#%;,=0 must
hold. For the second-order corrections also to vanish 7,
=7 =1p3=0 is required in addition.

A. Composite pulses

A composite pulse is a pulse which can be seen as being
composed of simple pulses of constant amplitudes, i.e., the
total pulse is characterized by piecewise constant amplitudes
[38]. For simplicity, we parametrize the pulse shape as a
function of constant modulus of the amplitude and search for
solutions to Eqs. (42) for 7r and 7/2 pulses.

If we restrict ourselves to the first-order corrections we
find that the CORPSE pulses satisfy our equations, both for
the 7 and /2 cases. The definition of the SCORPSE pulse
[18] works only in the 7 case (with flipped amplitudes; see
Ref. [21]). For other angles 6 it actually yields the angle
—2ar. Amplitudes and switching instants are reported in
Tables I and II. The first-order correcting pulses are plotted
in Figs. 1 and 2, while the pulses correcting also the second
order are displayed in Figs. 3 and 4. The characteristics of
the pulses are given in Tables I and II. Note that these solu-
tions are qualitatively very similar to the very short pulses
found numerically by optimum control theory applied to the
classical dynamics of the magnetization in NMR [24].

CORPSE pulses are asymmetric pulses while SCORPSE
pulses are symmetric. These results confirm that our ansatz
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5F Z
0 -
- CORPSE-Pi
— sl ]
'Tpa. i L Tttt o 3 1 -4
s L =2
é - 0
2 F SCORPSE-Pi 42
S I0F L . : . L . . . L -4
e 5_— -
0 .
sk SYM-Pi
r. . o ——r
"00 0.2 0.4 0.6 0.8 1

t [ units of ‘cp]

FIG. 1. (Color online) Symmetric and asymmetric 7 pulses with
piecewise constant amplitude. The pulse characteristics are reported
in Table 1. These pulses make the first-order corrections [Egs. (42a)
and (42b)] vanish. The pulses CORPSE and SCORPSE coincide
with those proposed in [17,18]. The SCORPSE-Pi coincides with
UPi in Ref. [32].

for the decoupling of the spin from the bath comprises the
ansatz that led to the CORPSE and the SCORPSE pulses. In
this sense our results reproduce those in Refs. [17,18,21]
generally and they reach beyond the former references be-
cause (i) the bath is treated quantum mechanically and (ii) a
larger variety of pulses is considered (see, for example,
SYM-Pi and SYM-Pi2 in Tables I and II).

Alway and Jones [22] derived composite pulses along the
lines proposed by Brown et al. [20]. As far as off-resonance
errors are considered the wanted pulse properties are the
same at which we are aiming. But the correction in second
order works only for purely static baths, i.e., for H,=0. Note
that fairly complicated pulses are required with fine-tuned
axes of rotation, while our second-order pulses SYM2ND-Pi
and SYM2ND-Pi2 do with a fixed axis of rotation. Further-

B 1
— 0
RIS CORPSE-Pi2 |
(-
° r -1-5
§ [ ]
Z 5F e
= 0
- SYM-Pi2
_Sf- -
L T P R B
0.2 0.4 0.6 0.8 1

t [ units of ’cp]

FIG. 2. (Color online) Symmetric and asymmetric /2 pulses
with piecewise constant amplitude. The pulse characteristics are
reported in Table I. These pulses make the first-order corrections
[Egs. (42a) and (42b)] vanish. The pulse CORPSE coincides with
that proposed in Refs. [17,18].

022328-6



OPTIMIZED PULSES FOR THE PERTURBATIVE ...

H H 10

_ SYM2ND-Pi .
‘_.‘Pa.
[
Q
é H H-10
o
= ok B
= . SYM2ND-Pi2
_10 - | | | | —]
0 0.2 0.4 0.6 0.8 1

t [ units of T, ]

FIG. 3. (Color online) Symmetric 7 and 7r/2 pulses with piece-
wise constant amplitude that correct also the second order (7,
=7=13=0) [see Egs. (42¢)—(42¢)]. Their characteristics are re-
ported in Tables I and II.

more, the approach used in Refs. [20,22] is suited only for
composite pulses.

B. Continuous pulses

In a setup where frequency selectivity is required, for in-
stance, for MRI [5] the piecewise constant pulses, i.e., the
composite pulses, are not the optimum choice due to their
jumps. For this reason, we also propose continuous pulses
which are characterized by narrower frequency bands. The
pulses we obtain are qualitatively similar in their smoothness
to the pulses of intermediate duration found numerically by
optimum control theory applied to the classical dynamics of
the magnetization in NMR [24].

First, we study the first-order corrections. As before we
design 7 and w/2 pulses without the linear corrections:
711=7,=0. For symmetric pulses the function v(z) can be
expanded in the Fourier series,

= H10
'_.'—m. 0
: ASYM?2ND-Pi
Q
Z B L] 4-10
= : —
2 1oF R
=4
0
ASYM2ND-Pi2
_10 L | Er— | I I -
0 0.2 0.4 0.6 0.8 1

t [ units of T, ]

FIG. 4. (Color online) Asymmetric 7 and 7r/2 pulses with
piecewise constant amplitude that correct also the second order
(1721=120=123=0) [see Egs. (42c)—(42¢)]. Their characteristics are
reported in Tables I and II.
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FIG. 5. (Color online) Symmetric 7 and /2 pulses with con-
tinuous amplitude. Both are solutions of the first order [Egs. (42a)
and (42b)]. We refer to Eq. (43) for their parametrization. For the
pulse we find a=-2.159 224[1/ 7], which coincides with the pulse
proposed in Ref. [31] as expected. For the 7/2 pulse we find a=
—5.015 588[1/7,] which differs from previous proposals since an-
other approximation is pursued [see ansatz (7)]. The maximum am-
plitude is given by ap.=(0-2a)[1/7,].

v(t) = 02 + (a - 0/2)cos(2mt/7,) — a cos(4mt/T,), (43)

with 6 being either equal to 7 or to 77/2. The amplitude a is
the parameter which is varied to comply with #;;=7,,=0.
For asymmetric pulses we choose

v(t) = 02+ (a - 0/2)cos(2mt/T,) — a cos(4mt/7,)
+b sin(2t/7,) — (b/2)sin(47rt/ 73,), (44)

where a and b are varied to reach 7;;=7,,=0. The symmet-
ric pulses are plotted in Fig. 5 and the asymmetric ones in
Fig. 6.

For closed systems consisting of several Ising spins in a
piece of chain, but without any bath H,, Sengupta and Pry-
adko [28] proposed tuned symmetric pulses making the first-
and the second-order corrections vanish. The pulses are de-
signed such that the 2L—1 first derivatives of the pulse am-
plitude with L e {1,2} are zero at t=0 and ¢=7,. We checked
that all these pulses make the first-order corrections in Eqs.
(42a) and (42b) vanish.

Concerning the second-order corrections, the pulses sug-
gested in Ref. [28] make the term 7,5 vanish [see Eq. (42¢)]
but not the terms 7,; and 7,, in Egs. (42c) and (42d). This is
consistent with the fact that terms proportional to 7,; and 7,,
do not appear in the second-order corrections if no explicit
bath dynamics H,, is present [see Eq. (37)].

We succeeded also to find continuous pulses which make
the first- and the second-order terms vanish, i.e., which fulfill
the whole set of Egs. (42). We use the symmetric ansatz

v(t) = 0/2 + (a - 0/2)cos(2mt/T,) + (b — a)cos(4t/ T,)
+ (¢ = b)cos(67t/7,) — ¢ cos(8 7t/ 7,), (45)

where a, b, and ¢ are the amplitudes to be determined. The
resulting pulses are displayed in Fig. 7. Interestingly, the
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FIG. 6. (Color online) Asymmetric 7 and 7r/2 pulses with con-
tinuous amplitude. Both are solutions of the first order [Egs. (42a)
and (42b)]. We refer to Eq. (44) for their parametrization. For the 7
pulse we find @=5.263 022[1/7,] and b=17.850 535[1/7,], while
for the /2 pulse we find a=-16.809353[1/7,] and b
=15.634390[1/7,]. The maximum amplitudes are dpy
=26.916283[1/7,] at 1=0.29777, for the 7 pulse and
=40.572 755[1/ 7,] at t=0.44617, for the 7/2 pulse.

pulses are fairly simple in structure with only two zeros be-
tween O and 1.

An additional explanation on the bandwidth of these
pulses is in order. Of course, the fact that our pulses make the
first and the second orders vanish implies that they constitute
robust broadband pulses. At first sight, this contradicts the
use as frequency selective pulses. But in our simulations (not
shown here) we find that the applicability of the second-
order correcting pulses vanishes very quickly as a function of
the detuning. Hence they display a very good selectivity for
long enough pulses, i.e., large enough 7,. The fact that they
even partly compensate the dynamics of the decoherence
bath makes them robust. Hence they are promising candi-
dates for the application in MRI.

VII. CONCLUSIONS

In this paper we aimed at a complete decoupling of a spin
from its quantum mechanical bath, induced for instance by
other nuclear spins through hyperfine couplings, during a
general short control pulse. This aim was different from the
one we followed previously [31-33] where we aimed at the
disentanglement of the Hamiltonians of the pulse and of the
system. The aim followed in the present work was closer to
the aims pursued in the literature.

We studied a general pulse applied to a general spin-bath
model in a perturbation approach in the shortness of the
pulse duration 7,. The first- and second-order correction
terms have been derived generally. This set of equations in-
cludes many results of previous investigations such as, for
instance, off-resonance models where the perturbing part is
static. Pulses such as the CORPSE pulse [17,18,21] are
shown to make the first-order corrections vanish but not the
general second-order corrections.

PHYSICAL REVIEW A 80, 022328 (2009)
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FIG. 7. (Color online) Symmetric 7 and /2 pulses with con-
tinuous amplitudes. Both are solutions of the first and second orders
[Egs. (42)]. We refer to Eq. (45) for their parametrization. For
the 7 pulse we find a=10.804433[1/7,], b=6.831344[1/7,],
and ¢=2.174 538[1/7,], while for the /2 pulse we find «a
=10.925 826[1/ Tp], b=6.806 775[1 /Tp], and c
=-0.026 961 78[1/TP].

In the specific example of a model with dephasing bath,
which shows internal dynamics, we demonstrated the exis-
tence of pulses which make the first- and the second-order
corrections vanish. To our knowledge, no such result has
been presented for quantum mechanical baths so far in the
literature. This finding illustrates that the no-go theorem con-
cerning the disentanglement of 7 pulses from the system
[31,33] does not apply if one aims at the perturbative decou-
pling of spin and system.

The present results are useful for applications in quantum
information processing (QIP), nuclear magnetic resonance
(NMR), and magnetic resonance imaging (MRI). In the
framework of QIP, single quantum bit gates can be realized
reliably by control pulses which fulfill the equations derived
here. In the framework of NMR, the measurement of the
time evolution of certain quantum states can be performed
after their preparation without time delay because the real
pulse behaves like an instantaneous pulse at the very end of
its finite duration. We emphasize that our result extends pre-
vious ones [23-27] in the sense that a decoherence bath with
quantum mechanical dynamics is considered (J couplings in
NMR). In the framework of MRI, the continuous pulses cor-
recting the first and the second orders are potential candi-
dates for frequency selective pulses. Last but not least, the
pulses proposed here can be applied for the realization of
especially adapted sequences for dynamic decoupling [35].
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APPENDIX

We start from 7i,(1)=D;(~)A, where D;(—i) stands for the matrix representing the rotation around the unit vector @(r) by
the angle ¢(r). From the explicit form of 7i,(7) [Eq. (24)], one can derive the matrix elements of D;(—) which we introduced

as nl"j,
cos ¢+ (1 —cos )a’
Dy(— ) =| —a, sin y+ (1 -cos P)a,a,

ay sin ¢+ (1 —cos Pa,a,

a, sin ¢+ (1 - cos Y)a,a,
cos ¢+ (1 —cos (//)ai

—a, sin ¢+ (1 —cos Pa,a,

—a, sin ¢+ (1 = cos Pa,a,
a,sin ¢+ (1 -cos Pa,a, |, (A1)

cos ¢+ (1 -cos ¢)a§

where the time dependence of ¢fr) and d(r) has been omitted for clarity.
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