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Chapter 1

Introduction

One dimensional (1-d) systems provide a very fascinating and challeng-

ing field of activity from a theoretical point of view. This is mainly due

to three reasons. First, 1-d systems show interesting phenomena and

surprisingly rich phase diagrams because of the enhanced role of quan-

tum fluctuations. Second, the one-dimensionality allows for derivations

of several analytical results and facilitates numerical studies. Above all

the density matrix renormalization group is suitable for these systems.

Thus, 1-d systems provide a huge testing ground for numerical as well

as analytical approaches. Third, several compounds allow for a the-

oretical description by means of quasi 1-d models, due to their chain

structure1. Hence, in contrast to the naive expectation, in many cases

the theoretical results can directly be compared to the experimental

findings.

Since the discovery of CuGeO3 as the first inorganic spin-Peierls (SP)

compound [1], this substance has played a key role among the quasi 1-d

systems. The SP transition, which is the analogue to the well known

Peierls transition, is for two reasons of particular interest. On the one

hand, the driving force can be understood on the basis of a simple

quantum mechanical argument: The state of lowest energy of two S =

1In these compounds the interaction along one direction (chain direction) is much
larger than perpendicular to it. Or, the interactions are of the same order of mag-
nitude with the interchain interaction being highly frustrated leading to an effective
reduction.



6 CHAPTER 1. INTRODUCTION

1/2 spins is the S = 0 singlet state. Hence, two adjacent spins tend to

form a local spin-singlet even if they are embedded in a larger system.

On the other hand, SP systems show a rich phase diagram and complex

phenomena, e.g. in presence of a magnetic field or under doping.

The first observations of SP transitions in organic materials were

already obtained in the 70’s. The discovery of CuGeO3 , however, as

an inorganic SP compound has considerably renewed the interest in

this phenomenon. Large crystals of high quality can now be synthe-

sized allowing for a variety of very precise experimental studies. The

quasi 1-d chain structure which is embedded in a relatively simple 3-d

lattice structure facilitates understanding of the experimental results.

Furthermore, CuGeO3 can be easily doped. This makes detailed inves-

tigations of the observed antiferromagnetism, which occurs under dop-

ing, possible. Moreover, the constituting components of CuGeO3 are

copper-oxygen octahedra as in the case of the high-temperature super-

conductors [2], so some of the experience with cuprates can be carried

over.

CuGeO3 has attracted enormous theoretical as well as experimental

efforts and a particular thorough understanding of many properties has

been achieved. On this basis a large part of comprehension of the

microscopic mechanisms in CuGeO3 can presumably be transferred to

more complex systems in the near future.

Throughout this thesis SP compounds are described in the frame-

work of dimerized, frustrated Heisenberg chains. The method of choice

for treating the 1-d model is the density matrix renormalization group

(DMRG) approach. This numerical algorithm was formulated in 1992

by Steve White [3, 4]. The DMRG technique is an extremely powerful

tool for calculating properties of 1-d systems. Considering system sizes

which can be handled, accuracy of the results and variety of models

which can be treated, DMRG turns out to be superior to most other

numerical approaches such as exact diagonalization or quantum Monte-

Carlo simulations, for instance. Furthermore, the recently developed

transfer-matrix DMRG (T-DMRG) which combines White’s DMRG

idea with the transfer-matrix approach [5–7] is an excellent tool for

studying thermodynamic properties of 1-d systems.
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The purpose of this thesis is twofold. First, several properties of

general dimerized, frustrated Heisenberg chains are numerically investi-

gated. The findings are discussed and compared to analytical results as

far as those are accessible. Second, many experimentally observed fea-

tures of CuGeO3 are reproduced, verifying the validity of the chosen 1-d

adiabatic approach. In many cases remarkable agreement is obtained

between numerical and experimental results. Thus, within the approach

chosen several properties can be explained on the basis of microscopic

mechanisms.

An introduction to the basic DMRG algorithm is given in the next

section. The extension to finite temperatures is illustrated in the follow-

ing one. In the fourth section some fundamental properties of CuGeO3

are reviewed and the model Hamiltonian is set up. The next two sections

deal with T =0 properties of SP systems. In particular the dimerization

parameter for CuGeO3 is determined. Furthermore, low lying excita-

tions, doped systems and SP systems in an external magnetic field are

investigated. In section seven finite-temperature results are derived and

compared to the experimental findings of CuGeO3 . A summary and

conclusion are given in chapter eight.
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Chapter 2

Density Matrix Renormalization Group

The formulation of the density matrix renormalization group (DMRG)

method by Steven White in 1992 [3, 4] was a breakthrough in the field

of numerical renormalization group techniques. It has proven to be an

extremely powerful technique for quasi one-dimensional quantum sys-

tems. A remarkable advancement is the recently developed extension

to finite temperatures, combining the transfer-matrix approach with

White‘s DMRG idea [5–7]. The partition function and the derivable

quantities in the thermodynamic limit at finite temperatures are now

numerically accessible, in principle for any one-dimensional translation-

ally invariant model with short range interactions.

2.1 Concept of Renormalization

The basic idea of all lattice renormalization group techniques is to en-

large the system iteratively but keeping only a constant number of basis

states. For example for a one-dimensional spin system the first step can

be to assort the lattice sites into blocks of N sites. Then the Hamilto-

nian is divided into intrablock and interblock contributions. Now one

can assign a so-called Kadanoff block spin to each block. For instance,

the block can be identified with a single spin S = 1/2 by choosing the

two block states with the lowest energies in the subspace Sz = ±1/2 as

new basis states. The two possible spin orientations correspond to the
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selected basis states [8]. By iterating the above procedure one obtains

recursion relations on the set of coupling constants which define the

Hamiltonian and properties in the thermodynamic limit can be derived

approximately. A similar approach, the numerical real-space renormal-

ization group method, was first formulated by Wilson for the solution of

the Kondo problem [9]. After dividing the infinite chain into identical

blocks A of N sites and m basis states each, the Hamiltonian matrix

HAA for two adjacent blocks is diagonalized. The m lowest lying eigen-

states form the truncated basis for the new block A′ which is twice as

large as the old one:

A A A’ .

This procedure is iterated using the new block A’ in the truncated rep-

resentation as the basis block. The basic assumption in this approach is

that only the energetically lowest lying block eigenstates are relevant for

the ground state of the final (infinite) system. The essential problem,

however, lies in the correct treatment of the boundaries. In the above

approach the two adjacent blocks which are considered in one step are

not connected to the rest of the chain. Hence, the eigenstates which

are kept as the new basis are likely to have inappropriate features at

the edges for describing the block as part of an infinite chain (see [4]

and references therein). The DMRG method provides a good way to

overcome the difficulty of choosing appropriate boundary condition for

the new block.

2.2 Density Matrix

As pointed out above the crucial question is the selection of the new

basis states in the renormalization step. The answer how to find an

optimal truncated basis for a block B was given by White [3, 4]. To

account for the fact that the block B is embedded in an infinite chain a

larger system has to be considered to find the most important states of

the subsystem B. The eigenstate of interest of the so-called superblock,

i.e. the enlarged system, is usually the ground state. This state is called
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target state henceforth. Analyzing it’s projection onto the relevant sub-

system B it turns out that the most important states can be chosen

by means of a density matrix of the corresponding subsystem. To illus-

trate how the density matrix enters in this context we consider a system

(superblock) which consists of two blocks1

|i〉l |j〉r
B B′ .

Let |i〉l(r), i = 1, ..., k be an orthonormalized basis set of the left (right)

block. The system is assumed to be in the normalized state (target

state)

|ψ〉 =
∑
i,j

ψi,j |i〉l|j〉r . (2.1)

The density matrix (of the left subsystem) comes immediately into play

if we ask for the probability p(i0) of the left part being in a certain state

|i0〉l. This probability reads

p(i0) = 〈ψ|Pi0 |ψ〉 , (2.2)

where the projector Pi0 is given by [10]

Pi0 = |i0〉l l〈i0|
∑
j

|j〉r r〈j| . (2.3)

Inserting |ψ〉 and Pi0 in Eq. (2.2) one finds

p(i0) =
∑
j

ψi0,jψ
∗
i0,j , (2.4)

due to the orthonormality of the basis sets. Hence, the probability is

given by a diagonal element of the matrix

ρi,i′ =
∑
j

ψi,jψ
∗
i′,j . (2.5)

1The right block B′ corresponds to the rest of the (infinite) chain. For practical
reasons, however, both blocks are often chosen to be identical, i.e. B′=B in the
numerical application.
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Eq. (2.5) defines the density matrix of |ψ〉 with respect to the left sub-

block B. According to (2.5) ρ is hermitian and since |ψ〉 is normalized

trρ = 1 is satisfied. The condition λα ≥ 0 for all eigenvalues of ρ follows

from

〈ϕ|ρ|ϕ〉 =
∑
i,i′

ϕi ρi,i′ ϕi′ =
∑
j

∣∣∑
i

ϕi ψi,j
∣∣2 ≥ 0 , (2.6)

for any state |ϕ〉.
The most important states which should be kept in each renormal-

ization step are those with the highest probability for the correspond-

ing subsystem and they can be selected by means of the density matrix

ρ (2.5). To show that these are the eigenstates of the density matrix

which belong to the largest eigenvalues and that they are indeed optimal

to represent the subsystem one has to minimize [4]

S = ‖ |ψ〉 − |ψ̃〉‖2 , (2.7)

where |ψ̃〉 is the representation of the target state |ψ〉 with a truncated

basis for the left block. So the aim is to find for a given m the truncated

basis states |ũα〉, α = 1, ...,m (m ≤ k) which are optimal for represent-

ing |ψ〉 in the subsystem. With |ũα〉 =
∑
i ũ

α
i |i〉l the approximation

reads

|ψ̃〉 =
∑
α,j

aα,j|ũα〉|j〉r (2.8)

and defining |ṽα〉 :=
∑
j aα,jd̃

−1
α |j〉r =

∑
j ṽ

α
j |j〉

|ψ̃〉 =
∑
α

d̃α|ũα〉|ṽα〉 . (2.9)

The constants d̃−1
α are chosen to normalize |ṽα〉 i.e. to set

∑
j |ṽαj |2 = 1.

Rewriting Eq. (2.7) in matrix notation

S =
∑
i,j

∣∣∣∣ψi,j − m∑
α=1

d̃αũ
α
i ṽ

α
j

∣∣∣∣2 , (2.10)
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one recognizes that the minimization problem is equivalent to that of ap-

proximating a certain matrix ψ. Such problems can be solved by means

of the singular value decomposition (SVD) [11]. The SVD-theorem

states that every matrix is unitarily equivalent to a diagonal matrix

with non-negative elements. The diagonal consists of the so-called sin-

gular values [12]. Thus the matrix ψ can be written as

ψ = UDV † ⇐⇒ ψi,j =
k∑
β=1

dβu
β
i v
β
j (2.11)

where D is a diagonal matrix with positive or zero elements dβ . Since

ψ is a quadratic k × k matrix the same holds for D and the unitary

matrices U and V .

To minimize S the transformations U and V of ψi,j are also applied

to the approximation ψ̃i,j :

U † ψ̃ V =: B ⇐⇒ ψ̃ = UBV † . (2.12)

The matrix B will be determined via the minimization of S. To this end

it is helpful to rewrite Eq. (2.10) by means of a trace using expressions

(2.11) and (2.12) for ψ and ψ̃, respectively

S = tr
{

(ψ − ψ̃)†(ψ − ψ̃)
}

= tr
{
V (D −B†)U †U(D −B)V †

}
= tr(D −B†)(D −B)

=
∑
i,j

|di,j − bi,j |2 . (2.13)

As D is diagonal S is minimized for vanishing off-diagonal elements of

B, i.e. bi,j = 0 for i 6= j. Since a reduction of the number of basis

states is to be achieved (k → m) the matrix B must not contain more

than m nonzero diagonal elements bi,i (cf. the representation of ψ̃ in

Eq. (2.10) which resembles already a SVD). Obviously Eq. (2.13) is then

minimized if B contains the dominant singular values of ψ which are

the largest elements of D. Hence the optimum approximation reads

ψ̃opt = U D̃ V † , (2.14)
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where the diagonal matrix D̃ contains the m largest singular values and

k −m additional zeros.

For the calculation of the relevant di the SVD is not used explicitly.

The largest singular values and the corresponding |uα〉 vectors are de-

rived by diagonalizing the density matrix (2.5), which can be written

as

ρ = UD2U † . (2.15)

Each eigenvalue of ρ λα = d2
α can be interpreted as the probability for

the left block B to be in the corresponding eigenstate |uα〉. To summa-

rize, it is shown that the optimum basis states for the left subsystem

are the eigenstates belonging to the largest eigenvalues of ρ.

2.3 DMRG Algorithm

Once having formulated the selection criterion one can set up the DMRG

algorithm. The standard algorithm for an infinite chain is the following:�� ��0. Start with a small block (B) of length L which can be treated

exactly. Let m̃ denote the dimension of the corresponding Hilbert

space.�� ��1. Add one site (s) to the block and set up the corresponding Hamilto-

nian HB−s (The enlarged block B−s corresponds to the subsystem

B in the previous section.).�� ��2. Combine two enlarged blocks to form the superblock and generate

the Hamilton matrix HB−s−s−B or HB−s−B−s (see below).�� ��3. Use a sparse matrix diagonalization method such as the David-

son [13] or the Lanczos [14,15] algorithm to find |ψ〉 the so-called

target state, e.g. the ground state of the superblock.�� ��4. Form the reduced density matrix2 for the left half of the system

2For the studied model the target state and hence the density matrix can always
be chosen to be real.
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ρ(i, i′) =
∑
j ψi,jψi′,j

3 and find the m eigenvectors corresponding

to the largest eigenvalues. These constitute the columns of the

transformation matrix U .�� ��5. Transform the Hamiltonian and all other relevant operators of the

left part (B−s) which are used to generate the new Hamiltonian

(and possible additional operators of interest) of the superblock in

the next step. The transformation onto the truncated new basis

reads:

H ′ = UTHB−sU .�� ��6. Identify H ′ with HB and return to
�� ��1.

In each iteration step the superblock is enlarged by the two addi-

tional sites (s−s), whereas the number of basis states is kept fixed. The

calculated properties converge to their values in the thermodynamic

limit.

The crucial point in the above algorithm is the storage and the diag-

onalization of the superblock Hamiltonian. In the following dimerized,

frustrated Heisenberg chains are investigated; a site corresponds to a

spin S = 1/2. Therefore the matrix HB−s−s−B or HB−s−B−s consists

of (4m2)2 elements. For m typically of the order of 100 the complete

storage would require about 13 gigabyte. Fortunately most of the ma-

trix elements are zero, and only the fraction of non-vanishing elements

has to be stored. In step
�� ��2. the superblock can be constructed in two

ways

a)

b) BL BL

BL BL

,

where BL denotes an L-site subblock of the (2L + 2)-system and •
denotes a single site (s). Dealing with open boundary conditions the

3ρ is a 2m̃ × 2m̃ matrix in the first iteration and a 2m × 2m matrix in the
subsequent steps.
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superblock should be assembled as in a) to achieve a sparse Hamilto-

nian matrix HB−s−s−B. In the case of periodic boundary conditions

(and nearest neighbor interactions only) a sparse Hamiltonian matrix

can be achieved with configuration b) generatingHB−s−B−s
4. In the fol-

lowing a model with an alternating nearest neighbor exchange coupling

is studied. Therefore one has to use configuration a) since configura-

tion b) with two identical blocks is not compatible with the alternation.

To minimize finite-size effects periodic boundary conditions are con-

sidered mostly in spite of the accuracy loss [4]. In particular for the

calculation of energy gaps in the bulk limit periodic boundary condi-

tions are necessary, since open boundary conditions can lead to excited

states which are bound to the chain ends.

2.4 Finite Size Algorithm

The above iteration prescription is the so-called infinite size algorithm.

The superblock is iteratively increased. Thus it is designed to calculate

quantities in the thermodynamic limit. The algorithm can be extended

improving the accuracy for the calculation of properties of a finite sys-

tem with fixed size L̃. First one uses the infinite size algorithm until

the superblock has the desired length L̃. In the subsequent iterations a

superblock with fixed length L̃ is generated out of two subblocks with

different lengths. If the left block represents a system of L sites two sites

are added and the superblock is completed by connecting a (L̃-L-2)-site

block

BL+1

BL BL̃−L−2

.

The Hamilton matrix and all other necessary operators of the (L̃-L-2)-

site system have to be taken from a previous iteration. In each step one

constructs the L̃ site superblock whereby the sizes of the subblocks vary

4The Hilbert space of the superblock is the direct product of the four subspaces
corresponding to B, s,B, s. The sparseness of the Hamiltonian matrix of the su-
perblock is greatly reduced, if the two B blocks are directly connected, since the
corresponding block matrices contain many nonzero elements.
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from some starting length Lmin to L̃-Lmin-2. This procedure, which is

called a sweep through the lattice, can be repeated in that way, that

the right subblock is increased in each step whereas the left part is

taken from a previous iteration. The superblock configurations in the

different iterations are depicted in the following sketch:

BLmin BLmin

BL BL̃−L−2

BL̃−Lmin−2 BLmin

BL BL̃−L−2

BLmin BL̃−Lmin−2 .

In the first step the infinite size algorithm is used to iteratively enlarge

the 2Lmin+2 superblock until the desired length L̃ is reached. The re-

maining steps are part of the finite size algorithm, i.e. a sweep through

the system. Usually two or three sweeps are sufficient and the accuracy

does not discernibly increase on further sweeps5. The gain of accuracy,

however, requires a longer runtime due to the additional sweeps and

a larger amount of memory. In each step all operators corresponding

to the L-site subsystem have to be stored, since they are needed in a

subsequent iteration to complete the superblock.

The finite size algorithm is particularly suited for treating systems

which are not translationally invariant. For instance, in chapter five

it will be applied to modulated systems with periodicities of the order

5One might ask, why the accuracy increases at all, since in section 2.2 an op-
timum selection criterion has been formulated for the selection of the basis states.
However, one has to bear in mind that in the first steps of the finite size algorithm
a superblock of smaller length (2L + 2) is used to generate the density matrix and
not the superblock of the desired length L̃.



18 CHAPTER 2. DMRG

of one hundred sites. In the first steps the infinite size algorithm is

used, i.e. the reflection of the left hand block is taken to build up

the superblock, irrespective of the fact that reflection symmetry is not

given at this stage. This initial error is reduced either by supplementary

sweeps through the system of the desired length or by intermediate

sweeps through the system the length of which is commensurable with

the lattice modulation.

2.5 Expectation Values

For the computation of expectation values 〈A〉 one must keep track of

the corresponding operator which is to be ‘measured’. In each iteration

one has to construct the matrix AB−s−s−B (AB−s−B−s) of the operator

under study from the operator AB−s of the (L+1)-site subsystems. In

the finite size algorithm the expectation value is usually computed in

the symmetric configuration of the last sweep, i.e. when both subblocks

are of equal length L = L̃/2−1. The expectation value of the L̃-site

system is simply given by

〈ψ|AB−s−s−B|ψ〉 =
∑
i′,j′,i,j

ψi′,j′Ai′,j′,i,jψi,j (2.16)

where |ψ〉 is the ground state computed within the diagonalization in

step
�� ��3. .

For expectation values of products 〈AB〉, where A and B are oper-

ators acting on different sites6 in the same block one should not use

〈ψ|AB−s−s−BBB−s−s−B|ψ〉 =
∑

ĩ,j̃,i′,j′,i,j

ψi′,j′Ai′,j′ ,̃i,j̃ Bĩ,j̃,i,jψi,j (2.17)

since the sum over ĩ, j̃ does not run over a complete set of states due to

the truncation. To calculate this correlation function one has to keep

track of the product (AB) and use Eq. (2.16) or one has to use operators

which act in different blocks.

6In section 5.2.1, for instance, A and B are the z-components Szi , Szj of two spins
1/2 on different sites (i 6= j).
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2.6 Multiple Target states

Instead of targeting one state e.g. the ground state of the superblock,

one can also focus on several low lying states. This is necessary, for

instance, if the system is in a mixed state. In that case the density ma-

trix of a subsystem is the weighted sum of the different density matrices

belonging to each target state. Of course, it is more accurate to focus

only on a single target state because then all selected basis states are

specialized for its representation, whereas in the case of several target

states only a fraction of the truncated basis is designed to represent

each target.

2.7 Conserved Quantities

Conserved quantities can be used to reduce the numerical effort. As

mentioned above, in the framework of this thesis properties of spin-1/2

Heisenberg chains are investigated. Here, the most important quantum

number is the z component of the total spin, Sztotal. The parity, which

is conserved if the superblock is reflection symmetric with respect to

the middle bond, is of minor importance.

Because of the block structure of the superblock Hamiltonian only

the matrix block corresponding to one particular Sztotal (e.g. Sztotal = 0

for the ground state) has to be generated and diagonalized. Of course

this saves an enormous amount of memory and time in comparison to

the treatment of the complete Hamiltonian. For the construction of

HB−s−s−B, restricted to the subspace with Sztotal = const, one has to

keep track of the quantum numbers SzB−s(i) of each basis state |i〉 of the

B−s subsystem.

The parity is conserved using the superblock configuration

B−s−s−B in the infinite size algorithm. In the case of periodic bound-

ary conditions and the B−s−B−s configuration, one can exploit the in-

variance of the system under the translation of half the system size. In

both cases this yields a reduction of the dimension of the Hilbert space

by a factor of roughly 2. In the finite size method neither of these sym-

metries is fulfilled due to the non-symmetric superblock construction in
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the intermediate steps.

2.8 Computation of Energy Gaps

In this thesis the DMRG algorithm is often used for the calculation of

energies of excited states. The derived energy gaps are of particular

interest because they are relatively easy to compute and they can be

directly compared to excitation energies measured in experiments.

Without an external magnetic field the ground state of an antiferro-

magnetic spin chain is a spin singlet. Thus only the Sztotal=0 subblock

of the superblock matrix HB−s−s−B has to be considered. Analogously,

the Sztotal=1 subspace has to be considered for studying a triplet excita-

tion. In either case the target state which has to be chosen is the lowest

lying state in the corresponding subspace. It is, however, more tedious

to find the target state for the first singlet excitation since only Sztotal
but not Stotal can be fixed with moderate numerical effort in the course

of the DMRG calculation. One way to distinguish the singlet state from

the triplet state with Sztotal=0 is to apply S+
total onto the possible tar-

get states (trial states). The second lowest state with S+
total|ψtrial〉 ≈ 0

is the state which has to be targeted to find the first excited singlet

state. The price one has to pay is that an additional operator has to be

generated and has to be stored in each step. A simpler but less reliable

way is to extrapolate the actual energy from the previous iterations (or

from exact Lanczos data in the first steps) and to select the state the

energy of which is closest to the extrapolation.

Moreover, the computation of dispersion curves is desirable. Unfor-

tunately, a straightforward calculation by means of the DMRG algo-

rithm is impossible, because the momentum q is not conserved in the

course of the iterations7.

7This difficulty has partly been overcome by Hallberg [16] and by Kühner–
White [17] combining the DMRG with the continuous fraction expansion of Green
functions. Some details concerning this approach are given in appendix A.
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2.9 Accuracy Considerations

The overall DMRG error depends crucially on the number of states

which are kept in each iteration and on the system size (number of iter-

ations). Additionally it depends on the model which is under study, in

particular it depends on the range of interactions and on the boundary

conditions. Highest accuracy is obtained if the number of connections

(interactions) between the block which is renormalized and the rest of

the superblock is minimal. In the infinite size algorithm this is due

to the fact that the rest of the superblock, the reflected block, is sup-

posed to approximate the rest of the infinite chain. For example in the

case of the XY -model for L = 102 the truncation error of the ground

state energy per site is smaller than 10−9 for open boundary conditions,

while it is of the order of 10−5 for periodic boundary conditions keeping

m = 128 states in either case. In the latter case there are two con-

nections between the block and its reflection whereas there is only one

connection in the first case applying open boundary conditions.

As another test of precision the triplet excitation gap ∆01 in the

Majumdar-Ghosh model [18] is calculated. Due to the simple singlet-

product structure of the ground state its energy per site, e0 = −0.375J ,

is known exactly. For the same reason the value is also reproduced

exactly within the DMRG method. This does not hold for the first

excited state. The DMRG approach is a variational method due to the

basis truncation in the iteration procedure and the energy of the first

excited state is overestimated. Hence, the DMRG yields an upper bound

for the excitation gap. The numerical results for ∆01 extrapolated to

L → ∞ for various numbers of states kept are given in Tab. 2.1. The

analytical value was calculated by means of a perturbative approach

extrapolated to infinite order using an analytical Lanczos technique [20].

The accuracy of the numerically derived excitation gap is much lower

in comparison to the result for ground state energy of the XY -model in

the thermodynamic limit. This is due to the complicated structure of

the excited state (no product state) and the large next-nearest neighbor

interaction which is present in the Majumdar-Ghosh model.
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# states ∆01

45 0.2417

60 0.2398

70 0.2368

80 0.2364

90 0.2358

100 0.2352

128 0.2344

140 0.2343

160 0.2342

180 0.2341

extrapolation 0.2339±2 · 10−4

analytic 0.23386(3)

Table 2.1: Triplet excitation gap ∆01 of the Maumdar-Ghosh model in the

bulk limit for various numbers of DMRG-states. The lowest value is analyti-

cally derived (see text).

2.10 Implementation

The DMRG algorithm is implemented using the object oriented pro-

gramming language C++. Time intensive algebraic matrix and vector

operations are done by means of the LAPACK (Linear Algebra PACK-

age) and the BLAS (Basic Linear Algebra Subroutines) libraries which

are implemented in the Sun Performance Library. The source code is

about 4000 lines. On the one hand, the program is designed to achieve

a good performance while on the other hand, it is designed to be appli-

cable to various problems such as the calculation of higher excitations

and self-consistent calculations for models with various interactions.

Most calculations have been performed on SUN workstations at the

Institut für Theoretische Physik der Universität zu Köln. For several

calculations the SUN Ultra Enterprise 10000 and the SUN Ultra En-

terprise 4500 at the Regionales Rechenzentrum der Universität zu Köln

have been used.

Besides some general basic classes such as matrix/vector operations
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the program includes several DMRG-specific classes within a certain

hierarchy. The modular structure of the program improves the clarity

and facilitates possible modifications and extensions.

The DMRG-specific classes are:

Site contains the matrices to model a single site (here the spin matrices:

S+, S− and Sz).

Edge contains two Sites. The last and the last but one Site are needed,

to connect an Edge with another Block.

Block contains two Edges (right and left), the Hamilton matrix of the

block and several functions, e.g. for connecting two blocks or for

basis transformations.

Superblock contains the Hamilton matrix of the superblock and the

routines to generate it (see below). To save memory only nonzero

matrix elements are stored. Such matrices are covered by the

class SparseMatrix. The matrix can either be kept in memory or

can be stored on hard disk. Furthermore Superblock contains the

diagonalization routine (see below).

Target contains the target state(s) and routines to calculate the de-

sired expectation values. In addition it contains the density ma-

trix (2.5), the deduced transformation matrix U (2.15) and the

generating routines.

Before the superblock Hamiltonian is generated by a member-function

of the class Superblock, the basis states of the left and right subblock,

which in combination have the proper quantum number Sztotal, are se-

lected. The indices of the selected states are stored in two integer arrays

corresponding to the left and right subblock. Constructing the Hamil-

tonian these arrays are used for addressing the selected states.

After the construction of the Hamiltonian HB−s−s−B or HB−s−B−s

of type SparseMatrix the Davidson algorithm [13] is used for the matrix

diagonalization. The start vectors can either be chosen randomly or can

be derived from the previous target state. This often leads to a slightly

smaller number of necessary iterations within the Davidson routine.
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The density matrix, which is a member of Target has block structure,

corresponding to the various Sz sectors. The blocks are diagonalized one

by one. This does not save much time but it is a convenient way to keep

track of the Sz quantum numbers of the selected states which build the

transformation matrix U .

A sketch of the hierarchic structure and of the interdependence of

the various classes is shown in Fig. 2.1.
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A B

 HB-s

A

A

B

B

: A deduced from B

: A is type of B

: A applied to B

Superblock:

connection

Edge:

= S , S , S
z-+

Block:

HB-s-s-B

Matrix

SparseMatrix

Matrix

Matrix

Site:

Target: transf. matrixUtarget state density-matrixρψ

Figure 2.1: Schematic diagram showing the interdependence of the various

classes. The relevant class names (bold) are followed by the class members

which are important for illustrating the program structure. The class mem-

bers are depicted by symbols and/or letters. The explanations for the three

different arrow types are given at the bottom.
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Chapter 3

Transfer-Matrix DMRG

The DMRG algorithm as it is discussed in chapter 2 is applicable to

investigate the low energy physics of quantum systems. Although it

is possible to focus on multiple target states one cannot treat finite

temperatures since too many excited states have to be regarded. The

recently developed transfer-matrix DMRG (T-DMRG), however, over-

comes this difficulty and is particularly suited for this task [5–7].

3.1 T-DMRG Algorithm

In the following the T-DMRG method is outlined which is used in the

last part of this thesis for studying the finite temperature behavior of

dimerized, frustrated Heisenberg chains. For the sake of concreteness

the Hamiltonian is explicitly given below. It is formally motivated later

on in the following chapter.

Ĥ =
N∑
i=1

ĥi , with (3.1)

ĥi = {(1 + δ) Si,1 · Si,2 + (1− δ) Si,2 · Si+1,1

+αSi,1 · Si+1,1 + αSi,2 · Si+1,2} J
+ gµBH(Szi,1 + Szi,2) ,

where Si,j denotes spin 1/2 operators referring to the jth spin in the

ith cell. The parameters J, δ, α stand for the exchange coupling, the
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i i+1

Figure 3.1: Sketch of a dimerized, frustrated Heisenberg chain. The bold

line denotes the strong nearest neighbor interaction J(1+δ), the thin line the

weak nearest neighbor interaction J(1− δ) and the bold dashed lines denote

the frustrations αJ . The interactions shown are those which are covered by

the local Hamiltonian ĥi (see text). The shaded areas indicate the two-site

cells.

dimerization and the relative frustration, respectively. The last term

in ĥi describes the Zeeman energy in presence of an external magnetic

field H. The local Hamiltonian ĥi is graphically depicted in Fig. 3.1.

In the representation used in Eq. (3.1) two spins are grouped to-

gether to achieve a translationally invariant description of the sys-

tem. The translation invariance is essential for the applicability of the

transfer-matrix method. A similar strategy was adopted in Ref. [21]

to cast a system with next-nearest neighbor interaction into a form

suitable for application of the T-DMRG algorithm.

To apply the Trotter-Suzuki formula we first decompose the Hamil-

tonian (3.1) into two parts He(o) which contain the sum over even (odd)

cells. After checkerboard decomposition [22] of the effective four state

problem the partition function is calculated by means of the quantum

transfer-matrix TM [22, 23],

Z = lim
M→∞

tr
[
e−εHoe−εHe

]M
= lim

M→∞
trT

N/2
M , (3.2)

where ε = β/M , β = 1/T and M is the Trotter number. To derive TM
one has to rewrite Eq. (3.2) inserting 2M complete sets of eigenstates,

|αi〉 = |σ1
i 〉 ⊗ |σ2

i 〉 ⊗ · · · ⊗ |σNi 〉 , (3.3)

where the upper index labels the cells and the lower index (1 ≤ i ≤ 2M)

labels the so-called Trotter slices. |σji 〉 stands for a complete basis set
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of the jth cell with Trotter index i (see below). The insertion leads to

Z =
∑

α1,α2,···α2M

〈α1|e−εHo |α2〉 ×

〈α2|e−εHe |α3〉〈α3| · · · |α2m〉〈α2m|e−εHe |α1〉 .
(3.4)

Each factor 〈αi|e−εHo/e |αi+1〉 factorizes into N/2 local terms. Compar-

ing Eq. (3.2) with the right hand side of Eq. (3.4) one finds, that the

quantum transfer-matrix TM can be written as a sum, the summands

of which factorize into local transfer-matrices τ [7]:

〈σ3
1 · · · σ3

2M |TM |σ1
1 · · · σ1

2M 〉 =∑
{σ2
k}

M∏
k=1

τ(σ3
2k−1σ

3
2k|σ2

2k−1σ
2
2k)τ(σ2

2kσ
2
2k+1|σ1

2kσ
1
2k+1) ,

with τ(σi+1
k σi+1

k+1|σikσik+1) = 〈si+1
k+1, s

i
k+1|e−εĥi |siksi+1

k 〉 ,

(3.5)

where |σik〉 = (−1)i+k|sik〉 and |sik〉 is an eigenstate of Szi . As denoted

above, the superscripts and subscripts of σ and of |s〉 represent the

coordinates of spins in real and Trotter space, respectively. Periodic

boundary conditions are imposed in the Trotter direction, i.e.

τ(σ2
2Mσ

2
2M+1|σ1

2Mσ
1
2M+1) = τ(σ2

2Mσ
2
1|σ1

2Mσ
1
1).

The local Hamiltonian ĥi conserves the total spin in the cells i and i+1.

In Trotter space (σ-basis) this translates into σik + σik+1 = σi+1
k + σi+1

k+1

and leads to block diagonal matrices τ .

In the thermodynamic limit N →∞ the trace in the partition func-

tion Eq. (3.2) equals

Z = TrT
N/2
M =

∑
i

λ
N/2
i ,

where λi are the eigenvalues of TM ,

= λ
N/2
0

{
1 +

(λ1

λ0

)N/2
+
(λ2

λ0

)N/2
+ · · ·

}
,

which reduces to

N→∞
= λ

N/2
0 , (3.6)

if λ0 denotes the maximum eigenvalue. Hence, thermodynamic proper-
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ties are determined solely by the maximum eigenvalue λ0 and the cor-

responding left and right eigenvectors (〈ψl| and |ψr〉) of TM . For the

Hamiltonian (3.1) the maximum eigenvalue lies in the subspace with∑
k σ

i
k = 0 [24].

The remaining task is to calculate λ0 in the limit M →∞. This

can be done by iterative augmentation in Trotter direction, which is

achieved by applying the DMRG idea. To illustrate how White’s DMRG

idea can be applied in this context it is useful to switch to a graphic

representation. First τ is identified with the square:

����
����
����
����

����
����
����
����

τ(σi+1
k−1σ

i+1
k |σik−1σ

i
k) =

σi+1
k−1 σi+1

k

σik−1 σik

.

In this representation the quantum transfer-matrix TM (3.5) is equal to
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���
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σ3
1

σ2
1

σ1
2

,

where the sum over {σ2
k} (k = 1, . . . ,M) is represented by the shared

corners. For each Trotter numberM the quantum transfer-matrix TM is

identified with a superblock as introduced in the previous chapter. For

even M the superblock can be constructed from two identical subblocks,

e.g.
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,
T4 =

where the dashed lines indicate the additional summations for generat-

ing the superblock with periodic boundary conditions in Trotter space.
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For M odd one has to use two different subblocks, e.g.
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.
T5 =

In the iteration process the framed parts of the subblocks are renor-

malized, i.e. they are transformed onto a truncated basis. Afterwards

these blocks are enlarged by adding a local matrix τ .

Since TM , which can be chosen to be real, is not symmetric one needs

the left and the right eigenvector (〈ψl|, |ψr〉) of the largest eigenvalue

to generate the density-matrix. In the non-symmetric case the density-

matrix (cf. Eq. (2.5)) is defined as [6]

ρ(i, i′) =
∑
j

ψli,jψ
r
i′,j , (3.7)

where i, i′ label the basis states of the part which is renormalized and

j labels the basis states of the rest of the superblock. Applying the

infinite size algorithm, basically the same iteration prescription is used

as given in chapter 2. But, as indicated above, the system is increased

iteratively in the Trotter direction.

In the calculation ε = 1/TM is to be fixed (cf. Eq. (3.2)). Hence,

the incrementing Trotter number corresponds to a reduction of the tem-

perature. Therefore, in the course of the iterations, thermodynamic

properties are directly accessible as a function of temperature. The

free energy, for instance, is determined by the maximum eigenvalue

f = −(T/4)lnλ0. From the derivatives of f one can, in principle, cal-

culate the internal energy u and other quantities of interest. However,

as it is difficult to evaluate the derivatives of f accurately it is more

precise to evaluate expectation values using the eigenstates 〈ψl|, |ψr〉.
The internal energy per site, for instance, is given by

u = 〈Ĥ〉T /N = 〈ĥi〉T = 〈Thi〉/λ0 , (3.8)

where 〈〉T denotes the thermal average. The definition of Thi is similar

to that of TM (3.5), however, for instance τ(σ2
2σ

2
3|σ1

2σ
1
3) is replaced by
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τh1(σ2
2σ

2
3 |σ1

2σ
1
3) = 〈s2

3, s
1
3|ĥ1e−εĥ1 |s1

2s
2
2〉 [6]. Similarly one finds the mag-

netization mz = 〈
∑
Ŝzi 〉T /N . The specific heat and the susceptibility

are obtained by means of the corresponding derivatives.

3.2 Implementation

The finite temperature DMRG algorithm is implemented1 in the pro-

gramming language C++. The source code is about 2000 lines. The

main focus is put on the performance.

The largest eigenvalue of the non-symmetric matrix TM together

with the left and right eigenvector is calculated by means of a power

algorithm [25]. More delicate, however, is the diagonalization of the

density-matrix (3.7), which is not symmetric either, since all eigenval-

ues have to be calculated to find the m largest ones. In the course of the

program-development this step turned out to be crucial. The numerical

errors of the eigenstates which form the transformation matrix U ac-

cumulate throughout the DMRG iterations and can dramatically affect

subsequent iterations. After a certain number of iterations the accu-

mulated error can lead to complex eigenvalues of the density-matrix ρ.

A proper numerical treatment of these unphysical results is not clear.

The problem, however, can be circumvented or at least postponed to

later iterations by minimizing the errors of the eigenstates of ρ. This is

achieved using a higher precision within the diagonalization of ρ, which

is performed with the help of MAPLE.

The elements of the subblocks of the density-matrix and the MAPLE

code itself are piped into MAPLE by the main program. After the

diagonalization and the selection of the most important states by the

MAPLE routine the selected eigenvectors are stored on hard disk. A

flag-file signals that the MAPLE program has finished and the main

program resumes control. The vectors are read in and are used for the

basis transformation (truncation) of the subsystems. Eventually a new

transfer-matrix TM is constructed from the transformed and enlarged

subblocks.

1The code has been written together with Rainer Raupach.



Chapter 4

CuGeO3

The lattice structure of CuGeO3 was already analyzed in 1954 by Gi-

netti [26]. However, only the discovery of this compound to be the first

inorganic spin-Peierls (SP) system by Hase et al. [1] in 1993 has led to

a pronounced interest in this quasi one dimensional spin system.

Due to the high quality of the CuGeO3 crystals and due to the anor-

ganic composition intensive experimental studies, e.g. neutron or X-ray

scattering, can be performed. The lattice structure which is simpler

than the ones of the previously known organic SP compounds [27] fa-

cilitates a detailed theoretical understanding of the observed structural

phase transition. In addition this inorganic compound can easily be

doped. For instance, one observes that the substitution of a small frac-

tion of Cu by Zn/Mg or of Ge by Si leads to a dramatic reduction of

the transition temperature [28, 29].

4.1 Structure and Model

The crystal structure of CuGeO3 is displayed in Fig. 4.1. The magnetic

properties of CuGeO3 which are responsible for the SP transition arise

from spin 1/2 moments of the Cu2+ ions. The copper ions are located

in the middle of CuO4 plaquettes which are arranged in chains along

the c-direction sharing a common edge. The plaquettes form the ba-

sis planes of CuO6 octahedra which are arranged along the b-direction
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Figure 4.1: Crystal structure of CuGeO3 [30]. The spin 1/2 Cu2+-chains are

along the c-direction.

sharing a common oxygen atom as depicted in Fig. 4.1. The second

basis component of CuGeO3 are GeO4 tetrahedra which reside between

the octahedron-planes (b- ,c-directions).

The dominant magnetic intrachain coupling between Cu2+ moments

in CuGeO3 arises from superexchange via the bridging oxygens of the

common edges. Although the Cu-O-Cu bond angle is almost 90◦ and

therefore expected to be ferromagnetic by the Goodenough–Kanamori

rules, side group effects due to the hybridization of O and Ge or-

bitals lead to a small effective antiferromagnetic (AF) exchange inter-

action [31]. Furthermore, the Cu-O-O-Cu exchange paths lead to an

additional sizeable next–nearest neighbor AF exchange coupling which

frustrates the magnetic interaction between the Cu2+ spins [32].

The magnetic interchain coupling can be estimated from the disper-

sion of the magnetic excitations perpendicular to the chains to be an or-

der of magnitude smaller than the intrachain exchange [33–35]. Hence,

a 1-d approach for modeling the magnetic properties of CuGeO3 seems

to be justified. To model the low energy physics, magnetic and elastic
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degrees of freedom have to be taken into account. One may use the

following Hamiltonian, where the spin-phonon coupling enters via the

phonon dependent spin-spin interaction J(~ui, ~ui+1):

Ĥ =
L∑
i=1

{
J (~ui, ~ui+1) Si · Si+1 + αJ Si · Si+2

}
+
∑
~q

ω~q b
†
~q b~q . (4.1)

In this formula i denotes the sites of a chain with length L, Si are

S = 1/2 spin operators and αJ denotes the frustration, i.e. the ex-

change interaction between next-nearest neighbor spins. The operator

b†~q(b~q) creates (annihilates) a phonon with momentum ~q. Here, only

one phonon mode is assumed to be SP-active. A detailed discussion

including four relevant phonon modes can be found in Ref. [36]. The

displacement of the jth atom in terms of the phonon operators is given

by

~uj =
∑
~q

√
~/(2Nmω~q) ei~q

~Rj ~e~q
(
b~q + b†−~q

)
, (4.2)

where m is the effective mass, N the number of elementary cells, ~Rj
denotes the equilibrium position and ~e~q the polarization vector. For

the numerical investigation the Hamiltonian (4.1) is simplified treating

the phonons in mean-field approximation, i.e. the ~uj are replaced by

their expectation values. Furthermore only a single phonon mode with

momentum close to π is presumed to be responsible for the SP tran-

sition and a linear dependence of the exchange integral on the atomic

displacements is assumed. Then the site-dependent nearest neighbor

exchange coupling J(~ui, ~ui+1) reads

J(i) = J + (〈ui〉 − 〈ui+1〉) γ , (4.3)

where γ is the spin-lattice coupling constant and J is the nearest neigh-

bor exchange integral in the undistorted phase. Defining the dimen-

sionless relative distortions δi = (〈ui〉−〈ui+1〉)γ/J the approximation
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of the Hamiltonian (4.1) reads

Ĥ = Ĥchain +Eelast , (4.4)

Ĥchain =
L∑
i=1

{J(i)Si · Si+1 + JαSi · Si+2} ,

Eelast =
K0

2

∑
i

δ2
i ,

where the last term is the elastic energy which is associated with the

static lattice distortion. The exchange interaction J(i) and the spring

constant K0 are given by

J(i) = J(1 + δi) and K0 =
J2ω2

~q m

2γ2
.

In addition, the Zeeman energy

ĤZeeman = gµBHS
z (4.5)

has to be taken into account in presence of an applied external magnetic

field H, where Sz denotes the total magnetization
∑
Szi .

The mean-field treatment of the phononic degrees of freedom is

equivalent to an adiabatic approximation assuming a static lattice dis-

tortion. The justification of the adiabatic treatment is a priori not given

in contrast to the case of the organic SP compounds [37]. In CuGeO3 the

energy scale of the phonons involved in the SP transition is not sepa-

rated from the magnetic energy scale [38, 39]. However, in the course

of this thesis it turns out that many of the experimentally observed

features of CuGeO3 can be understood within the one-dimensional adi-

abatic approach.

4.2 Spin-Peierls Transition

The SP transition in CuGeO3 is a three-dimensional structural phase

transition. It is, however, the one-dimensional spin system (Cu2+ chains)

the transition is driven by.
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The most favorable state for two antiferromagnetically coupled spins

is the singlet. Hence, there is a certain tendency in the spin system to

from singlet pairs between the strongly coupled nearest neighbors. In

the case of a 1-d system with the spin-spin interaction depending on the

lattice degrees of freedom, this leads to dimerization, i.e. the magnetic

system gains energy by the formation of singlet pairs on neighboring

sites as depicted below:

���� �� �� �� ������ .

Due to the magneto-elastic coupling the singlet formation comes along

with a lattice distortion leading to an alternating bond modulation

along the chain. The loss of elastic energy which is associated with

the lattice distortion is overcompensated by the magnetic energy gain.

The term spin-Peierls transition comes from the analogy to the

Peierls transition in quasi one-dimensional metals. As in the case de-

scribed above a metal with a half-filled conduction band exhibits an

instability towards dimerization. Here, the lattice distortion leads to

an alternation of the electron hopping and hence to a doubling of the

unit cell and to a bisection of the first Brillouin zone. Driven by 2kF -

interactions the half-filled electron band splits into a filled valence and

an empty conduction band. These bands are separated by an energy

gap. The opening of the gap leads to an energy gain of the electronic sys-

tem. For non-interacting fermions the gain is proportional to (δ2 ln δ),

if δ describes the alternation of the hopping [40].

As in the case of the Peierls transition the magnetic energy gain

which drives the spin-Peierls transition can be attributed to the opening

of a gap ∆. For a uniform antiferromagnetic spin-1/2 system one finds a

gapless excitation spectrum, a spinon continuum [41]. In the SP ordered

phase the spin 1/2 moments form singlet dimers along the chains. The

resulting singlet ground state is separated from the triplet excitations

by an energy gap ∆. This energy gap is related to the amount of energy

which is necessary to convert a single dimer of the singlet ground state

into a triplet. In the case of a spin 1/2 Heisenberg chain the energy

gain associated with the opening of the gap is proportional to δ4/3 and
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the gap itself is proportional to δ2/3 if δ denotes the strength of the

alternation of the exchange coupling [42,43]. As mentioned before, this

energy gain overcompensates the loss of elastic energy due to the lattice

distortion, which is proportional to δ2.

Experimentally, the SP transition and the opening of a spin gap is

observed in inelastic neutron scattering (INS), magnetic susceptibility,

X–ray scattering, and electron–diffraction experiments (for a review of

the experiments concerning CuGeO3 see [45]).

The general phase diagram

of dimerized frustrated

Heisenberg chains (Ĥchain in

Eq. (4.4)) with dimerization

δi = (−1)iδ is depicted in

the right figure. As soon

as a dimerization δ > 0 is

switched on the system is

gapped. But also for δ = 0

the ground state is dimerized

for sufficiently large frus-

tration due to spontaneous

symmetry breaking, i.e. the

αc= 0.2412    0.5   α
        

0

1

δ

∆>0

∆=0

formation of singlet pairs1. By numerical scaling analysis the critical

frustration for δ = 0 was found to be αc ≈ 0.2412 [46–48]. For the

special case 2α+ δ = 1 (dashed line) the ground state is known exactly.

It is a product wavefunction of independent singlet dimers [18, 19, 49].

Furthermore, SP systems exhibit a rich phase diagram in applied

magnetic fields. The phase diagram of CuGeO3 in reduced units, which

is generic for general SP-compounds, is shown in Fig. 4.2. With decreas-

ing temperature, beside the transition from an undistorted uniform (U)

phase to a collective non–magnetic singlet state with a dimerized (D)

lattice as discussed above, a different transition occurs in sufficiently

large magnetic fields. In this high field phase an incommensurate (I)

1In this context the meaning of dimerized or dimerization is twofold. On one
hand it denotes the relative alternation of the exchange couplings (−1)iδ and on the
other hand it signifies the alternation of the expectation values 〈~Si ~Si+1〉.
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lattice modulation is found which is stabilized by the Zeeman energy.

In the following chapter fundamental properties of the D-phase are

discussed. In chapter 6 the I-Phase and in particular the D-I transition

are investigated. Both analysis are performed at zero temperature. In

chapter seven the focus is put on the D-phase and the D-U transition

at finite temperatures.
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Figure 4.2: Experimental phase diagram of CuGeO3 . U: uniform (spin

liquid) phase; D: dimerized phase; I: incommensurate phase.
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Chapter 5

CuGeO3 in Zero Magnetic Field

In this chapter properties of the D phase with the alternating lattice

modulation δi = (−1)iδ are examined. In the first part the magnitude

of the dimerization δ with respect to CuGeO3 is determined with the

help of the DMRG technique. The dimerization and the other model

parameters are tested by comparing the calculated singlet excitation

with the experimental findings from Raman scattering experiments. In

addition the triplet excitation energy as a function of δ is analyzed

beyond its relevance for CuGeO3 .

In the second part doped systems are considered. After a short

introduction about general aspects of doped systems and how impurities

can be incorporated in the present approach, particular attention is

given to the distortion patterns and the antiferromagnetic correlations

which develop in the neighborhood of dopants.

5.1 Model Parameter

5.1.1 Fixing of J and α

Before the dimerization δ is determined by means of the DMRG method

the nearest and next-nearest neighbor exchange couplings J and αJ

have to be fixed. Since these parameters are assumed to be only slightly

affected by the structural lattice distortion for T < TSP they can be

fixed in the U phase. A precise knowledge of both J and α is crucial
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to determine δ, since the gap-relation ∆(δ) depends on them. In par-

ticular, there exists a critical frustration αc ≈ 0.2412 [46–48] for a spin

gap to develop due to spontaneous dimerization (cf. phase diagram on

page 38). Several efforts have been made to determine J and α and

to decide whether the gap observed in CuGeO3 is partially a manifes-

tation of spontaneous dimerization or not [48, 50, 51]. In each case the

parameters J and α are derived by means of a two parameter fit of

the magnetic susceptibility of CuGeO3 in the U phase. Both, Riera et

al. [50] and Fabricius et al. [51] come to the conclusion that J ≈ 160 K

and α ≈ 0.35 provides a reasonable parameter set. Lanczos calculations

of Bouzerar also verified that these parameters yield an extraordinarily

good fit to the experimental susceptibility in the whole temperature

range, 50 K< T < 1000 K, using the g factor gb = 2.26 as measured by

ESR [52]. For the following investigations the constant elastic energy

in Eq. (4.4) is neglected and only the spin part of the Hamiltonian, i.e.

Ĥchain = J
L∑
i=1

{
(1 + (−1)iδ) Si · Si+1 + αSi · Si+2

}
, (5.1)

is considered. As far as CuGeO3 is concerned the values J = 160 K and

α = 0.35 are used.

5.1.2 Determination of the Dimerization

Given J and α the dimerization parameter δ is fixed from the require-

ment that the excitation spectrum of Eq.(5.1) reproduces the low tem-

perature value of the singlet–triplet gap (∆01) of about 25 K as mea-

sured by INS [33,34]1 .

Using the infinite size algorithm (section 2.3) the ground state ener-

gies and the first excited energies are calculated for chains of about one

hundred sites. The large system sizes allow to read off the values in the

1The gap corresponds to the minimum of the dispersions in c- and b-direction
(cf. Fig. 4.1 and [35]). The effect of interchain coupling in CuGeO3 can approxi-
mately be included by taking a mean gap, i.e. averaging the dispersion perpendicular
to the chains along kb, resulting in a larger gap of approximately 44 K (cf. sect. 6.2.2
and sect. 7.2).
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infinity chain limit L→∞ directly. Iterating up to considerable longer

chain lengths is not recommendable since finite-size effects are already

almost absent for L ≈ 100 but the overall DMRG error increases since

a small truncation error enters in each step2.

The energy as a function of δ for α = 0.35 is shown in Fig. 5.1

(stars and bold line). One observes that the experimental gap value

∆exp
01 /J ≈ 0.156 is obtained for δ ≈ 0.012 [53]. In addition energy

gap data for different frustrations are shown which will be discussed in

section 5.1.4.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
        δ
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  ∆
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/J

Figure 5.1: Triplet gap as a function of the dimerization δ for various values

of the frustration α. Symbols are DMRG results; the solid lines are sim-

ple power law fits ∆01 ≈ ∆01(α) + aδν with three different parameter sets

(α,∆01(α),ν): circles (0.241, 0, 0.65), stars (0.35, 0.033, 0.642), squares (0.5,

0.24, 0.685).

Having determined the dimerization δ in the D phase using the in-

teractions J, α determined in the U phase one may ask whether there

is an independent parameter check of the validity of the derived param-

eter set. Indeed, the internal consistency of the model parameters can

2The actual number of iterations depends on the values of δ and α or, more
precisely, on the resulting correlation length and on the number of states which are
kept.
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be verified by exploring the consequences for the Raman spectrum.

5.1.3 Singlet–Singlet Gap ∆00

For the parameter check we focus on the lowest singlet–singlet gap ∆00

which can be seen as a sharp peak in the experimental Raman spec-

tra [54–58]. Since Raman light scattering measures the singlet exci-

tations [59] it is to some extent complementary to INS from which

the dispersion of the triplet excitation has been obtained. On cooling

below TSP additional peaks appear in the Raman spectrum. The low-

est Raman excitation in the dimerized phase is observed at 30 cm−1,

i.e. slightly below 2∆01 [54–58]. This excitation energy has to be com-

pared to the result one derives in the present model choosing the pa-

rameters denoted above.
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Figure 5.2: Singlet–triplet gap ∆01 and singlet–singlet gap ∆00 as a function

of the inverse system size 1/L. The symbols are exact Lanczos results and

the dashed lines DMRG results [53].

Fig. 5.2 shows the singlet–singlet gap ∆00 and also the singlet–triplet

gap ∆01 as a function of 1/L for the fixed parameter set. The symbols

depict exact Lanczos diagonalization results for chains up to 24 sites

from Bouzerar et al. [53] and the dashed lines show the DMRG data
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for L ≤ 100. Both data sets are in excellent agreement for L ≤ 24

confirming the accuracy of the DMRG results. Obviously, ∆00 shows

an unusual non-monotonous scaling behavior. As a finite size effect

for short chains, the lowest singlet appears below the triplet excitation.

This has already been noted by Riera et al. [60]. Due to the non-

monotony of ∆00(L), however, the extrapolation to the thermodynamic

limit is rather delicate and requires the knowledge of the correct scaling

function which is not known in this case.

The DMRG method is particularly suited for this problem, since L

can be increased such that the thermodynamic limit is reached and the

singlet gap can be read off directly. It is found to be ∆00 ≈ 0.232J .

Obviously ∆00 ≤ 2∆01 holds and ∆00 is close to but approximately 13%

below the experimental result for the lowest Raman excitation energy

∆exp
00 = 30 cm−1 = 0.268J . A perfect agreement with the experimental

data for both the triplet and the singlet excitation gap could not be

expected, due to the relatively simple Hamiltonian (5.1) on which the

calculations are based. For instance the magnetic interchain coupling

or the dynamics of the phonons are likely to renormalize the magnetic

energies. Nevertheless, the result for ∆00 yields no inconsistency and

thus verifies the parameter choice for J , α, and δ in the framework of

the approach chosen.

From the numerical result for the ground state energy per site e0(L)

one can deduce a correlation length of ξ ∼ 7.4 lattice spacings by fitting

the appropriate scaling function (cf. appendix B and [53]). Moreover,

similar to the excited triplet, the excited singlet state can be regarded

as a state which resembles the ground state but contains two bound

S = 1/2 spinons which are coupled to a singlet (cf. section 5.1.4) [61,62].

One can estimate an upper bound for spatial extension of the two-spinon

object from the system size where the saturation sets in to be about 40

sites (cf. Fig. 5.2).

In general, the computation of excitation spectra can also be per-

formed via Fourier transformation of dynamical correlation functions.

This can be used to formulate an alternative approach for the calcula-

tion of low lying excitations (singlet or triplet). Combining the DMRG
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approach with the continuous fraction expansion of Green functions

allows for instance the computation of dispersion curves for finite sys-

tems [16]. A refined version of this approach has recently been devel-

oped by Kühner and White [17]. An example and details concerning

this technique are given in appendix A. In the given context, however, it

is much more efficient to compute the excited states by fixing Sztotal=1

(triplet) or by applying S+
total to the possible target states (singlet) as

explained in section 2.8.

5.1.4 Low Energy Spectrum

In this section some general features of the low energy spectrum of the

model (5.1) are considered, independent of the application to CuGeO3 .

Firstly let us focus on the singlet–triplet energy gap ∆01(δ) for var-

ious frustration values. The scaling behavior of the ground state is

discussed in appendix B. In an unfrustrated system the energy gap

scales like δ2/3 as was shown by Cross and Fisher [42, 43]. In general,

however, multiplicative logarithmic corrections make it difficult to ob-

serve the asymptotic behavior. Since these logarithmic corrections are

absent for α = αc [44] the energy gap values for α = 0.241 are included

in Fig. 5.1 (circles). A two parameter fit ∆01 = aδν yields a value of

0.65 for the exponent ν.

Surprisingly, power law fits with exponents close to 2/3 describe the

gap growth fairly well not only in the subcritical frustration regime, but

also for supercritical frustration if a constant energy gap ∆01(α), due

to spontaneous dimerization, is taken into account.

The results shown in Fig. 5.1 are consistent with those in Refs. [44,

63]. In Ref. [63], however, small deviations from the low lying gap values

shown in Fig. 5.1 are present3 leading to somewhat smaller exponents.

In the supercritical frustration regime the exponent 2/3 can nicely

be explained applying the spinon picture. Spinons are the elementary

excitations of antiferromagnetic (weakly dimerized) Heisenberg chains.

3In general for tiny gaps the extrapolation used in Ref. [63] yields presumably
too small values. For instance ∆01(α = 0.4) ≈ 0.05 is derived in Refs. [44,64] which
is about twice as large as the value found in Ref. [63].
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A spinon is a spin S=1/2 object which is associated with a domain wall

in the dimerization as schematically depicted below

��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��
��
��
��
�� .

Inserting two spinons in an externally dimerized chain one finds that

the singlets between the spinons are out of phase with respect to the

external dimerization,

���������� ������ �� ,

where the strong (weak) bonds J + δJ (J − δJ) are depicted with bold

(dashed) lines underneath. The energy cost is proportional to the spinon

distance. Hence, the spinons are mutually bound by a linear potential.

Within the framework of a continuum approach the Hamiltonian for the

spinons contains this linear potential and a quadratic kinetic energy,

Eψ(x) = − J

2m

∂2

∂x2
ψ(x) +

3δJ

4
xψ(x) , (5.2)

with the restriction x ≥ 0 (soliton distance). Rescaling of Eq.(5.2) by

x = ξy with ξ = (3mδ/2)−1/3 (5.3)

yields

Eψ̃(y) = J

(
3

4

δ√
2m

)2/3(
− ∂2

∂y2
ψ̃(y) + yψ̃(y)

)
. (5.4)

The solutions for the spinon wave function in Eq. (5.4) are given by

the shifted Airy functions [65]. Moreover, Eq. (5.4) shows that a linear

potential together with a quadratic kinetic energy leads to energies pro-

portional to δ2/3 if δ measures the potential strength [61,62]. Therefore,

Eq. (5.4) provides a simple explanation for the numerically observed re-

lation ∆01 ∼ δ2/3.

The main difference in the subcritical regime α < αc is the absence

of the energy gap for δ = 0, leading to a linear kinetic energy for the

spinons. Revisiting the scaling argument used above one finds that now
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a square root potential would retain the exponent 2/3. Indeed this is

corroborated by the DMRG calculations of the confining potential (for

details see appendix C and [61,62]).

In conclusion, the exponent of the gap growth can be understood

applying a simple quantum mechanical picture in the case of sub- and

supercritical frustration.

5.1.5 Higher Excitations

Not only from the theoretical point of view but also with respect to

the measured excitation spectrum of the insulating magnetic substance

(VO)2P2O7 it is challenging to investigate the occurrence of a second

triplet excitation. (VO)2P2O7 represents a low-dimensional spin sys-

tem composed of S=1/2 V4+ ions which have Heisenberg interactions.

First, the system was believed to be a realization of a two-leg antifer-

romagnetic spin-ladder [66, 67]. This picture was revised by Garret et

al. [68, 69] in favor of a static dimerized model. Furthermore Garret et

al. [68] observed two low lying excitations in neutron-scattering exper-

iments. The occurrence of bound states, in particular the occurrence

of a second bound triplet state has intensively been analyzed in several

theoretical studies [70–73]. Unfortunately this excitation is hardly ac-

cessible by DMRG. Since the momentum q cannot be fixed, it is not

possible to distinguish the states belonging to the first triplet branch at

higher q from the second triplet state with q = 0. Thus the selection of

the appropriate target state is impossible.

Another possibility to access the second triplet is to apply the contin-

uous fraction technique. The excitation can be calculated as described

in appendix A. But instead of the lowest singlet state the Raman oper-

ator is applied to the lowest state with Sz = 1. This approach, however,

requires an enormous numerical effort even for small systems, so that

no reliable data for L→∞ were obtained.



5.2. DOPED CuGeO3 49

5.2 Doped CuGeO3

CuGeO3 exhibits a surprisingly rich phase diagram upon doping [28,29,

74–80]. For instance the substitution of Cu by Zn/Mg or of Ge by Si

leads to a rapid suppression of the spin gap and the SP order parameter,

while antiferromagnetic (AF) order is enhanced. Both kinds of doping

can be viewed as mechanisms that lead to effective interruptions of the

spin chains. The experimentally observed fact that Si doping has a more

drastic effect on the reduction of the SP temperature than Zn doping

can be explained by structural arguments. The Cu-O-Cu exchange

path depends crucially on the hybridization between Ge d-orbitals and

the bridging oxygen p-orbitals [31]. Replacing Ge by the somewhat

smaller Si atom leads to a suppression of the superexchange constants

in both adjacent chains simultaneously (cf. Fig. 4.1 on page 34), whereas

substituting Cu by Zn, which has spin S = 0, causes the suppression of

the superexchange only in a single chain. Experimentally, however, Si

doping is by a factor 3 more effective than Zn doping [78], which is an

even stronger enhancement than the structural argument predicts.

In the following Zn or Mg (S = 0) impurities are modeled, focusing

on two surprising features which occur upon doping. The first is the

unexpected coexistence of the SP phase and antiferromagnetism. The

second is the observation of an additional peak in the Raman spectra

of the doped compounds Cu1−xZnxGeO3 [58]. There are several the-

oretical studies considering the AF order [81–86]. Both features can

qualitatively be understood also on the basis of the following DMRG

results.

5.2.1 Doping Induced Antiferromagnetism

In a uniform dimerized state AF order is excluded because all the spins

are bound in singlets. Increasing the fraction of Zn dopants stabi-

lizes antiferromagnetism while suppressing SP ordering. For low doping

one observes even the coexistence of AF long-range order and the SP

phase [76–78]. The occurrence of antiferromagnetism upon doping is

surprising, because normally disorder, as induced by the dopants, leads

to a strong suppression of AF order. Modeling the dopants as described
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below the enhancement of AF order and the coexistence with the SP

phase is immediately reproduced in the framework of the approach cho-

sen.

5.2.1.1 Modeling Doped CuGeO3

Basically a S = 0 impurity can be modeled by removing a single spin.

The mutual interaction αJ between both adjacent spins of the impu-

rity (vacancy) is neglected in the following4. Hence, inserting S = 0

impurities is equivalent to dissect the spin chain into finite segments.

Removing a single spin of a dimerized chain leaves a free spin next to the

missing one. Here, the focus is put on the free spin which resides at the

open end of the finite chain segment and particularly on its localization.

An unpaired spin induces inevitably a domain wall in the dimerization

a)

b)

Figure 5.3: a) Two adjacent chains in the dimerized state. The grey eyelets

denote the singlet binding of two spins. Removing one spin in the lower chain

leaves one singlet partner freed.

b) Same chain configuration as in a) after two hops of the free spin. The first

two singlets are now misaligned with respect to the upper chain.

as shown in Fig. 5.3.b. A similar scenario is sketched on page 47 in the

context of the discussion of spinons as the constituents of the excited

triplet state. The order parameter changes sign (cf. Fig. 5.3.b) and the

dimerization is suppressed at the position of the free spin.

The free spin is not bound to the vacancy, as long as only a single

4This is justified for the relatively weak frustration α=0.35 as is shown in Fig. 17
in Ref. [87]
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Figure 5.4: Correlation function 〈Szi · Szi+1〉 for an unfrustrated Heisenberg

chain (inner curve, circles and line), for frustration α = 0.241 (triangles) and

for α = 0.35 (diamonds).

chain is under consideration. In a more realistic scenario, however,

elastic interchain coupling, which causes the staggered dimer ordering

along the b-direction (cf. Fig. 5.3.a), has to be taken into account [38,88].

Similar as in the case of two spinons (page 47) this leads to a linear

confining potential, because the dimers between the vacancy and the

spinon are misaligned with respect to the neighboring chains. As a

consequence the spinon is no longer free but it is bound to the impurity.

Note that in the study of the low lying excitations presented in sec-

tion 5.1.4 the spinon potential was caused by the explicit dimerization

(−1)iδ0. Yet the unchanged dimerization in the vicinity of the free spin

is a somewhat unrealistic scenario as the lattice distortions are assumed

to react to the spin system. Therefore, now the dimerization is not fixed

from the beginning, but determined self-consistently as described in the

following section. The neighboring chain which is assumed to be free

of impurities in the relevant range has a fixed dimerization. Elastic

interchain coupling causes a shifted pattern in the impurity chain as

depicted in Fig 5.3.a.

A Heisenberg chain has particularly strong correlations 〈Szi ·Szi+1〉 at

open chain ends (e.g. [4,89]). As shown in Fig. 5.4 this remains true also

for frustrated chains. The strong, slowly decaying alternation already

for α ≤ αc is, so to speak, a precursor of the D phase, indicating the
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tendency towards dimerization. The energy cost of inserting a single

spin, which comes along with breaking a strong bond, is minimal for the

bonds in the middle of the chain (cf. Fig. 5.4). Therefore, the free spin

can lower the energy by moving away from the chain end towards the

middle of the chain. On the other hand the singlets between the free

spin and one chain end are misaligned with respect to the neighboring

chain (see Fig. 5.3). This implies an energy loss which again leads to

an attractive linear potential and causes the binding of the spin to one

chain end.

The following calculations are done on the basis of the one-dimensional

Hamiltonian (4.4), taking an additional elastic interchain coupling into

account. This leads to the modified elastic energy

Eelast =
∑
i

{K‖
2
δ2
i +K⊥δiδ̂i

}
. (5.5)

The interchain coupling K⊥ is an effective coupling constant for the

elastic interaction with all four neighboring chains, which are assumed

to have the same fixed modulation δ̂i = (−1)iδ0. The modulation am-

plitude δ0 belongs to the elastic coupling constant K‖ in a purely one-

dimensional system (K⊥ = 0). The interchain coupling is assumed to

be positive to account for the experimentally observed checkerboard

dimer structure in the undoped case [38, 88].

For numerical reasons open chains with even number of sites are

investigated. Thus two free spins, which reside more or less at the

chain ends, have to be considered. Focusing on the physics of a single

spinon, chains of up to 140 sites are calculated to ensure that both

spinons do not mutually interact5.

Next we discuss the results; details about how the Hamiltonian (4.4),

(5.5) can self-consistently be treated, i.e. how the δi are determined,

are deferred to section 5.2.1.2. Fig. 5.5.a shows modulation patterns

for K⊥δ0 = 0.01, 0.2 and 1.0 (in units of J) with circles, squares and

5 The relative energy difference of the spinon-singlet ground state and the triplet
state where both spinons are parallelly aligned is found to be less than 10−5J ,
indicating an extremely weak mutual interaction.
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Figure 5.5: a) Local dimerization δi at the end of an open chain for α =

0.35. The elastic interchain coupling K⊥δ
0 equals 0.01, 0.2, and 1.0 J , K‖ =

18.8, 32.4, 89.5 J (from top to bottom).

b) The corresponding local magnetizations for the modulation pattern shown

in a).

diamonds, respectively. For each calculation K‖ is fixed so that the

absolute dimerization is about 1.3% in the bulk6.

Obviously the dimerization is suppressed in the vicinity of the free

spin as becomes most evident in the upper panel of Fig. 5.5.a. This

was to be expected since the spin has no partner to form a singlet.

Due to the delocalization of the free spin the dimerization is reduced in

a region of about twice the correlation length. Fig. 5.5.b displays the

corresponding local magnetizations from which the delocalization range

can be read off directly. The local magnetizations can be interpreted

as the spinon probability |ψ2| (cf. Eq. (5.2) for the continuous case).

As expected, the local magnetizations sum up to Sz = 1/2 in each

case. Large interchain coupling K⊥ leads obviously to almost localized

6K‖ + 2K⊥ = K0 = const≈ 18J ; cf. Eelast in (4.4) and (5.5)
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spinons at the chain ends.

Henceforth, the spinon, i.e. the delocalized unpaired free spin

(Fig. 5.5.b), and the associated zero in the distortion pattern (Fig. 5.5.a)

is denoted as soliton.

Although the spinon carries the integrated magnetization of Sz=1/2

one finds a considerable number of sites showing a negative magneti-

zation Szi < 0. The AF correlations extend from the first to almost

the 40th site in the case of K⊥δ0 = 0.01 (open circles). The large AF

ordered domains associated with the impurities explain the tendency to

AF long-range order in the doped compounds, since magnetic interchain

coupling and an effective interaction within the chains may cause a three

dimensional arrangement of the AF regions in the different chains.

If the number of dopants is not too large, i.e. the mean distance of the

impurities is larger than a critical value, one finds constantly dimerized

regions between the impurities. This provides a natural explanation for

the observed coexistence of AF order and dimerization.

5.2.1.2 Self-Consistent DMRG Approach

As shown in Fig. 5.5.a the spinon causes a modulation of the δi. Hence,

in these calculations the δi must not be fixed from the beginning, but

have to be calculated self-consistently. The optimum dimerization,

which will be called adaptive modulation henceforth7, is found by mini-

mizing 〈Ĥchain〉+Eelast (Eqs. (4.4),(5.5)) with respect to all {δi} which

yields the condition

J〈Si · Si+1〉+K‖δi +K⊥δ̂i −
J

L

∑
i

〈Si · Si+1〉 = 0 . (5.6)

The last term is included to ensure that the δi satisfy the constraint∑L
i=1 δi = 0. By means of Eq. (5.6) a new set of {δi} can be derived

as a function of δ̂i and 〈Si · Si+1〉. The expectation values are taken

with respect to the lowest-energy state which is calculated via DMRG

for a given set {δ0
i }. Starting with an e.g. alternating configuration for

the δ0
i it turns out that as few as about 10 iterations are sufficient to

7This is because the lattice distortions are allowed to adapt to the spin system.
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reach a stable modulation pattern which does not change perceptibly

on further iterations. For the calculation of the lowest state we use

the finite size algorithm (section 2.4) to account for the translationally

non-invariant modulations.

5.2.2 Bound Spinon Excitations

Recently Els et al. [58] discovered an additional peak at energies of

about the singlet–triplet gap (17cm−1≈24K) in the Raman spectra of

the doped samples Cu1−xZnxGeO3. An explanation for the occurrence

of the additional excitation is given in Ref. [58]. As shown above the

spinon resides near the impurity because of the linear potential which

arises due to the elastic interchain coupling. The additional singlet

excitation is interpreted as the transition from the lowest lying bound-

spinon state to the next higher one.

In section 5.1.3 the lowest lying singlet excitation was calculated

for periodic boundary conditions in the limit L → ∞. In view of the

experimental observation in the doped samples, now the lowest excita-

tions of open chains with adaptive distortion patterns (cf. Fig. 5.5.a )

are calculated. In this case two additional singlets with energies less

than ∆bulk
01 are found8. The lowest excited singlet state has an energy

of 0.59∆01 and the second lowest one of 0.85∆01 for K⊥δ0 = 0.2J . The

ratios ∆1,2
00 /∆

bulk
01 , where ∆

1(2)
00 denote the lowest (second lowest) singlet

excitation gap, depends only weakly on the interchain coupling K⊥. For

instance for K⊥δ
0 = 0.001J , ∆1

00/∆
bulk
01 = 0.52 and for K⊥δ

0 = 1J it

increases to ∆1
00/∆

bulk
01 = 0.64. So, in agreement with the experiment

on doped CuGeO3 , additional singlet excitations are found for open

systems in the framework of the self-consistent approach. The calcu-

lated energies, however, are not in quantitative accordance with the

experimental value, probably because of magnetic interchain coupling.

Lastly the lowest triplet excitation is analyzed applying open bound-

ary conditions with adaptive distortions. For the triplets no significant

energy change in comparison to the undoped (periodic) case is found.

8Recalling the notation used above: ∆01 denotes the singlet–triplet and ∆00 the
singlet–singlet gap.
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Fig. 5.6 shows the local magnetizations of the lowest state with Sz = 2

in comparison to the ’ground state’ with Sz = 19. Obviously the exci-

tation is located in the bulk which explains why the triplet energy gap

is hardly affected by the change of the boundary conditions.

A similar analysis of the excitations was performed in [86]. Among

other items the local magnetizations of the lowest excitation for open

chains were calculated (not self-consistently). In agreement to the above

results it was shown that the low lying singlet excitations are located at

the chain ends, whereas the lowest triplet excitation occurs in the bulk.

Obviously the same holds true for the adaptive modulation pattern

which yields the magnetizations shown in Fig. 5.6.
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−0.05
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Figure 5.6: The local magnetization in the (Sz= 1)–’ground state’ (filled

circles) in comparison with the magnetization in the lowest state with Sz=2,

for K⊥δ
0 = 0.01J and α = 0.35 (see Fig. 5.5).

9As stated in the footnote on page 52 the relative energy difference between the
lowest state where the two spinons at the chain ends are coupled to a singlet and the
state where they are parallelly aligned (spinon triplet) is less than 10−5J . Hence,
the triplet state is also denoted as ’ground state’.



Chapter 6

Spin-Peierls Systems under Magnetic Field

A large fraction of the experimental as well as the theoretical work

on SP systems is dedicated to investigations of properties in external

magnetic fields.

SP compounds exhibit characteristic properties above a certain crit-

ical field. The value of the wave vector q of the lattice distortion in

the absence of an external field is π, reflecting the alternating spin ex-

change coupling1. When a magnetic field is applied q sticks to π for

low magnetic fields. Above a critical field, however, it starts to deviate

signaling the transition to the incommensurate (I) phase. In this high

field phase the modulation of the exchange coupling is incommensurate

with respect to the underlying lattice structure. The phase diagram of

CuGeO3 which is representative for SP compounds in general is shown

in Fig 4.2.

The incommensurably modulated phase has attracted much inter-

est among theoreticians. Although many of the observed features of

the I phase can be understood on the basis of the pioneering theo-

retical studies of Nakano-Fukuyama [92, 93], Fujita-Machida [94], and

others [95–97] several observations indicate that a refinement of these

analytical approaches is necessary. A detailed analytical description of

the I phase is still a challenging task.

Strictly speaking, infinite systems are necessary to account for the

1The lattice constant a is set to unity.
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incommensurate, i.e. the non periodic, spin–lattice structure. Using the

DMRG approach one is of course restricted to finite systems. But the

lattices and therefore also the periodicity of the modulations considered

can be chosen very large. So the tractable modulations are very close

to incommensurable structures.

In the next section the transition from zero to finite magnetization is

analyzed, with particular emphasis on the order of the phase transition.

Firstly, this is done for SP systems in general. Three different ways of

modeling the magnetic phase are considered. Secondly, the results are

applied to CuGeO3 under magnetic field.

6.1 D–I Phase Transition

From the theoretical point of view, contradictory predictions have been

derived concerning the order of the phase transition from zero to finite

magnetization. The phase transition was predicted to be of first order

by Cross [98]. Bhattacharjee et al. obtained the same conclusion using

a phenomenological Ginzburg-Landau expansion [99]. But mean-field

calculations of Fujita-Machida for a renormalized XY-model display a

second order phase transition [94] while Buzdin et al. [97] find a second

order phase transition only at T = 0 and a first order one for T > 0

using essentially the same model as Fujita-Machida.

In this section magnetizations for three different types of models are

calculated showing that the order of D–I phase transition is strongly

model dependent. For all the calculations parameter sets are chosen

which are convenient for the numerical treatment, i.e. displaying small

finite size effects.

6.1.1 Fixed Alternating Modulation

As a starting point let us consider the simple case where the lattice

distortion is kept frozen as in the D phase in spite of the presence of a

magnetic field,

δi = (−1)iδ . (6.1)
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The amplitude δ is treated as a fixed parameter. This approach is

appropriate for modeling structurally dimerized systems or ladder sys-

tems. Chitra and Giamarchi [100] calculated the magnetization of frus-

trated or dimerized spin chains in a magnetic field using bosonization

techniques. Within this continuum-limit approach the frustration and

dimerization cannot be treated simultaneously since this would amount

to the treatment of a double sine-Gordon model. In both cases, for

dimerization or frustration, the magnetization is found to increase as

m ∝
√
H −Hc just above the critical field [100]. With the DMRG

method, the square root behavior is found to remain true in presence

of both dimerization and frustration, see Fig. 6.1.

As recently shown by Tonegawa et al. by means of exact diagonaliza-

tion [101] an additional remarkable feature appears in some parameter

range of dimerization and frustration, namely a plateau at m = 1/4 as

shown in Fig. 6.12.

0 1 2
gµBH/J

0.0

0.1

0.2

0.3

0.4

0.5

m
  

 

Figure 6.1: Magnetization as a function of the magnetic field for δ = 0.3,

α = 0.1 (filled circles) and δ = 0.5, α = 0.2 (open squares) for a 60-site chain.

2Due to the discreteness of the magnetization values m = n/L, with n = 0 . . . L/2
(here L = 60), the plateau cannot be resolved completely. The plateau including
the edge singularities is only seen in the limit L→∞.
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The occurrence of plateaus is expected to be linked to the Lieb–

Schultz–Mattis (LSM) theorem [102]. The extended version of the the-

orem states that if n(S − m) is not integer a low lying state exists

with energy O(1/L) above e0 under the assumption of a non-degenerate

ground state [103]. Here S is the magnitude of the spins, m is the mag-

netization, L is the system size and n denotes the periodicity of the

ground state with energy per site e0. The periodicity is determined

by the explicit spatial structure of the Hamiltonian and by a possi-

ble spontaneous symmetry breaking. The plateau appears at m = 1/4

(Fig. 6.1). Indeed, a four site periodicity seems reasonable in this case

since half of the spins are bound in dimers and the other half is aligned

parallel to the z axis. Actually, the periodicity of four of the m = 1/4

state was numerically verified in Ref. [101]. For m = 1/4 and n = 4

the condition n(S −m) not integer is not fulfilled and the system may

be gapped according to the LSM theorem. However, the low energy

state predicted in the LSM theorem has the same magnetization as the

ground state. Thus, strictly speaking, the theorem does not apply to

the calculated plateau in the magnetization curve [104]. But one can

expect that in general a gapless phase has low-energy states in both

fixed and different magnetization sectors [103].

The second order phase transition as shown in Fig. 6.1 is in agree-

ment with the fact that measurements under applied field for instance

on Cu2(C5H12N2)2Cl4 show no hysteresis effects [105]. This substance

is found to resemble an antiferromagnetic, strongly dimerized and frus-

trated Heisenberg chain [106,107] and a continuous increase of the mag-

netization for H > Hc is observed. However, a linear dependence of the

magnetization on the magnetic field was found instead of the expected

square root behavior near Hc [105].

6.1.2 Sinusoidal Modulation

For spontaneously dimerized systems the dimerization pattern changes

in the case of finite magnetization. For instance, X-ray measurements

on CuGeO3 clearly show that the structure of the lattice distortion be-

comes incommensurate for H > Hc [108–110]. As a result of the lattice
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distortion the magnetic system should display a similar incommensurate

modulation. Thus in this case an appropriate choice for the modulation

is

δi = δ cos(qri) , (6.2)

as it was suggested in [60,111]. To begin with, q is considered as a free

parameter which is fixed by minimizing the total (free) energy. Note

that for q 6= π the elastic energy is q independent for the ansatz (6.2)

yielding only a constant contribution at given amplitude δ. Hence it

will be dropped for the following consideration.

Using the Jordan-Wigner transformation the applied magnetic field

corresponds to a shift of the chemical potential. For the XY−model

with a finite magnetization m=Sz/L, one can show that an infinites-

imal spin-lattice coupling leads to an instability at momentum q =

2kF = π(1 + 2m). In the case of the Heisenberg model, this relation

is expected to hold true as well [98, 100, 111–113]. Within the present

approach this is numerically confirmed by showing the energy to be

1.0 1.1 1.2 1.3 1.4
q/π

−0.40

−0.38

−0.36

−0.34

−0.32
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e 0
 /J

m = 0.05
m = 0.075
m = 0.1
m = 0.125
m = 0.15

Figure 6.2: Ground state energy per site of an 80-site chain as a function

of the modulation vector q (Eq. (6.2)) for various magnetizations m and

α = 0.35, δ = 0.1.
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minimal at

q = π(1 + 2m) (6.3)

for a given magnetization m, for various sets of parameters δ, α and

various system sizes. The ground state energy per site for H = 0 as a

function of q is plotted in Fig. 6.2, for a set of magnetizations m and

for fixed δ = 0.1 and α = 0.35. The positions of the cusps correspond

exactly to q = π(1 + 2m). Fig. 6.2 displays the generic behavior, inde-

pendent of the parameters α and δ, and definitely confirms the relation

between the wave vector and the magnetization.

Henceforth, the parameter q is fixed according to Eq. (6.3), and the

magnetization is investigated as a function of the applied field. It turns

out that the fixed sinusoidal exchange coupling (6.2) has a rather strong

effect on the magnetization leading to a first order phase transition.
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Figure 6.3: Ground state energies per site, e(m)− e(0), as a function of the

magnetization for the sinusoidal modulation (6.2) (δ = 0.2, α = 0.35) for

chains of 100 (circles), 80 (squares), and 60 (diamonds) sites. To highlight

the discontinuity at m = 0 a cubic fit for m > 0 is depicted as a solid line.

The inset shows an enlargement and the tangent for m = 0.05 as described

in the text.
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To elucidate this, the magnetic ground state energy per site e(m) =

(〈Ĥchain〉+Eelast)/L as a function of the magnetization is presented in

Fig. 6.3. Results for several chain lengths are included to show that

finite-size effect do not harm the drawn conclusion.

The salient feature of e(m) for sinusoidal modulation is the discon-

tinuous jump at m = 0. To understand this jump it is helpful to look

at the averaged squared distortion 1
L

∑
i δ

2
i which takes the value δ2 at

q = π and δ2/2 otherwise. In the D phase all δi are maximally distorted

whereas already for an arbitrarily small incommensurability there are

large regions with weaker distortions. Hence, the elastic energy is dis-

continuous in the limit q → π. This affects the magnetic energy which

reacts to the modulated distortions.

The dependence m(H) can be deduced from e(m) in Fig. 6.3 by

minimizing the total energy ẽ = e(m)− gµBH. In other words one has

to compute the convex hull. This defines the magnetic field H(m) and

by inversion one obtains m(H). The jump in e(m) leads to a first order

transition with a jump in m(H). The resulting magnetization m(H)

deduced from Fig. 6.3 is depicted in Fig. 6.4.

Calculating the corresponding local magnetizations for each site

[111] one finds that there is a large alternating local magnetization close

to each zero of the modulation like in the doped case (cf. Fig. 5.5). The

local magnetizations around each zero add up to the contribution of one

spinon with Sz = 1/2. Summing the z-component of all spinons yields

the total magnetization m·L.

6.1.3 Adaptive Modulation

In the previous section the modulation, more precisely the parameter q,

was fixed by minimization of the total energy. It is more accurate, how-

ever, to determine the whole modulation {δi} by minimizing the total

energy (4.4) in a certain Sz subsector with respect to all the parameters

δi. For a given magnetization the lattice distortion is thus allowed to

adapt to the spin system.

For the self-consistent treatment of the lattice we use the DMRG

approach as outlined in the context of modeling doped systems in sec-
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Figure 6.4: Magnetization as a function of the applied magnetic field for

α = 0.35 and δ = 0.2 of a 80-site chain as deduced from the open squares

in Fig.6.3. The inset shows an enlargement near Hc for 100- (circles), 80-

(squares), and 60- (diamonds) site chains.

tion 5.2.1.2. In comparison to the application to doped systems there

are two minor modifications. First, the elastic intrachain coupling is set

to zero. This is justified since it is reasonable to assume that the in-

commensurate modulation is the same (modulo −1) in adjacent chains.

Therefore the interchain coupling causes only a renormalization of the

coupling constants. Second, a sinusoidal or a step-like modulation is

chosen in the first iteration in the case of small and large dimerization

respectively. The ensuing modulation is of course independent of the

start modulation. The proper start configuration, however, reduces the

number of iterations which are necessary to yield a stable pattern.

The envelope of the final modulation can be fitted by a product

of complete Jacobi elliptic functions of modulus k as predicted ana-

lytically [93, 94, 97, 114]. Fig. 6.5 shows a generic modulation pattern

for very low magnetization, i.e. low concentration of solitons. In this

limit the vicinity of each zero resembles a hyperbolic tangent [93]. The

relatively large dimerization max{δi} ≈ 0.2, due to the small elastic

coupling constant K0 = 1.7J , leads to a rather small correlation length
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Figure 6.5: a) Incommensurate modulation δi of an 80-site chain for α = 0.35

and K0 = 1.7J .

b) The corresponding local magnetizations for the modulation pattern shown

in a).

of only a few sites as can be seen in Fig. 6.5.

Once the modulation pattern is determined the corresponding en-

ergy is calculated in each Sz subsector. The energy e(m) is found to

be convex and continuous, in contrast to the curves with fixed sinu-

soidal modulation. Thus one finds a continuous, second order phase

transition from the D phase to the adaptively modulated I phase. The

corresponding magnetization m(H) is depicted in Fig. 6.6 with filled

circles.

The enormous steepness of the continuous magnetization is explained

by the following argument: For non-interacting spinons which are far

enough apart, the energy per site e(m) − e(0) is proportional to the

number of spinons and hence to the magnetization m. The proportion-

ality constant e0 is the creation energy of a single spinon and determines

the critical field 2e0 = gµBHc since the spinons are created pairwise by

the annihilation of singlets. Because the spinons are exponentially lo-

calized (cf. Fig. 6.5) two spinons at mutual distance l have additionally

an exponential interaction w(l) = w0 exp(−cl). Here c is a constant of
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Figure 6.6: Filled circles: Magnetization for the adaptive modulation with

K0 = 1.7, α = 0.35. Open squares: Magnetization with a dispersive elastic

energy as discussed at the end of the paragraph. K̃ = 6K0, K0 and α

unchanged.

the order of the inverse correlation length and w0 is a proportionality

constant which is positive for repulsion and negative for attraction. The

typical distance of the spinons is l = 1/(2m) since each spinon carries

spin S = 1/2. Hence, for not too large values of m, the total energy in

an external magnetic field H equals

e(m)− e(0) = gµB(Hc −H)m+ w02me−
c

2m . (6.4)

By minimizing this expression for repulsion (w0 > 0) one derives H(m)

which increases exponentially slow just above Hc. This in turn leads to

the drastic increase of m as depicted in Fig. 6.6.

To present more clearly the effects of soliton interaction which causes

the convexity of e(m) it is convenient to pass to an affine representation

of the ground state energy by investigating

eeff(m) := e(m)− e(0)− gµBHcm (6.5)

which would vanish identically if no interaction between the solitons

existed. Note that eeff(m) is convex if and only if e(m) is. In Fig. 6.7
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Figure 6.7: Affine representation of the ground state energy per site.

XY−model: The upper solid curve shows eeff as defined in Eq. (6.5) for a

dispersionless elastic energy with K0 = 0.625. The lower solid curve shows

eeff for a dispersive elastic energy (K̃ = 6K0) as discussed in the text. Both

curves are obtained via the continued fraction technique. The filled and open

diamonds depict DMRG results for an 80-site chain.

XXX−model: DMRG results in the dispersionless case (filled circles) and

for K̃ = 6K0 (open squares) for K0 = 1.7 and α = 0.35. The short dashed

lines are guides to the eye only.

The long-dashed lines indicate the convex hulls to the lower curves.

the resulting generic curves are shown with filled symbols (solid line) for

the XY−model and the spin isotropic XXX−model. The results for

the unfrustrated XY−model in the thermodynamic limit were derived

by Uhrig by means of a continued fraction technique based on Green

functions [111]. This approach to the XY−model allows to iterate up

to 80 times for an infinite chain with periodicities of up to 120-sites.

These data are included as an additional check that no spurious effects

due to finite size or insufficient iteration are investigated.

The results in Fig. 6.7 for a dispersionless elastic energy (filled

symbols) comply perfectly with exponentially repulsive solitons as in

Eq. (6.4) [115].
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A dispersionless elastic energy is, of course, a simplification of the

real phononic system. Cross already argued [98] that a pinning in k-

space should influence the order of the transition. Presumingly the

D→I phase transition becomes first order if the elastic energy itself

favors the distortion at k = π. This means that K̂(π) is minimum if

the elastic energy can be expressed as Eelast = 1
2

∑
k K̂(k)|δk|2. The

argument compares, for a given wave vector q close to π, the elastic

energy K̂(q) of a sinusoidal modulation (6.2) with the one of an array

of domain walls with the same periodicity 2π/q. Since the latter has also

contributions of higher harmonics ±3q, ±5q, ±7q, ... its elastic energy

is
∑
n |a(2n+1)q|2K̂(q) where the coefficients |a(2n+1)q|2 are symmetric

with respect to π. Thus the elastic energy is higher than the one for

the sinusoidal modulation. By this mechanism higher harmonics are

suppressed due to the elastic energy leading to a smoother and more

sinusoidal modulation. If the convex curve for the adaptive modulation

is influenced in a way to approach the discontinuous curve for sinusoidal

modulation one must expect that a region of concavity appears for small

m (cf. Fig. 6.7). Hence the convex hull differs from the curve itself and

a jump in the magnetization occurs: the transition is first order. Put

differently, a dip in the elastic energy at the zone boundary may lead

to an attraction of the solitons.

For the numerical investigation of the hypothesis, K̂(k) = K +

2K̃ cos(k) is used with K0 = K − 2K̃ kept fixed to refer to the same

amplitudes in the D phase. This elastic energy in real space can be

written as

Eelast =
1

2

∑
i

(
Kδ2

i + 2K̃δiδi+1

)
=

1

2
δ+ K δ , (6.6)

where δ is a vector with components δi and K is a cyclic tridiagonal

L × L symmetric matrix of coupling constants with diagonal elements

K and off-diagonal elements K̃. Generic results for the energies ẽ(m)

in affine representation are depicted with open symbols (solid line) in

Fig. 6.7. Indeed a concavity for small magnetizations m is found. This
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implies soliton attraction and a first order transition.

Furthermore, in Fig. 6.6 the resulting magnetization curve with dis-

persion of the elastic energy is shown. The difference between the sec-

ond order transition for the elastic energy without dispersion and the

first order transition with dispersion is clearly visible. Additionally, the

critical field Hc at which the transition occurs rises on including the

dispersion. This complies also with the consideration above since the

energy of a single soliton rises due to K + 2K̃ cos(k) > K0 except at

k = π for K̃ > 0.
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Figure 6.8: Modulations for Sz = 1 for the same parameters as in Fig. 6.7

for the XXX−model.

Finally, in Fig. 6.8 the modulation patterns with and without dis-

persion are compared (open circles and filled squares, respectively). In-

deed, the inclusion of K̃ > 0 makes the modulation softer and more

sinusoidal. In conclusion the numerical results convincingly corrobo-

rate the expectations for the effect of a dispersive elastic energy.

Numerically, it is extremely tedious to decide whether an arbitrar-

ily small K̃ yields already soliton attraction. For smaller values of K̃

the minima in the affine representation occur for smaller and smaller

magnetization and they are more and more shallow. Probably the soli-

ton attraction exists down to arbitrarily small values of K̃, but it may

become irrelevant in practice due to the exponential smallness of the

corresponding energies.

Negative values of K̃ have also been investigated. No qualitative
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change of the soliton interaction has been found in comparison to the

dispersionless case. The iterative procedure, however, becomes quite

unstable already for small negative values of K̃.

6.1.3.1 Adiabatic Gaps

So far the average magnetization as a function of the applied magnetic

field was analyzed. Another interesting quantity which is accessible

once e(m) can be computed are the adiabatic gaps. It is so far an

unsettled question whether spin-Peierls systems have or have not gaps

in the incommensurate phase.

On the one hand, it seems clear that the incommensurate modula-

tion pattern can be shifted along the chains without energy cost. This

is certainly true in the continuum description and thus it is also true

up to exponentially small pinning energies for not too small correlation

lengths. This quasi-continuous symmetry gives rise to gapless quasi-

Goldstone bosons called phasons [99,116]. They do not change the spin

sector and thus have ∆Sz = 0. The physics of phasons is beyond an

adiabatic treatment of the lattice distortion. Here, within the static ap-

proach, the distortion is assumed to be fixed in a certain Sz subsector.

A different issue is the question whether the gaps ∆± corresponding

to ∆Sz = ±1 are finite or not. Note that these gaps do not need to be

equal since the spin rotation symmetry is broken for finite magnetiza-

tion. From a non-adiabatic viewpoint one can infer from the smooth-

ness of the e(m) curves that there are no such gaps in the I phase since

the modulation adapts always to the average magnetization. Applying,

however, an operator like S+(k) or S−(k) [111,112] and asking for the

accessible excitation spectrum may lead to a different answer. These

operators act only on the spin part of the ground state and leave the

modulation unchanged. Thus it is not unreasonable to expect that the

gapless excitations are not accessible since their access required a re-

arrangement of the whole, truly three-dimensional, modulation. The

underlying question is whether the states S±(k)|Sz〉 are orthogonal to

|Sz ± 1〉 or not, where |Sz〉 denotes the ground state for the magneti-

zation Sz.
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Here the simpler question, whether in the strictly adiabatic frame-

work the gaps ∆± are finite or not, will be investigated. This is an

extension of previous investigations [111] where only ∆+ + ∆− could

be computed, since this quantity does not require the knowledge of the

corresponding magnetic field.

As before e(m,H) := e(m)−mgµBH defines the ground state energy

with self-consistently optimized modulation {δi}.

e±(m,H) :=
1

L
〈Ĥchain〉

∣∣∣
Sz=mL±1

+
K0

2L

∑
i

δ2
i −

(
m± 1

L

)
gµBH (6.7)

denotes the lowest-energy state with one additional spin flipped upward

(+) or downward (−), respectively, but with the modulation {δi} be-

longing to Sz = mL, not to Sz = mL±1. This means that for e±(m,H)

the modulation is not optimized for the given magnetization. This cor-

responds to the situation accessible by application of S+(k) or S−(k)

without reaction of the lattice part. Then the gaps are defined by

∆±(m) = e±(m,H)− e(m,H) . (6.8)

The gaps ∆+ and ∆− for a 100-site ring are displayed in Fig. 6.9

for α = 0.35 and K0 = 2.38 corresponding to δ ≈ 0.14 in the D phase.

Finite size effects are not yet completely negligible, but the qualitative

behavior is the one shown. As far as the sum (∆+ +∆−) is concerned it

is in agreement with previous self-consistent renormalized Hartree-Fock

results [111].

Most importantly, Fig. 6.9 shows that both gaps are indeed finite

and of equal order of magnitude. It is interesting that apparently ∆+

is smaller at small magnetization and ∆− is smaller at larger magneti-

zation. At least within the adiabatic approach, the I phase turns out

to be gapped. Yet, it is an open question if this result has relevance in

regard of the experiments on SP compounds.
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Figure 6.9: The energy gaps ∆+ (filled squares) and ∆−(open squares) as a

function of the magnetization for L = 100, α = 0.35 and K0 = 2.38

6.2 CuGeO3 in an Applied Magnetic Field

After the discussion of general properties of the high field phase let

us now consider the application to CuGeO3 . A detailed discussion of

CuGeO3 under magnetic field focusing on experimental aspects can be

found in Ref. [30]. Two experimental quantities can directly be com-

pared to the DMRG results for the I phase. First, the elastic energy

associated with the lattice distortion is correlated to the measured spon-

taneous strain. Second, the local magnetizations can be compared to

NMR results.

6.2.1 Spontaneous Strain

The spontaneous strain is the relative length change of the system due

to dimerization or incommensurable modulation:

ε(H,T ) =
1

L

{
∆L(δ(H), T )−∆L(0, T )

}
, (6.9)

where H is the applied magnetic field, T the temperature and δ denotes

the SP order parameter. ∆L(δ, T ) denotes the total length change,

i.e. the difference ∆L(δ, T ) − ∆L(0, 0)3. The spontaneous strain of
3∆L(0, 0) or in general ∆L(0, T < TSP ) is derived by extrapolating ∆L(0, T >

TSP ) to low temperatures. The extrapolation is found to be independent of the
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CuGeO3 can be obtained via thermal expansion or magnetostriction

measurements [117–120].

In the D phase δ is given by the absolute dimerization δ0. In leading

order one finds ε ∝ δ2, the linear term vanishes due to the obvious sym-

metry δ → −δ. The proportionality has been verified experimentally

by Lorenz et al. comparing ε(H,T ) to the intensities of superstructure

reflections [119]. Based on the proportionality ε ∝ δ2 the spontaneous

strain, i.e. the relative length change of the system, can be compared to

the DMRG calculations although the total system length is fixed within

the numerical approach.

In the I phase the situation is more complex due to the spatial

modulation of δ. The spontaneous strain cannot be sensitive to all the

squared microscopic distortions δ2
i separately. However, it is reasonable

to assume that the macroscopic quantity ε(H) is proportional to the

averaged squared order parameter:

ε(H) = c 〈 δ2
i 〉H , (6.10)

where ε(H) denotes ε(H,T → 0). The right hand side is proportional

to the elastic energy in Eq. (4.4), which can be directly computed once

the modulation pattern {δi} is determined.

As stated above, the simplest approach to model the I phase is the

sinusoidal modulation (6.2), δi = δ0(H) cos(qri) where the amplitude

δ0(H) allows for an additional field dependence. Therefore, the as-

sociated elastic energy in (4.4) equals K0

2 δ
2
0(H) 1

2 independent of the

modulation vector q as long as q 6= π. Since the factor 1
2 is absent for

q = π the sinusoidal modulation leads to a discontinuity at H = Hc.

For H > Hc one may assume that δ0(H) scales with TSP (H) which

explains the observed simultaneous saturation of ε(H) and TSP (H) for

high fields (see below).

Fig. 6.10 shows two representative modulations which are obtained

within the self-consistent approach for Sz = 1 and Sz = 5 corresponding

to magnetic fields close to the D-I boundary ('13 T) and a higher field

(' 17 T), respectively. The calculation yields an obviously kink–like

modulation for the small field in contradiction to the approach above.

applied magnetic field [117–119].
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Figure 6.10: Local lattice modulation for a 200-site chain in the Sz = 1

(upper curve) and the Sz = 5 (lower curve) sub–sectors. The open (filled)

symbols represent odd (even) sites. Inset: maximum dimerization amplitude

as a function of the magnetization m = Sz/L calculated for a 100-site chain.

Within the analytic approach for the soliton lattice the modulations

δi are given by

δi(H) = (−1)iδ0k sn
( i
kξ
, k
)

, (6.11)

where sn(x, k) is a Jacobi elliptic function of modulus k, which is de-

termined by the field dependent inter–soliton distance and by ξ the

soliton width in units of the lattice constant [92,94,97]. The periodicity

of sn(x, k) equals 4K(k), where K(k) denotes the complete elliptic in-

tegral of second kind [65]. Thus the modulus k is fixed by the relation

m 4K(k) kξ = 1 [116].

From X–ray scattering ξ = 13.6 is derived close to HD/I [109] and

the modulation period q(H) can be extracted from the experimental

magnetization.
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The kink–like modulation for small fields can nicely be fitted by

sn(x, k) yielding a correlation length of 10–11 sites in qualitative agree-

ment with the experimental value. The fit is shown in the following

section in the context of the analysis of the NMR results. The DMRG

calculations, however, clearly show the failure of the kink–picture at

higher fields. Already at moderate fields, i.e. for Sz = 5 (Fig. 6.10), the

modulation looks almost like a simple sinusoidal distortion. Moreover,

from the saturation of the maximum modulation δmax shown in the

inset of Fig. 6.10 a solitonic picture with constant ξ can be excluded.

The amplitude δmax is observed to become constant when the distance

between the nodes of the order parameter becomes smaller than ap-

proximately 2 ξ.
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Figure 6.11: Spontaneous strain ε(H)/ε(0) in the I phase as derived from

thermal expansion (•) and magnetostriction (◦) and 〈δ2(H)〉 calculated for a

soliton lattice Eq.(6.11) (solid lines) and by DMRG (×) (see text). The Inset

compares the experimental phase diagram to the calculation of Cross [98].
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Now, according to Eq. (6.10) we compare the DMRG results for the

elastic energy with the experimentally derived values of the spontaneous

strain. The proportionality constant in Eq. (6.10) is eliminated by com-

paring ε(H)/ε(0) to Eelast(m(H))/Eelast(0). As depicted in Fig. 6.11

one finds an excellent agreement between the numerical data (×) and

experimental values (◦ ,•). For the numerical calculation the parame-

ters α = 0.35 and K0 ' 18J were used, leading to |δi| ≈ 0.014 in the

D phase. As discussed in section 5.1 this parameter set (together with

J = 160 K) is derived solely from properties in the U and the D phase.

Hence, the agreement is obtained without an additional fit parameter.

The inset compares the experimental phase diagram – in particular the

saturation of TSP (H) (upper branch) as mentioned before – to the cal-

culation of Cross [98].

The data shown in Fig. 6.11 indicate a crossover from the kink–

like modulation for low fields to a sinusoidal one for higher fields. For

H just above Hc = 12.5 T one finds a rapid decrease of ε(H). This

can be reproduced using the analytical formula for the soliton modula-

tion (6.11). The corresponding ratio 〈δ2
i (H)〉/δ2

i (0) using a correlation

length ξ = 10 sites and the experimental value ξ = 13.6 sites are dis-

played with solid lines. The observed saturation at about 1/4 for fields

higher than 20 T, however, contradicts the soliton approach (6.11) which

implies a continued decrease, whereas the saturation, is in accordance

with the sinusoidal modulation.

In summary, the field dependence of the averaged structural order

parameter extracted from the data is in excellent agreement with the re-

sults of the DMRG calculations. A description of the spatial modulation

in terms of a kink lattice is only possible quite close to the field driven

commensurate–incommensurate phase transition at HD/I = 12.5 T.

With increasing field both, the experimental as well as the numerical

data, reveal a gradual change towards a sinusoidal modulation, which

provides a good description of the distortion for fields above about 20 T.
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6.2.2 NMR Results

Further information about the microscopic couplings in the I phase is

supplied by NMR experiments. By means of the NMR line shape one

gains insight into the distribution of the local spin polarizations. In this

section the DMRG results for the local magnetizations are compared to

the experimental NMR data. First, the results for a (slightly modified)

sinusoidal modulation, are compared to the overall NMR line shape.

Second, a more detailed analysis within the self–consistent approach is

given.
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Figure 6.12: a) Sinusoidal modulation δi of a 66-site chain for α = 0.35,

δ1 = 0.033 and δ3 = −0.07 δ1.

b) Local magnetizations for the modulation pattern shown in a).

c) Effective magnetizations deduced from the data in b) by averaging with

γ = 0.19 (see text).

X-ray experiments [109] show also a third-harmonic super-lattice
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peak beside the first one. But the intensity of the latter is by far larger,

I3/I1 ∼ 1/200. Therefor{e, the incommensurate lattice distortion in

the I phase is modeled with the sinusoidal modulation (6.2), adding a

small third-harmonic contribution δ3 cos(3qri). The amplitude can be

deduced from the X-ray intensities: δ3/δ1 = −
√
I3/I1 ∼ −0.07. Here,

δ1 = 0.033 is chosen, which for α = 0.35 reproduces the gap value result-

ing from averaging the dispersion perpendicular to the chains along kb
(cf. sect. 5.1.2) [35]. The modified sinusoidal modulation with the above

parameters leads to the local magnetizations as shown in Fig. 6.12.b.

In NMR experiments the line shape of the copper nuclei is studied,

which reflects the distribution of the local magnetizations. Thereby

the spatial distribution of the 〈Szi 〉 along the chain is accessible. In a

continuous system the intensity is proportional to (∂〈Szi 〉/∂i)−1. This is

schematically indicated in Fig. 6.13, where for the sake of simplicity only

a positive 〈Szi 〉 modulation is considered. In particular the minimum

and maximum magnetizations can directly be deduced from the NMR

intensity.
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Figure 6.13: A sketch of a 〈Szi 〉 distribution (left) and the resulting NMR

line shape.

From the NMR experiment of Fagot-Revurat et al. [121]

|Szmax − Szmin| is read off to be about 0.065. This is obviously in con-

tradiction with the theoretical 〈Szi 〉 distribution shown in Fig. 6.12.b

from which |Szmax − Szmin| is read off to be about 0.26. In particular,
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Figure 6.14: NMR line shape evaluated from the distribution of the local

magnetizations displayed in Fig. 6.12.c. The internal NMR damping is σ =

0.035 T. The experimental data taken from Ref. [111] are depicted with •s.

the strongly negative part is in contradiction to the experimental find-

ings. Yet, the misfit between theory and experiment can be resolved

by considering zero-point fluctuations of phasons [111, 116]. Phasons

as gapless excitations have already been discussed in section 6.1.3.1.

They are linked to the possibility for the incommensurate distortion

to slide along the chain without any energy cost. Strictly speaking,

the energy cost is small but finite due to the discreteness of the un-

derlying lattice which might induce a pinning of the incommensurate

modulation. However, if the modulation length is large compared to

the lattice spacing an upper bound for the pinning energy is estimated

to be about 0.5 K≈ 0.003J [116]4. The dynamics of the phasons induce

oscillations of the modulation pattern. To incorporate these fluctua-

tions in the present static, adiabatic approach a certain averaging over

adjacent sites has to be performed leading to an effective polarization

〈Szi eff〉 = (1−2γ)〈Szi 〉+γ(〈Szi+1〉+〈Szi−1〉). Here, γ is used as a fit param-

eter. Yet, a quantitative study of the zero-point fluctuations yields an

estimate of γ which is in fair agreement with the fit value γ=0.19 [116].

4In a continuous medium an incommensurate modulation breaks the continuous
symmetry spontaneously, giving rise to Goldstone bosons, the so-called phasons.
Here, for large modulation lengths the phasons are quasi Goldstone bosons which
refer to the spontaneous breaking of the quasi continuous symmetry.
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The averaged distribution 〈Szi eff〉 is displayed in Fig. 6.12.c. The

data are deduced from those shown in Fig. 6.12.b with the averaging

factor γ = 0.19. Obviously, the amplitude is strongly reduced and a

mainly positive distribution is obtained5.

In Fig. 6.14 the solid line shows the theoretical NMR line shape

deduced from the 〈Szi eff〉 distribution shown in Fig. 6.12.c. To allow for

a close comparison with the experimental NMR data (•s) an internal

damping σ = 0.035 was used and the abscissa scale is converted into

magnetic field following the procedure given in Ref. [121]. Obviously a

reasonable agreement with the experimental data can be achieved.

A more detailed comparison of the magnetization distributions in

the I phase is possible on the basis of the NMR data recently obtained

in high quality experiments by Horvatic et al. [122]. There the data are

analyzed within the scope of the continuum approach. In this approach

the local magnetizations are given by the solution of the sine–Gordon

equation [92, 123] which reads:

〈Szi 〉 =
W

2

{
1

R
dn

(
ri

kmξm
, km

)
+ (−1)icn

(
ri

kmξm
, km

)}
, (6.12)

where cn and dn are Jacobi elliptic function of modulus km, i denotes

the site index, ξm is the magnetic correlation length, and W,R deter-

mine the amplitudes of the alternating and non-alternating parts. In

Ref. [122] all the constants are determined by means of the NMR results

and the average magnetization.

For low soliton concentration, i.e. for H close to Hc, the distortion

pattern can be described in terms of the Jacobi elliptic function sn as

already introduced in Eq. (6.11)

δi = (−1)i δ sn

(
ri
kdξd

, kd

)
. (6.13)

Within the self-consistent approach Eqs. (6.12),(6.13) are used to fit

the numerical results. Two different kd, km and correlation lengths ξd,

5Interestingly, the averaged distribution is remarkably similar to that obtained
in the XY limit [111]. This may lead to a misinterpretation of the experimental
results.
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ξm are introduced to improve the quality of the fits. Yet, the distortive

and the magnetic variables are expected to be equal on the basis of the

continuum approach. Fig. 6.15 shows the DMRG data for δi, 〈Szi 〉 and
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Figure 6.15: a) Local distortions: symbols stand for the self-consistent

DMRG result at K0 = 18J and α = 0.35; solid line stems from (6.13) with

δ = 0.014, kd = 0.965, and ξd = 10.1.

b) Local magnetizations: symbols denote the DMRG result; solid line stems

from (6.12) with W = 0.21, R = 5.0, km = 0.992, and ξm = 7.8.

the fits according to Eqs. (6.12),(6.13).

The values for W,R can be reconciled with the experimental re-

sults with an averaging factor of γ = 0.1875. The magnetic correlation

length of 7.8 sites is similar to the one found in the experiment for low

fields [122]. The accordance of the magnetic correlation lengths, how-

ever, does not hold for larger magnetic fields, i.e. for increasing soliton

concentration. The field dependences of the experimentally and nu-

merically derived ξm(H) are opposite. For larger fields the numerical

magnetic correlation length increases whereas the experimental one is

found to decrease [116,122].
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Obviously, the fits shown in Fig. 6.15 are very close to the numerical

data. Nevertheless, there are severe discrepancies in comparison to the

continuum field results. The most important one is the difference be-

tween the magnetic correlation length ξm = 7.8 sites and the distortive

correlation length ξd = 10.1 sites. The ratio ξd/ξm ≈ 1.3 is surprisingly

close to the experimental findings. By X-ray measurement [109], ξd was

determined to be 13.6 ± 0.3 whereas by NMR ξm was found to vary

between about 10 and 6 lattice spacings with the larger value close to

the transition [122]. However, as stated above, the field dependence

ξm(H) is opposite in comparison to the theoretical one.

Further numerical investigations show the ratio ξd/ξm to be strongly

frustration dependent. ξd/ξm varies from about 1.07 for α = 0 to 1.45

for α = 0.5. Some further details concerning the analysis of the discrep-

ancies between the numerical results and the continuum field theory and

a clue to a possible improvement of the latter is given in Ref. [124].



Chapter 7

Finite Temperatures

So far zero-temperature properties have been investigated. In the fol-

lowing chapter thermodynamic properties of frustrated, dimerized Hei-

senberg chains are considered and applied to CuGeO3 . As outlined in

chapter 3 these properties in the limit1 L→∞ are accessible by means

of the T–DMRG. Especially the study of low temperature properties is

a challenging task since the interplay of the strong quantum fluctuations

and the reduced thermal fluctuations spawns interesting physics.

7.1 General Results

In the thermodynamic limit most physical quantities are determined

by the maximum eigenvalue λ0 and the corresponding left and right

eigenvectors of the quantum transfer-matrix TM . The free energy per

site is given by f = −(T/4) lnλmax. Other quantities of interest as the

internal energy u and the magnetization m, per site respectively, are

obtained via the expectation values of the appropriate operators. Fur-

ther quantities as the entropy s, the specific heat c or the susceptibility

χ are calculated by means of derivatives. In all calculations, the results

of which are presented, 24 states are kept in the renormalization step

1Note, in contrast to the T = 0 calculations, where the system size was iteratively
increased until the bulk limit was reached, here, all results are in the thermodynamic
limit at the outset, since only the largest eigenvalue of the transfer-matrix is con-
sidered (cf. Eq. (3.6)).
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Figure 7.1: Free energy per site for α = 0.35 and δ = 0, 0.4, 0.8, 1.2, 1.6, and

2 from top to bottom. The inset shows in addition the internal energy u and

the entropy s for α = 0.35 and δ = 0.

and ε = (TM)−1 = 0.05 is chosen.

For convenience the elastic energy is neglected during the calculation

pending further notice, i.e. K0 = 0. The constant offset K0

2 δ
2 is added

later on. Exemplarily Fig. 7.1 shows the free energy f per site for

α = 0.35 (K0 = 0) and several dimerizations. In addition the global

behaviors of f , internal energy u, and entropy s are depicted in the

inset. As has to be expected for a spin-1/2 chain, f∼−T ln 2 for large

temperatures.

Clearly, increasing dimerization leads to a reduction of the free en-

ergy in the entire temperature range. This is due to the fact that the

elastic energy was set to zero. Adding the offsets K0

2 δ
2 for each dimer-

ization, in principle, the temperature dependence of the order param-

eter δ(T ) can be deduced by minimizing f(T, δ(T )). Hence, the phase

transition is directly accessible by the inspection of the free energy.

Yet, it is more accurate to compute δ(T ) by means of the expectation

value of the dimerization which is given by the derivative of the free
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energy with respect to δ

〈S1S2〉 − 〈S2S3〉 ∝
∂f(T, δ)

∂δ


K0=0

. (7.1)

For the numerical evaluation a discrete set of dimerization values is

chosen and for each δi the expectation values of the left hand side are

computed. The phase transition takes place if

(〈S1S2〉 − 〈S2S3〉)(T ) = 2δi
K0

J
. (7.2)

Two representative results for α = 0 and α = 0.35 of the resulting

order parameter, i.e. the sets {δi(T )} which are defined via Eq. (7.2),

are depicted in Fig. 7.2. The exponents at the critical temperature
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Figure 7.2: Spontaneous dimerization versus temperature for α = 0, K0 =

1.6J (circles) and α = 0.35, K0 = 2.4J (diamonds). The lines show fitted

functions of type c · (Tc − T )β with β fixed at 1/2.

TSP are close to 1/2. This had to be expected due to the mean-field

treatment of the elastic degrees of freedom. The numerical analysis,

i.e. the computation of the expectation values in Eq. (7.2), has been

performed with a step size of 0.01 for δ up to a value of 0.15 which

appears to be an upper bound for the actual δ(T = 0) for both sets of
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Figure 7.3: The symbols depict the T–DMRG results for Majumdar-Ghosh

model for the free and the internal energy (lower and upper curve, f and u,

respectively). The solid lines are fits as discussed in the text: f = −0.375 −
γ e−∆/T T 3/2 with ∆ = 0.1138, γ = 0.50 (lower curve) and u = −0.375 +

γ e−∆/T {1/2 T 3/2 + ∆T 1/2} (cf. Eq. (7.5)) with ∆ = 0.1140 and γ = 0.48

(upper curve). The fit interval was chosen to be 0.04 < T/J < 0.1. A

magnification of the relevant temperature range is shown in the inset.

parameters. The value is in agreement with the self-consistent DMRG

calculations at zero temperature. Moreover, the critical temperature as

a function of the elastic constant as well as a function of the dimerization

δ(T = 0) can be deduced from Eq. (7.2).

With the help of the T-DMRG technique the quantities f ,u, and s

can be reliably computed down to temperatures of the order of 10−2J

using the parameters given above. The ground state energy per site

in the thermodynamic limit, e0(L = ∞), can be read off directly from

the free energy (cf. Fig. 7.1). Keeping 24 states in the truncation this

procedure yields an error of the order of 10−4 in comparison to the T = 0

DMRG results. The truncation error, however, affects the free energy

least, since it is directly deduced from the maximum eigenvalue of the

transfer-matrix. The accuracy of other quantities which are obtained

by means of expectation values or derivatives is lower.
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Another quantity of interest in the low temperature regime is the

excitation gap ∆. Within the finite-temperature approach it cannot be

calculated directly. But it is accessible by fitting the T–DMRG results

for small temperatures. In one dimension a quadratic minimum in the

dispersion leads to a square root divergence of the density of states:

D(ω) =
γ√
ω −∆

+O(1) . (7.3)

Hence, for T � ∆ the partition function is given by

Z = 1 +

∫ ∞
∆

D(ω)e−ω/Tdω

= 1 + γ
√
π e−∆/T T 1/2 . (7.4)

Thus, the singular part of the free energy is proportional to e−∆/T T 3/2.

In this limit the internal energy is given by

u = e0 +

∫ ∞
∆

D(ω)ωe−ω/Tdω

= e0 + γ
√
π e−∆/T {1

2
T 3/2 + ∆T 1/2} . (7.5)

In Fig. 7.3 the free and internal energies of the Majumdar-Ghosh model

(α = 0.5, δ = 0) [18,19] are displayed together with the fits from which

the gap is deduced2.

Obviously the fit functions are well in accordance with the numer-

ical data. Surprisingly the qualitative agreement holds for temper-

atures up to about J/2. The resulting gap values 0.1138 from the

free-energy fit and 0.1140 from the internal-energy fit coincide quite

nicely. Both values depend weakly on the fit interval, which was cho-

sen to be 0.04 < T/J < 0.1 in either case. The gap values are quite

close to half of the singlet-triplet gap of the Majumdar-Gosh model

2As discussed on page 105 (appendix B) the ground state energy of the
Majumdar-Ghosh model equals 0.375J .
The last term in the expansion of the internal energy (7.5) is not systematic, since
further terms of the density of states (7.3) have to taken into account. It turns out,
however, that the quality of the fits is improved includung the term ∝ e−∆/T∆T 1/2.
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∆01/2 ≈ 0.1169 [20]. The origin of the factor 1/2 is the following. The

elementary excitations are spinons each with a gap ∆ = ∆01/2, occur-

ring, however, pairwise. Therefore, the spectroscopic data show a gap

2∆ = ∆01. For the thermodynamical data like the free or internal en-

ergy the activated behavior shows a characteristic energy corresponding

to the gap of the individual elementary excitations. Whether these oc-

cur in arbitrary numbers or restricted to even numbers does not matter,

see e.g. Ref. [125].

The quantitative determination of the gaps by fitting the above func-

tions yields reliable results only if the gap is sufficiently large. The key

problem is that the above approximation (Eqs. (7.4),(7.5)) is valid for

low temperatures (T � ∆) where the error of the T–DMRG method is

maximum.

7.2 CuGeO3

So far, in modeling CuGeO3 the low-temperature regime around TSP

(TSP/J ≈ 0.08) has been unaccessible. Earlier calculations by means

of exact diagonalization gave reliable results for temperatures down to

about 35 K(≈ 0.22J) [51]. For lower temperatures finite-size effects

become too strong and an accurate extrapolation to the bulk limit is

not possible. By applying the T–DMRG algorithm physical properties

down to T = 0.04J ∼ 6 K, well below TSP, are now accessible. This

corresponds to the temperature range commonly used in experiments.

Even lower temperatures can be reached by increasing the number of

basis states kept.

Applying the above approach to CuGeO3 , i.e. using a realistic set of

parameters, several quantities can be derived, once the order parameter

δ(T ) is determined. In the following the susceptibility and the entropy

are computed. These can directly be compared to the experimental

results.

After having fixed the frustration α to 0.35, a value which is well es-

tablished by now, the only adjustable parameter is the elastic coupling

constant K0. It is determined from the requirement of reproducing the

critical temperature of CuGeO3 . For K0 = 11J the calculated critical
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temperature is equal to the experimentally observed value TSP = 14.4 K

(see e.g. [88, 119, 126]). Both, the experimental and the theoretical
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Figure 7.4: Zero field susceptibility of CuGeO3 . Comparison of experimental

data (solid line) for the c-axis (g-factor 2.05) with the DMRG results using

K0 = 11J (circles), K0 = 10.2J (crosses). The inset shows the global behavior

of the calculated 4 susceptibility for temperatures up to 900 K.

susceptibilities are displayed in Fig. 7.4. The T-DMRG results and the

experimental data agree very well. ForK0 = 11J , however, the suscepti-

bility is systematically overestimated below TSP. Using K0 = 10.2J , the

T-DMRG results perfectly coincide with experiment also for T < TSP as

shown in Fig. 7.4. Yet, the larger value for the elastic constants implies

a transition temperature of about 15.2 K. This overestimation is a natu-

ral effect due to the applied mean-field approximation for the phonons.

Neglecting the spatial fluctuations stabilizes the ordered phase. A sim-

ilar overestimation of TSP is observed by fitting a square root behavior

to the experimentally measured order parameter [119]. Furthermore,

there is an uncertainty of about 2% in the experimental determination

of TSP (cf. [119]).

Fig. 7.5 shows the entropy s(T, δ(T )) for α = 0.35. The solid lines in-

dicate the entropy bounds derived by an analysis of the magnetic part of
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Figure 7.5: Entropy for CuGeO3 . Comparison of experimentally determined

bounds (solid lines) with DMRG results using K0 = 11J (open circles) and

K0 = 10.2J (solid diamonds).

the experimental specific heat. For temperatures above 35 K the con-

sistency with exact diagonalization results was already mentioned in

Ref. [51]. Clearly, the experimentally determined bounds are respected

also for temperatures between TSP and 35 K. Below the critical temper-

ature one observes deviations of about 5% with respect to the upper

bound for K = 11J . Decreasing the elastic constant to K = 10.2J with

the consequences stated above the bounds are respected in the entire

temperature range.

In conclusion, the T–DMRG method provides an excellent tool for

the investigation of the low temperature regime of dimerized, frustrated

spin chains. In principle the temperature dependence of any thermody-

namic quantity can be calculated down to extremely low temperatures

of the order of 10−2J .

As stated above, regarding CuGeO3 , it turns out that a spring con-

stant K0 = 11J has to be used to reproduce the experimentally ob-

served critical temperature of TSP ≈ 14.4 K, using the parameters J =

160 K, α = 0.35 as established by high temperature studies. The value
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K0 = 11J (10.2J) implies a maximum dimerization of δ(T = 0) ≈ 2.6%

(2.8%) leading to a singlet-triplet gap of ∆01 ≈ 40 K (42 K). The large

dimerization compares well with recent results of Büchner et al. [127].

They conclude a minimum dimerization of 3% based on measurements

of the pressure dependence of the exchange couplings together with the

structural distortion.

The resulting triplet gap of about 40 K is considerably larger than

the minimum experimental gap of about 25 K which was used in section

5.1 to determine the dimerization. Yet, interchain coupling has been

completely neglected so far. As a first step it could be approximately

included regarding the triplet dispersion along the b-direction. Averag-

ing the gap in b-direction yields a value of 44 K, which is quite close to

the theoretical value of 40 K (42 K) corresponding to K0 = 11J (10.2J).

Nevertheless, the above K0 values deviate notably from the elastic

constant K0 = 18J (δ(T = 0)≈ 1.3%), which was used in the previous

section for modeling several T = 0 properties.

Here, magnetic susceptibility (Fig. 7.4) and entropy (Fig. 7.5) of

CuGeO3 are almost perfectly reproduced with K = 10.2J . The slight

deviation in the value of TSP can be traced back to the mean-field treat-

ment of the lattice dimerization which overestimates transition temper-

atures.
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Chapter 8

Conclusion

8.1 Summary

The present thesis deals with the investigation of SP systems, which

is performed by a detailed analysis of dimerized, frustrated Heisenberg

chains. Based on this model a number of properties of the anorganic

SP compound CuGeO3 are discussed using the adiabatic approximation

for the phononic system.

For a thorough study of the model two related and yet complemen-

tary numerical methods are used: the DMRG [3,4] and the T-DMRG [5–

7]. They are related as both methods apply the same renormalization

concept using the density matrix [3,4] for the selection of the most im-

portant basis states. They are complementary since the DMRG method

is suitable for investigating zero-temperature properties, whereas the T-

DMRG approach covers the finite-temperature regime, however, with-

out being applicable to arbitrarily low temperatures. Both methods are

introduced in the first part of the thesis.

Having provided the numerical tools, fundamental properties of the

SP compound CuGeO3 are reviewed. Motivated by structural argu-

ments, the 1-d Hamiltonian for the spin system is set up, treating the

3-d phononic system in mean-field approximation. Whether the adia-

batic approximation of the phonons is justified or not is not clear at the

outset, however, it is indispensable for an efficient numerical treatment

of the spin-phonon system. Within this approach many experimentally
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observed features of CuGeO3 are reproduced and a remarkable agree-

ment between numerical and experimental results is obtained in several

cases. Hence, the justification of the chosen adiabatic approach can be

given a posteriori.

The first step in modeling CuGeO3 is the determination of the dimer-

ization parameter δ, using the values for the exchange coupling (J =

160 K) and the frustration (α=0.35) that are fixed in the U phase [50,

51]. A relative dimerization of δ(T )|T=0 ≈ 1.2% is found to reproduce

the experimentally observed singlet-triplet gap of about 25 K.

The internal consistency of the chosen set of parameters is verified

by the almost quantitative reproduction of the singlet-singlet energy

gap1 as measured in Raman light scattering experiments for T <TSP.

Surprisingly, the lowest singlet excitation is found to scale non-

monotonously with increasing system size. The application of the DMRG

method, however, allows to read off the gap value directly, without the

knowledge of the appropriate scaling function, as the system size can

be increased such that the thermodynamic limit is reached.

For a detailed analysis of soliton2 properties a new self-consistent

approach is set up. The self-consistency is necessary because of the

interdependence of lattice distortion and magnetic degrees of freedom

due to the spin-phonon coupling.

First, this method is applied to the investigation of doped systems.

Within the self-consistent treatment of the distortions two features of

doped CuGeO3 find a natural explanation: firstly, the observed AF or-

dering in coexistence with the SP phase [76–80], secondly, the appear-

ance of an additional peak in the Raman spectra of the doped samples

Cu1−xZnxGeO3 [58].

Here, Zn/Mg (S = 0) impurities are modeled by removing a single

spin and dissecting the spin chain, i.e. neglecting the remaining next-

nearest neighbor coupling αJ . Inserting a vacancy one singlet is broken

1The numerically derived gap is close to, but 13% below the experimental result.
Choosing a slightly larger dimerization of 1.3% both, singlet–triplet and singlet–
singlet gap are reproduced within an error of a few percent.

2To recall the terminology, in this context the entity consisting of a spinon, i.e. a
dressed free spin, and the concomitant zero in the lattice modulation is denoted as
soliton.



8.1. SUMMARY 95

since a singlet partner is lacking. The resulting spinon, i.e. the dressed

freed spin, becomes bound to a chain end as soon as elastic interchain

coupling is taken into account. However, due to its delocalization the

spin without partner affects a number of dimers. The calculation of the

resulting non-vanishing local magnetizations yields unexpectedly strong

AF correlations in large domains. Although the total magnetization is

fixed, e.g. Sz = +1/2, half of the affected spins show a considerably

negative magnetization. In a real, 3-d crystal magnetic interchain cou-

pling is likely to cause a spatial arrangement of the AF ordered domains

leading to AF long-range order, as revealed by experiments.

The appearance of an additional peak in the Raman spectra can

as well be explained within the picture outlined above. Having deter-

mined the adaptive modulation of the dopant-bound soliton, excited

states are analyzed while the modulation is kept fixed. In comparison

to the uniform dimerized case an additional singlet excitation occurs,

whereas the triplet excitations remain almost unaffected by the solitons

at the edges. The experimentally found energy of the additional singlet

excitation is, however, not reproduced. This quantitative discrepancy

can probably be attributed to magnetic interchain coupling, which is

neglected in the calculations.

Basically, there are two ways of creating solitons. One possibility is

via the insertion of impurities, as discussed above. The other possibility

is to apply an external magnetic field. For sufficiently large magnetic

fields a number of singlets are broken implying the pairwise creation of

spinons or solitons. In this high-field phase an incommensurate modu-

lation is stabilized by the Zeeman energy due to the net magnetization

of the individual spinons. The resulting soliton lattice is investigated

within further self-consistent calculations.

Measurements of the spontaneous strain ε(H), i.e. the relative length

change due to dimerization, provide some insight into the modulation

in the I phase. The experimental quantity ε(H), which is accessible

via thermal expansion and magnetostriction measurements [117–120],

is directly correlated to the average squared distortion, i.e. the elastic

energy of the modulation. Indeed, the numerically derived elastic en-

ergy as a function of the magnetic field complies perfectly well with the
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experimentally determined ε(H) of CuGeO3 . In particular the value of

the critical field Hc ≈ 12.5 T and the saturation value of about 1/4 of

the zero-field value are reproduced within the self-consistent approach

using the parameters which were determined in the U and in the D

phase solely. The numerically and experimentally observed saturation

of ε(H) for fields higher than 20 T, is in contradiction with the analyt-

ical approach commonly used (Eq. (6.11)) [92, 94–97, 114]. A kink-like

modulation with constant correlation length ξ can be excluded, due to

the observed saturation of ε(H), which comes along with the saturation

of the maximum dimerization

A more elaborate analysis of the soliton structure in the I phase is

possible on the basis of recent NMR results [122]. The calculated over-

all NMR line shape is well in accordance with the experimental result

if phasonic zero-point fluctuations are taken into account. Since only

static distortions are considered in the approach chosen, phasonic fluc-

tuations have to be included later on approximately by performing an

averaging over nearest neighbor sites. Due to the strong AF correla-

tions within the spinons the averaging leads to a considerable reduction

of the magnetization amplitudes in accordance with the experimental

results of CuGeO3 [111, 116].

A close inspection of the adaptive modulations and the correspond-

ing local magnetizations, in context with the analytical approaches,

reveals that two different correlation lengths ξm and ξd are involved in

the magnetic and the distortive structure of the solitons, respectively.

In fair accordance with the numerical result experiments provide also

evidence for the difference between both lengths [109, 122]. The field

dependence of the magnetic correlation length ξm deduced from the

NMR data [122] is, however, opposite to that of the theoretical result.

Further studies need to be conducted to clarify this point.

Besides modeling CuGeO3 , several more general aspects of dimer-

ized, frustrated spin-1/2 Heisenberg chains are investigated. These are

the gap growth, the ground state energy as a function of dimerization

and the transition to the high-field phase for dimerized, sinusoidally

modulated, and adaptively modulated chains. With respect to the first

quantities, gap growth and ground state energy, the DMRG findings
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comply well with the few known exact results and scaling relations. The

results derived in regard to the D-I phase transition are in accordance

with the discussed considerations.

The last part of the thesis is dedicated to the investigation of finite-

temperature properties. Using a variant of the T-DMRG method, the

low-temperature regime and in particular the phase transition from the

U into the D phase is studied in detail. Once the order parameter as

a function of temperature is determined by calculating the appropriate

correlation function, the susceptibility and the entropy can be com-

puted. Using the above values for the exchange coupling and the frus-

tration, which are established by several high-temperature studies, an

elastic constant K0≈11J is necessary to reproduce the experimentally

observed critical temperature of TSP ≈ 14.4 K. Results from the above

parameter set for both, susceptibility and magnetic entropy, do perfectly

agree with the experimental data [138]. There is, however, a discrepancy

regarding the parameter set, or more precisely the elastic constant, used

throughout the T = 0 calculations (∆≈ 25 K↪→ K0 = 18J). A spring

constant of K0≈11J as is to be used for T >0 corresponds to a maxi-

mum dimerization of about 2.6%. This dimerization in turn leads to a

singlet-triplet gap of about 40 K, a gap value which is almost twice as

large as the experimentally observed (minimum) gap of CuGeO3 . The

large gap, however, compares fairly well with the gap of 44 K, which is

obtained by averaging over the dispersions transverse to the chains [35].

In that sense the discrepancy in the spring constant may be, at least

partially, attributed to the neglect of magnetic interchain coupling.

In summary, within the T = 0 approach the triplet and singlet

gaps, the critical magnetic field, and the overall spontaneous strain

of CuGeO3 are quantitatively reproduced. Furthermore, several other

properties of SP systems can qualitatively be described. Furthermore,

thermodynamic quantities derived within the finite-temperature ap-

proach comply nicely with the experimental data of CuGeO3 . Regard-

ing the question of the different dimerizations (spring constants) used

in the two approaches leading to gaps of 25 K and about 40 K, it is rea-

sonable to assume that the thermodynamic properties depend strongly
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on the (larger) average gap, whereas the (minimum) singlet-triplet gap

is decisive for the properties at T =0.

8.2 Outlook

A further refinement of the self-consistent approach concerning the in-

vestigations of solitons is to consider additional magnetic interchain

coupling [128]. This could lead, for instance, to a modified field depen-

dence of the magnetic correlation length and improve the accordance

with the experiment.

Regarding the finite-temperature approach further studies and com-

parisons to experimental data of CuGeO3 are possible, such as the in-

vestigation of the pressure dependence of the critical temperature [129]

and the comparison of susceptibilities in presence of external magnetic

fields to the corresponding results of CuGeO3 . Furthermore, the calcu-

lation of the site-dependent energy-energy correlation function enables

us to calculate the U-D and the U-I phase transition. The - quasi exact

- result of the phase boundary can be compared to the approximative

result of Cross and Fisher [42], to the refined version of Klümper and

to the experimental phase diagram of CuGeO3 (cf. Fig. 4.2).
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Dynamical Properties

Dynamical properties of finite systems can be approximately derived

using the DMRG technique in combination with the continuous frac-

tion expansion of Green functions [16]. Here some results for the Ra-

man spectrum (singlet excitations) are presented. Within the standard

Loudon–Fleury theory of magnetic Raman scattering [49,130] the rele-

vant part of the Raman operator for the dimerized phase reads

HR = Λ
∑
i

(Si · Si+1 + γSi · Si+2) , (A.1)

for a scattering geometry in which the incoming and scattered photons

are polarized along the chain [53, 131]. Experimentally, essentially no

scattering is observed in other geometries. The prefactor Λ is an overall

coupling constant while the term proportional to γ arises as a conse-

quence of frustration [131,132]. The value of γ depends on microscopic

details. It is, however, expected to be of the same order of magnitude

as the frustration α due to their common microscopic origin.

The Raman excitation spectrum at T = 0 is given by the Fourier

transform of the dynamical correlation function of the Raman operator

HR, which reads

I(ω) =
∑
i

|〈i|HR|0〉|2 δ(ω − (En −E0)) (A.2)

= − 1

π
lim
η→0+

ImG(ω + iη +E0) , (A.3)
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where the sum in the first equation runs over all excited states |i〉 with

energies Ei. The ground state with energy E0 is denoted by |0〉. The

corresponding Green function, is defined by

G(z) = 〈0|H†R(z −H)−1HR|0〉 . (A.4)

Following Ref. [16], the function G(z) is expressed in terms of a con-

tinuous fraction

G(z) =
〈0|H†RHR|0〉

z − a0 −
b21

z − a1 −
b22

z − a2 −
b23

z − · · ·

, (A.5)

the coefficients an and bn can be obtained via the recursion relations

an = 〈fn|H|fn〉/〈fn|fn〉 , (A.6)

b2n = 〈fn|fn〉/〈fn−1|fn−1〉 , b0 = 0 , (A.7)

with |fn+1〉 = H|fn〉 − an|fn〉 − b2n|fn−1〉 ,
and |f0〉 = HR|0〉 .

For the evaluation of Eqs. (A.3) or (A.4) with the help of the DMRG one

must assure that the truncated Hilbert space contains also the relevant

excited states besides the ground state |0〉. According to Ref. [16] this

can be achieved by choosing appropriate target states. In this case one

may choose the first few |fn〉.
As an example Fig. A.1 displays the low energy part of the calculated

Raman ‘spectrum’ for a 40 site chain with frustration α = 0.35. The

dashed and solid curves show the excitations with dimerization δ =

0.012 and without dimerization, respectively. In both cases, 5 target

states were used, keeping m = 100 basis states for one subblock. The

resulting spectrum consists of single, well separated peaks, as was to

be expected due to the finite number of kept basis states. After the

DMRG iterations several coefficients an, b2n as defined in Eq. (A.6),(A.7)

are calculated up to n = 40. The truncated Hilbert space, however, is
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Figure A.1: Raman (singlet) excitations of a 40 site system with α = 0.35,

dimerization δ = 0.012 (dashed line) and without dimerization (solid line).

designed to present only a few excitations leading to the observed peak

structure. The calculation of a continuous spectrum is beyond the scope

of this method, however single excitations are accessible. Here, the

singlet bound state in presence of dimerization is of particular interest.

As shown in Fig. A.1 (dashed line) the appearance of the extra peak,

as is observed in Raman scattering experiments for T < TSP , can be

reproduced.

The fundamental drawback of this approach, the lack of accuracy

due to the number of target states, was overcome by T. Kühner [17] by

including the target states A|0〉, 1
z−HA|0〉 and the ground state, with

A as the operator of interest.
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Appendix B

Ground State Properties

For the ground state energy per site the scaling ansatz

e0(L) = e0(∞)− A

L2
exp

(
−L
ξ

)
(B.1)

is appropriate in order to extrapolate to the infinite chain limit L→∞
[53, 133], where e0(∞) is the energy in the thermodynamic limit and

ξ denotes the correlation length. The exponential function reflects the

gapped situation. Fitting the above function to the DMRG results as

shown in Fig. B.1 for α = 0.35 and δ = 0.012 (with periodic boundary

conditions) yields a correlation length ξ of 7.36 lattice spacings. This

value is in good agreement with the estimation of Khomskii et al. [32]

of ξ ≈ 8 sites1. It is also in accordance with the (experimental and

numerical) result for the magnetic correlation length which is derived

in context of the investigation of the NMR line shape (cf. section 6.2.2).

The inset in Fig. B.1 is included to highlight that finite size effects are

absent for L > 50.

Next we turn to the analysis of the ground state energy e0(∞) as

a function of the dimerization. The ground state energy of SP systems

is known to scale like δ4/3 for α < αc ≈ 0.2412 [46, 48] in the limit

δ → 0. This was already derived by Cross and Fisher [42] combining

1The estimate is based on the relation ξ = vs
∆

. Using, however, the spin-wave
velocity of Fledderjohann and Gros, vs = π

2
(1− 1.12α) [134], which was derived for

α < αc, as an approximation for vs(α = 0.35) yields ξ ≈ 6.
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Figure B.1: Ground state energy per site for α = 0.35 and δ = 0.012 as

function of the system length L with periodic boundary conditions. The

solid line denotes the fit corresponding to Eq. (B.1). The inset shows the

same data on a larger scale.

bosonization results with scaling relations of the polarizability. The

above relation has been rederived by Klümper on the basis of conformal

field theoretical arguments [43].

For α>αc and δ = 0 the (degenerate) ground state is spontaneously

dimerized. In presence of finite dimerization the degeneracy is lifted and

the ground state energy decreases linearly with δ. In general, for scaling

exponents less than 2 the gain in magnetic energy overcompensates the

cost of elastic energy which is proportional to δ2, independently of the

prefactors.

The DMRG results for the ground state energy per site e0(δ) con-

firm the expected scaling behavior for the magnetic energy. This is

shown in the following for α = 0, α close to αc (absence of logarithmic

corrections), and for α = 0.5, i.e. the Majumdar-Ghosh model [18].

Both degenerate ground states of the Majumdar-Ghosh model con-

sist of decoupled singlets. The singlet pairs reside on the even or on

the odd bonds. The ground state energy per site equals half the singlet

energy −3/4J . Switching on a small dimerization δ the energy of one
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Figure B.2: Ground state energy per site versus dimerization. The DMRG

results in the limit L → ∞ are depicted with diamonds for α = 0, squares

for α = 0.241 and circles for α = 0.5. The solid lines are given by − ln 2 +

1/4 −0.297 δ4/3 (one-parameter fit) for α = 0, by −0.40207 −0.503 δ4/3 (two-

parameter fit) for α = 0.241, and by −0.375− 0.375 δ (no fit) for α = 0.5.

ground state is lowered by −3/8 δ L, whereas the energy of the other

state increases. As shown in Fig. B.2 (upper curve), the expected be-

havior e0(δ, α = 0.5) = −3/8 − 3/8 δ for the ground state energy per

site is in excellent accordance with the numerical results.

The exact Bethe-ansatz result for the ground state energy of the

Heisenberg chain (α = δ = 0) is known to be − ln 2 + 1/4. Hence, the

DMRG data in Fig. B.2 are compared to a one-parameter fit: e0(δ, α =

0) = − ln 2 +1/4−c δ4/3. The fit interval was chosen to be 0 < δ ≤ 0.06.

Reasonable agreement is achieved for δ up to 0.1. For α = 0.241 the

ground state energy is not known exactly. Thus, a two-parameter fit

e0(δ, α = 0.241) = e0 −c δ4/3 and the same fit interval as before is used.

The scaling relation is also fulfilled for δ less than about 0.1.

In conclusion, the DMRG results in the sub- and supercritical frus-

tration regime are well in accordance with the few known exact results

and with the expected scaling relations.
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Appendix C

Spinon Potential

Following the approach presented in Ref. [61] the confining potential

of two spinons can be calculated by applying the ideas of Talstra et

al. [135, 136]. These authors have shown that a spinon state can be

generated to 98% overlap by inserting a single spin in a Heisenberg

chain which is otherwise in its ground state. Thus, in the case of two

spinons one may assume that the system between both spinons is in its

undimerized ground state which is the ground state of a finite segment

with open boundary conditions. One has to calculate the expectation

value of the dimerization operator HD in this undimerized ground state

in order to obtain an estimate for the interaction potential. However,

since one is interested in the expectation value of HD with respect to

the bulk limit the bulk value 〈HD〉 has to be subtracted leading to [61]

H ′D(L) =
L∑
j=1

(−1)j(~S2j−1
~S2j − 〈~S1

~S2〉bulk) . (C.1)

Switching on a small dimerization δ, the potential energy of the two

spinons with mutual distance L is proportional to H ′D(L) δ. The results

for 〈H ′D〉 for three different frustrations are shown in Fig. C.1. One

clearly observes a sublinear increase of 〈H ′D〉 with the chain length.

Without frustration (α = 0) a square root power law fits the data

perfectly if a small offset on the x-axis is taken into account. For larger

frustration larger exponents yield better fits. The inset, however, shows
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Figure C.1: Expectation value of H ′D as explained in the text for three

values of α. The solid lines are square root fits ∝
√
L− 1.5. The offset

1.5 is chosen for improvement of the fits. The dashed lines are power law

fits ∝ (L− 1.5)β with the exponents 0.544 (α = 0), 0.630 (α = 0.241),

and 0.804 (α = 0.35). Inset: Square of the same data for longer chains.

that for longer chain lengths (L > 50), the square root behavior is

recovered for α ≤ αc which can be seen from the linear behavior of the

squared values. The frustration value α = 0.35 is included to show that

for this value relatively close to the critical value αc a linear behavior

〈H ′D〉 ∝ L cannot be seen for L ≤ 50.

So the conjecture of a square root confining potential for lower frus-

trations is corroborated by the direct DMRG calculations. Now one can

set up the spinon Hamiltonian as in the case of supercritical frustration
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(cf. Eq. (5.2)), but with two crucial modifications. First, one has to

consider a linear kinetic energy due to the absence of a gap. Second, a

square root potential has to be regarded as shown above. Rescaling of

the spatial variable immediately yields that all the energies scale with

δ2/3.
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Zusammenfassung

Die vorliegende Arbeit besch�aftigt sich mit der { vornehmlich nume-

rischen { Untersuchung von Spin-Peierls (SP)-Systemen. Insbesondere

steht die theoretische Beschreibung der SP-Substanz CuGeO3 im Mit-

telpunkt. CuGeO3 wurde 1993 von Hase et al. [1] als erste anorganische

SP-Verbindung identi�ziert. Der Phasen�ubergang von der ungeordneten

(U) Phase in die dimerisierte (D) Phase bei einer �Ubergangstemperatur

von 14.4 K manifestiert sich experimentell u.a. in der rapiden Abnah-

me der Suszeptibilit�at [1] sowie in der Verdoppelung der Einheitszelle

in Kettenrichtung [108].

Seit der Entdeckung von CuGeO3 als anorganische SP-Substanz ist

diese Verbindung Gegenstand einer Vielzahl von sowohl experimentel-

len als auch theoretischen Untersuchungen. Aus experimenteller Sicht

zeichnet sich CuGeO3 durch die M�oglichkeit der Synthetisierung re-

lativ gro�er, qualitativ hochwertiger einkristalliner Proben aus. Dies

erm�oglicht die Anwendung der ganzen Bandbreite experimenteller Me-

thoden.

Hinsichtlich der theoretischen Beschreibung wird das rege Interesse

an CuGeO3 auch durch die vorwiegend eindimensionale (1-d) Struktur,

den kettenf�ormigen Aufbau, gef�ordert, da eindimensionaleModelle ana-

lytisch und numerisch wesentlich leichter handhabbar sind als solche in

h�oheren Dimensionen.

Die in der vorliegenden Arbeit pr�asentierten numerischen Ergebnis-

se sind mit Hilfe der sogenannten Dichtematrix-Renormierungsgruppe

(DMRG) [3,4] erzielt worden. Bei diesem 1992 von White entwickelten

Verfahren handelt es sich um einen besonders e�zienten Algorithmus
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zur Untersuchung ein- bzw. niedrigdimensionaler Modelle.

Aufgrund des seit 1993 durch CuGeO3 allgemein wiedererweckten

Interesses an SP-Systemen und der Entwicklung des DMRG-Verfahrens

ein Jahr zuvor sowie aufgrund der in beiden F�allen ausschlaggebenden

Eindimensionalit�at ist die Kombination beider, d.h. die Anwendung des

DMRG-Verfahrens zur Untersuchung der SP-Phase, in gewisser Weise

naheliegend. Dies bildet den thematischen Schwerpunkt der vorliegen-

den Arbeit.

Die wesentlichen Grundz�uge der DMRG-Methode werden in Kapi-

tel zwei vorgestellt. Hier werden unter anderem das Renormierungs-

konzept, die Relevanz der Dichtematrix in diesem Zusammenhang und

der daraus abgeleitete Algorithmus erl�autert. Des weiteren �nden sich

hier Beispiele zur erzielten Genauigkeit und einige Implementierungs-

details wie etwa die Hierarchie der verwendeten Klassen und Angaben

zur Speicherung und Diagonalisierung der auftretenden d�unnbesetzten

Matrizen etc.

Eine wesentliche Erweiterung des urspr�unglichen DMRG-Zugangs

besteht aus der Kombination des DMRG-Konzepts mit der Methode der

Transfermatrizen. Dies erm�oglicht die Berechnung thermodynamischer

Potentiale und verschiedener Korrelationsfunktionen im thermodyna-

mischen Limes als Funktion der Temperatur. Auf das Transfermatrix-

DMRG (T-DMRG)-Verfahren wird im dritten Kapitel n�aher eingegan-

gen. F�ur die Anwendung dieses Verfahrens ist, im Gegensatz zu dem

oben erw�ahnten DMRG-Verfahren, die Translationsinvarianz des Ha-

miltonoperators essentiell, was im vorliegenden Fall durch die Gruppie-

rung von je zwei Spins zu einer Einheitszelle erreicht wird.

Damit sind die methodischen Grundlagen f�ur die angestellten nu-

merischen Berechnungen gelegt.

Im folgenden Kapitel wird zun�achst der strukturelle Aufbau des an-

organischen SP-Materials CuGeO3 erl�autert und die Ableitung des ver-

wendeten Hamiltonoperators skizziert. Motiviert durch die kettenf�ormi-

ge Struktur werden die magnetischen Freiheitsgrade im Rahmen eines

eindimensionalen Modells, der dimerisierten, frustrierten Spin- 1
2 Hei-

senbergkette, beschrieben. Das eindimensionale Spinsystem ist an das

dreidimensionale Phononensystem gekoppelt. Die Spin-Phonon-Kopp-
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lung impliziert eine abstandsabh�angige Austauschwechselwirkung zwi-

schen zwei benachbarten Spins, die zur Ausbildung der SP-Phase f�uhrt.

Die magnetische Energie kann hierbei durch die Formation von soge-

nannten Dimeren, Singulettpaaren benachbarter Spins, abgesenkt wer-

den. Der magnetische Energiegewinn ist proportional zu δ4/3, wobei δ

die �Anderung der Austauschwechselwirkungen beschreibt [42,43]. Auf-

grund der Spin-Phonon-Kopplung impliziert die sich einstellende alter-

nierende Wechselwirkung Auslenkungen der entsprechenden Kupferio-

nen aus ihren Gleichgewichtslagen. Der mit den Auslenkungen verbun-

dene Energieaufwand ist jedoch nur von der Ordnung δ2, wird also von

dem magnetischen Energiegewinn �uberkompensiert.

Um das Modell mit den oben erw�ahnten Methoden numerisch be-

handeln zu k�onnen, werden die Phononen im Rahmen der Molekularfeld-

N�aherung beschrieben. Man geht also von statischen Auslenkungen der

Kupferionen aus. Diese N�aherung ist nicht unumstritten, da sie hier

nicht durch das Auftreten unterschiedlicher Energieskalen, wie es etwa

bei den organischen SP-Materialien der Fall ist, gerechtfertigt ist. In der

vorliegenden Arbeit kann die Rechtfertigung f�ur den gew�ahlten Zugang

jedoch a posteriori gegeben werden, da sich in diesem Rahmen eine

Vielzahl von experimentellen Beobachtungen zwanglos erkl�aren l�a�t.

Zun�achst l�a�t sich die Grundzustandsenergie und die Singulett-Trip-

lett-L�ucke generell als Funktion der Dimerisierung f�ur verschiedene Fru-

strationen analysieren, unabh�angig von der Modellierung eines realen

SP-Systems. F�ur verschwindende Dimerisierung sind zwei F�alle zu un-

terscheiden: F�ur unterkritische Frustration, α ≤ αc
1, liegt ein unge-

ordneter Grundzustand und ein l�uckenloses Anregungskontinuum vor.

Im Falle �uberkritischer Frustration, α > αc, besitzt das System eine

Anregungsl�ucke. Die Symmetrie des zweifach entarteten Grundzustan-

des ist spontan gebrochen, und es liegt langreichweitige Dimerordnug

vor. Bei endlicher Dimerisierung δ ist die Entartung des Grundzustan-

des aufgehoben, und es existiert eine endliche Anregungsl�ucke (vergl.

Phasendiagramm auf Seite 38).

Das gefundene Verhalten f�ur die Grundzustandsenergie bei kleiner

- aber endlicher - Dimerisierung δ stimmt mit den analytischen Resul-

1αc ≈ 0.2412 [46–48]
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taten e0(δ) ∝ δ4/3 [42, 43] f�ur α ≤ αc bzw. e0(δ) ∝ δ f�ur α > αc gut

�uberein2.

F�ur die Singulett-Triplett-L�ucke ∆01 �ndet man sowohl im Fall un-

terkritischer als auch im Fall �uberkritischer Frustration dieselbe funk-

tionale Abh�angigkeit ∆01 ≈ ∆0(α) + aδν , wobei ν ≈ 2/3 und ∆0(α ≤
αc) = 0. Die gefundene Abh�angigkeit l�a�t sich in beiden F�allen im Rah-

men des sogenannten Spinonenbildes qualitativ verstehen. Spinonen

sind die elementaren Anregungen von schwach dimerisierten antifer-

romagnetischen Heisenbergketten. Ein Spinon hat Spin S= 1
2 und ent-

spricht einer Dom�anenwand, also einem Wechsel zwischen zwei m�ogli-

chen Zust�anden (hier zwischen zwei Dimerisierungsmustern, vergleiche

z.B. Skizze auf S. 47). Die Triplett-Anregung l�a�t sich nun als Paar zwei-

er gebundener S= 1
2 -Spinonen auffassen [61, 62]. Mit der Kenntnis der

Abstandsabh�angigkeit des Bindungspotentials V (l) ∝ l und V (l) ∝
√
l

(vergleiche Anhang C) f�ur α > αc bzw. α < αc ergibt sich im Kontinu-

umslimes obige numerisch gefundene Abh�angigkeit ∆01(δ).

Nachdem die Abh�angigkeit niedrigliegender Anregungen von Fru-

stration und Dimerisierung analysiert wurde, werden die Modellpara-

meter durch den Vergleich mit experimentellen Daten von CuGeO3 �-

xiert. Die Austauschwechselwirkung J und die relative Frustration α

lassen sich durch Anpassen der berechneten magnetischen Suszepti-

bilt�at an die experimentellen Daten in der U-Phase bestimmen [48,

50, 51]. Allen Rechnungen im Zusammenhang mit CuGeO3 liegen im

weiteren die in den Arbeiten [50,51] ermittelten Werte, J ≈ 160K und

α ≈ 0.35, zugrunde3.

Der noch nicht bestimmteModellparameter, die Dimerisierung, wird

anhand der Singulett-Triplett-L�ucke �xiert. Diese ist experimentell in

Neutronenstreuexperimenten zug�anglich [33, 34]. Numerisch l�a�t sich

die L�ucke mit Hilfe der DMRG bestimmen. F�ur eine Dimerisierung

von ca. 1.3% ergibt sich gute �Ubereinstimmung mit dem experimentell

2Die lineare Abhängigkeit im Falle überkritischer Frustration ergibt sich aus
führender Ordnung Störungsrechnung.

3Spätere Kontrollrechnungen mit Hilfe der T-DMRG-Methode bestätigen die in
Ref. [50,51] mittels exakter Diagonalisierung ermittelten Werte. Unter Verwendung
dieser Werte erhält man für die magnetische Suszeptibilität eine nahezu perfekte
Übereinstimmung zwischen Experiment und Theorie.
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bestimmten Wert von 25K. Somit sind alle Modellparameter festgelegt.

Es stellt sich nun die Frage, wie diese Werte unabh�angig von de-

ren Ableitung �uberpr�uft werden k�onnen. Man �ndet, da� die Konsi-

stenz des oben ermittelten Parametersatzes durch Vergleich der dar-

aus resultierenden Singulett-Singulett-L�ucke mit der experimentell mit-

tels Raman-Spektroskopie bestimmten entsprechenden L�ucke veri�ziert

werden kann4.

Die DMRG-Methode eignet sich hervorragend zur Bestimmung der

ben�otigten L�ucken, da Spinketten von ein- bis zweihundert Spins mit

vertretbarem numerischenAufwand berechnet werden k�onnen. Die Ener-

gien des Grundzustands und niedrig angeregter Zust�ande im thermo-

dynamischen Limes k�onnen aufgrund der zug�anglichen Systemgr�o�en

direkt, d.h. ohne Extrapolation, abgelesen werden. Dieser Vorteil zeigt

sich besonders bei der Berechnung der Singulett-Singulett-L�ucke. Das

hier gefundene nicht-monotone Verhalten der L�ucke als Funktion der

Systemgr�o�e �uberrascht. Eine Extrapolation der Ergebnisse von klei-

nen Systemen (L . 28), die mittels exakter Diagonalisierung (ED) be-

handelt werden k�onnen, w�urde hingegen die genaue Kenntnis der Ex-

trapolationsfunktion erfordern, die hier a priori jedoch nicht bekannt

ist.

Weitere interessante Aspekte ergeben sich bei Analyse und theore-

tischer Beschreibung dotierter SP-Materialien. Hier liegt der Modell-

bildung die Annahme zugrunde, da� die betrachteten S = 0{Verun-

reinigungen nahezu eine Unterbrechung der Ketten bewirken5. Durch

Einf�ugen einer S = 0-Verunreinigung, also einer Leerstelle, verliert ein

Spin seinen `Singulettpartner', und es entsteht ein mehr oder minder

bewegliches S= 1
2 -Spinon. Die Aufenthaltswahrscheinlichkeit eines Spi-

nons ergibt sich aus den lokalen Magnetisierungen 〈Szi 〉. Die maximale

lokale Magnetisierung geht mit der Unterdr�uckung der Gittermodula-

tion einher. F�ur das resultierende Objekt, bestehend aus Spinon und

Nullstelle der Gittermodulation, wird hier der Terminus Soliton ver-

4Mit dem oben angegebenen Wert für die Dimerisierung können beide, Triplett-
und Singulettlücke, bis auf wenige Prozent reproduziert werden.

5Numerische Rechnungen (ED) zeigen, daß diese Näherung für nicht zu große
Frustration gerechtfertigt ist [87].
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wendet.

Die Struktur des Solitons sowie dessen Bindung an das durch die

Leerstelle verursachte Kettenende sind Gegenstand der numerischen

Untersuchungen.

F�ur die sich einstellende Bindung sind zwei konkurrierende E�ekte

von ausschlaggebender Bedeutung. Zum einen wird die Energie einer

Heisenbergkette durch eine starke Korrelation der Randspins 〈~S0
~S1〉

an einem o�enen Kettenende abgesenkt. Das hat zur Folge, da� der

ungepaarte Spin vomKettenende weg in die Kettenmitte gedr�angt wird.

Dadurch f�allt dem freien Spin nur ein schw�acherer bond der Kettenmitte

zum Opfer.

Zum anderen wird aber jeder Kette ein Dimerisierungsmuster auf-

grund der Nachbarketten vorgegeben6. Da der freie Spin mit einer

Dom�anenwand, d.h. mit dem Umklapp des Dimerisierungsmusters, ein-

hergeht, hat zwangsl�au�g ein Teil der Kette eine bez�uglich der Nach-

barketten energetisch ung�unstige Dimerisierung. Um den Energiever-

lust aufgrund des falsch ausgerichteten Kettenteils zu minimieren, wird

der ungepaarte Spin in Richtung eines der Kettenenden gedr�angt. Das

Wechselspiel beider E�ekte f�uhrt zur Bindung des Spinons in der N�ahe

eines Kettenendes. Die Aufenthaltswahrscheinlichkeit kann in Abh�angig-

keit der verschiedenen Modellparameter mittels DMRG berechnet wer-

den. Ergebnisse, die im Rahmen der Kontinuumsn�aherung erzielt wur-

den, stehen mit diesen numerischen Resultaten qualitiv gut in Ein-

klang [61].

Die hier numerisch gefundene Bindung des Solitons beinhaltet die

M�oglichkeit von zus�atzlichen ∆S = 0{Anregungen. Eine solche kann

in der Tat sowohl numerisch als auch experimentell in Zn-dotiertem

CuGeO3 gefunden werden [58]. Eine quantitative Reproduktion der ex-

perimentell gefundenen Anregungsenergie ist, vermutlich aufgrund der

Vernachl�assigung von magnetischer Zwischenkettenkopplung, jedoch

nicht m�oglich.

Bemerkenswert sind auch die starken antiferromagnetischen (AF)

Korrelationen, die den Aufenthaltsbereich eines Spinons bzw. eines So-

litons kennzeichnen. Die AF Bereiche bieten im Zusammenhangmit ma-

6Ausschlaggebend hierfür ist die elastische Zwischenkettenkopplung.
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gnetischer Zwischenkettenkopplung eine nat�urliche Erkl�arungsgrundla-

ge f�ur die in dotiertem CuGeO3 gefundene langreichweitige AF Ord-

nung [76{78].

Weiterhin werden Eigenschaften von SP-Systemen in Anwesenheit

eines �au�eren magnetischen Feldes eingehend untersucht. Zun�achst wer-

den allgemeine Ergebnisse bez�uglich des Phasen�ubergangs von der D- in

die inkommensurable (I)-Phase, die oberhalb eines kritischen Magnet-

feldes auftritt, vorgestellt. Hierzu werden drei verschiedene Szenarien

betrachtet:

Zun�achst wird eine feste Dimerisierung angenommen und die Ma-

gnetisierung m(H) als Funktion des anliegenden Magnetfeldes berech-

net. Oberhalb des kritischen Feldes (= Singulett{Triplett{L�ucke) �ndet

man eine stetig ansteigendeMagnetisierung. Bemerkenswert ist die Aus-

bildung eines Plateaus bei m = 1/4 in bestimmten Parameterbereichen

der Dimerisierung und der Frustration. F�ur das hier untersuchte Modell

wurde das Auftreten dieses Plateaus bereits kurz zuvor von Tonegawa et

al. [101] gefunden und steht vermutlich mit dem Lieb{Schultz{Mattis{

Theorem in Zusammenhang [102{104].

Um den in elastischer R�ontgenstreuung beobachteten inkommen-

surablen Gitterverzerrungen in CuGeO3 [108{110] Rechnung zu tra-

gen, wird des weiteren eine sinusoidale Modulation der Austausch-

wechselwirkung betrachtet. Zun�achst kann der erwartete Zusammen-

hang zwischen dem Modulationsparameter q und der Magnetisierung,

q = π(1 + 2m), numerisch eindeutig best�atigt werden. Unter Verwen-

dung dieser Beziehung wird wiederum die Magnetisierung m(H) be-

rechnet. Diese zeigt einen betr�achtlichen Sprung bei der kritischen Ma-

gnetfeldst�arke Hc. Die sinusoidale Modulation f�uhrt also zu einem Pha-

sen�ubergang erster Ordnung.

Die sinusoidale Modulation stellt nat�urlich nur eine n�aherungsweise

Beschreibung der I-Phase dar. In den oben angegebenen experimen-

tellen Arbeiten zeigt sich, da� auch h�ohere Harmonische zur Gitter-

verzerrung bzw. zur Modulation beitragen. Am zuverl�assigsten l�a�t

sich die energetisch g�unstigste Modulation, die sich bei einer bestimm-

ten Magnetisierung einstellt, mittels eines selbstkonsistenten iterati-
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ven Zugangs berechnen7. Die ortsabh�angigen �Anderungen der Aus-

tauschwechselwirkungen δi lassen sich durch Minimierung der Energie

〈Ĥ({δi})〉 iterativ bestimmen. Somit k�onnen sich die N�achstnachbar-

Wechselwirkungen unter Ber�ucksichtigung der lokalen elastischen Ener-

gien (∝ δ2
i ) vollst�andig an das Spinsystem anpassen, weswegen im wei-

teren der Terminus adaptive Modulation verwendet wird.

Im Rahmen dieser Arbeit wird der selbstkonsistente Ansatz, der

in diesem Zusammenhang in Ref. [90] eingef�uhrt wurde, erstmalig mit

dem DMRG-Verfahren, welches die Berechnung der Erwartungswerte

f�ur gro�e Spinsysteme erm�oglicht, kombiniert. Die hohe Genauigkeit

dieses Zugangs zeigt sich durch Vergleich von DMRG-Resultaten f�ur

das unfrustrierte XY-Modell mit entsprechenden Daten, die mit Hilfe

einer Kettenbruchentwicklung berechnet wurden [111].

Unter Verwendung der adaptiven Modulation ergibt sich ein Pha-

sen�ubergang zweiter Ordnung. Die Ordnung des Phasen�uberganges so-

wie der sich ergebende steile Anstieg der Magnetisierung f�ur Magnet-

felder kurz oberhalbHc l�a�t sich qualitativ durch die Lokalit�at der Spi-

nonen in Verbindung mit einer absto�enden Wechselwirkung erkl�aren.

In diesem Zusammenhang wird auch eine modi�zierte elastische

Energie betrachtet, die zus�atzlich Terme der Form δiδi+1 enth�alt. Auf-

grund der zus�atzlichen Energieterme, die eine sinusoidale Dispersion

der elastischen Konstanten implizieren, werden h�ohere Harmonische der

Gittermodulation unterdr�uckt. Man erh�alt eine zunehmend sinusf�ormi-

ge Modulation. Der zu erwartende E�ekt, da� sich bei gen�ugend gro�er

Beimischung der N�achstnachbarterme ein Phasen�ubergang schwach er-

ster Ordnung ergibt8, kann numerisch best�atigt werden. Dies ist ein

interessantes Szenario f�ur den experimentell gefundenen Phasen�uber-

gang in CuGeO3 , der auch nur schwach erster Ordnung ist.

Schlie�lich werden auch L�ucken als Funktion der Magnetisierung in

der adaptiv modulierten I-Phase untersucht, mit dem Ergebnis, da� sol-

7Dieser selbstkonsistente Zugang wurde auch schon bei der Modellierung der
dotierten Systeme angewandt, um die Modulation der Austauschwechselwirkungen
in der Umgebung der Verunreinigung bzw. der Leerstelle zu bestimmen.

8‘Schwach erster Ordnung’ bedeutet in diesem Zusammenhang, daß nur ein rela-
tiv kleiner Sprung in der Magnetisierung auftritt.
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che L�ucken f�ur festgehaltene Modulation existieren. Die Relevanz dieser

L�ucken f�ur reale Systeme ist bislang noch unklar; eine experimentelle
�Uberpr�ufung steht noch aus.

In bezug auf CuGeO3 kann die experimentell bestimmte spontane

Verzerrung9 ε(H) mit entsprechenden DMRG-Daten verglichen wer-

den. Die spontane Verzerrung beschreibt die relative L�angen�anderung

der Probe aufgrund der Dimerisierung. Diese l�a�t sich mit der elasti-

schen Energie einer modulierten Kette in Beziehung setzen, die wieder-

um im Rahmen der selbstkonsistenten DMRG-Rechnungen zug�anglich

ist. Der Vergleich beider Datens�atze ergibt eine exzellente �Ubereinstim-

mung zwischen Experiment und Theorie [137] { ohne Anpassung von

zus�atzlichen Parametern. Alle Modellparameter sind zuvor in der U-

bzw. in der D-Phase �xiert worden. Die selbstkonsistent bestimmten

Verzerrungsmuster zeigen einen �Ubergang von einer stufenf�ormigenMo-

dulation zu einer sinusoidalen Modulation. Insbesondere steht die so-

wohl experimentell als auch theoretisch gefundene S�attigung von ε(H)

f�ur Magnetfelder oberhalb von 25T mit dem gebr�auchlichen analyti-

schen Solitonzugang [92, 94, 97] im Widerspruch und schr�ankt daher

dessen Anwendbarkeit auf Felder nahe des �Ubergangsfeldes ein.

Mittels NMR-Experimente sind detaillierte Informationen �uber die

H�au�gkeitsverteilung der lokalenMagnetisierungen der Kupferionen un-

mittelbar zug�anglich. Lokale Magnetisierungen k�onnen auch im Rah-

men des verwendeten Zugangs nach der selbstkonsistenten Bestimmung

der adaptiven Modulation berechnet werden. Der direkte Vergleich bei-

der Datens�atze liefert zun�achst eine frappierende Diskrepanz: Die ex-

perimentell bestimmte maximale Amplitude der lokalen Magnetisie-

rungen ist um einen Faktor vier kleiner als der theoretisch ermittelte

Wert. Diese Diskrepanz kann jedoch durch die im statisch modulierten

Modell nicht enthaltenen Nullpunktsschwingungen sogenannter Phaso-

nen erkl�art werden [111,116]. Phasonen sind l�uckenlose Anregungen im

Spin-Phonon-System und entsprechen Oszillationen des Modulations-

musters bzw. des Solitongitters, �ahnlich wie Phononen den Oszillatio-

9Die Verzerrung als Funktion des angelegten Magnetfeldes läßt sich mittels
Experimenten zur thermischen Ausdehnung und zur Magnetostriktion bestim-
men [117–120].
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nen der Atome in einem Gitterverband entsprechen. Eine n�aherungs-

weise Ber�ucksichtigung der phasonischen Oszillationen f�uhrt zu einer

Mittelung der lokalen Magnetisierungen benachbarter Pl�atze. Aufgrund

der ausgepr�agten AF Korrelationen in der N�ahe eines Solitons hat dies

eine drastische Reduktion der Magnetisierungsamplitude zur Folge. Die

Gr�o�e des zu verwendendenMittelungsparameters kann unabh�angig be-

stimmt werden und f�uhrt zu einer guten �Ubereinstimmung zwischen

Theorie und Experiment.

Ein weiteres zentrales Resultat der Analyse von Gittermodulation

und zugeh�origer lokaler Magnetisierung ist das Auftreten von unter-

schiedlichen Korrelationsl�angen. F�ur den gefundenen Unterschied zwi-

schen magnetischer und distorsiver Korrelationsl�ange gibt es auch ex-

perimentelle Hinweise in CuGeO3 . Die mittels NMR-Experimente ge-

wonnene Absch�atzung [122] der (magnetischen) Korrelationsl�ange be-

tr�agt nur ca. 70% des Wertes, den man aus R�ontgenstreuexperimen-

ten erh�alt [109]. Dies stimmt mit den numerisch berechneten Korre-

lationsl�angen recht gut �uberein. Allerdings kann die von Horvatic et

al. [122] experimentell gefundene Magnetfeldabh�angigkeit der magneti-

schen Korrelationsl�ange nicht reproduziert werden.

W�ahrend in den bisher besprochenen Teilen der Arbeit ausschlie�-

lich T =0-Eigenschaften diskutiert werden, befa�t sich der verbleibende

Teil mit Eigenschaften von SP-Systemen bei endlicher Temperatur. Ins-

besondere der Niedertemperaturbereich ist von gro�em Interesse. Hier

ist die Physik durch das Wechselspiel der reduzierten thermischen und

der in einer Dimension besonders gro�en quantenmechanischen Fluk-

tuationen bestimmt. Mit Hilfe des verwendeten T-DMRG-Verfahrens

k�onnen innere Energie, Entropie, magnetische Suszeptibilit�at und die

freie Energie im thermodynamischen Limes als Funktion der Tempera-

tur bestimmt werden. Diese Gr�o�en werden mit abnehmender Tempera-

tur berechnet und k�onnen mit der verwendeten Methode bis zu Tempe-

raturen von ca. 4 ·10−2J(≈ 6K) verl�a�lich bestimmt werden. Das hei�t,

der Phasen�ubergang in die SP-Phase, also der Anstieg des Ordnungs-

parameters und die Abnahme der Suszeptibilit�at bzw. der Entropie im

thermodynamischen Limes, ist somit erstmalig rechnerisch zug�anglich.

Aus der freien Energie oder mittels der direkten Berechnung des
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Dimerisierungserwartungswertes l�a�t sich der Ordnungsparameter δ(T )

als Funktion der Temperatur bestimmen. F�ur festgehaltene Frustration

(α=0.35) ist der andere freie Modellparameter, die elastische Konstan-

te K0, durch die experimentell bestimmte �Ubergangstemperatur von

14.4K [88, 119, 126] festgelegt. Mit dem so gewonnenen Parametersatz

und dem Ordnungsparameter wird dann die Suszeptibilit�at χ(T, δ(T ))

in Abh�angigkeit der Temperatur und δ(T ) bestimmt. Das Resultat steht

in hervorragender �Ubereinstimmung mit der experimentellen Suszepti-

bilit�at10 von CuGeO3 [138]. Au�erdem kann die numerisch ermittelte

Entropie S(T, δ(T )) mit den experimentellen Schranken, die sich aus

der Integration der magnetischen spezi�schen W�arme nach Subtrakti-

on des Phononenbeitrags ergeben, verglichen werden. Auch hier �ndet

man hervorragende �Ubereinstimmung. Insgesammt stehen also auch die

Resultate bei endlichen Temperaturen mit den experimentellen Ergeb-

nissen von CuGeO3 sehr gut in Einklang.

Abweichungen ergeben sich jedoch bei der Bestimmung der Feder-

konstantenK0. W�ahrend man im Rahmen des T =0-ZugangsK0 = 18J

erh�alt, was einer maximalen Dimerisierung von ca. 1.3% entspricht,

bedingt die Reproduktion der �Ubergangstemperatur von 14.4K einen

Wert von K0 ≈ 11J . Die kleinere elastische Konstante f�uhrt zu einer

Vergr�o�erung der Dimerisierung, die sich bei T = 0 nun zu ca. 2.6%

ergibt. Dies impliziert eine Singulett{Triplett-L�ucke ∆01 von nahezu

40K. Die L�ucke weicht also frappierend von dem zun�achst, in Kapi-

tel vier, verwendeten Wert von 25K ab. Es ist jedoch zu bedenken,

da� magnetische Zwischenkettenkopplung, die sich in CuGeO3 in der

gemessenen Dispersion entlang der b-Richtung senkrecht zur Ketten-

richtung manifestiert [34], bisher noch nicht ber�ucksichtigt wurde. Dies

k�onnte n�aherungsweise geschehen, indem man anstatt der minimalen

experimentellen Singulett{Triplett{L�ucke eine �uber die Dispersion in

b-Richtung gemittelte L�ucke verwendet [35]. Die gemittelte L�ucke von

ungef�ahr 44K vergleicht sich recht gut mit dem theoretischen Wert von

40K, welchen man mit K0 ≈ 11J erh�alt. Zudem erscheint es durch-

aus plausibel, da� thermodynamische Eigenschaften st�arker von einer

10Beide Suszeptibilitäten wurden im Nullfeld bestimmmt. Vergleiche bei endlichen
Magnetfeldern sind in Vorbereitung.
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mittleren L�ucke als von der minimalen L�ucke abh�angen, w�ahrend die

minimale L�ucke bei sehr niedrigen Temperaturen, also im Rahmen des

T =0-Zugangs, ausschlaggebend ist. Es ist also davon auszugehen, da�

die Diskrepanz der elastischen Konstanten zumindest teilweise auf Zwi-

schenkettenwechselwirkung zur�uckgef�uhrt werden kann.

Im Rahmen des gew�ahlten Zuganges ist die adiabatische Behand-

lung des Phononensystems neben der Vernachl�assigung der Zwischen-

kettenkopplung die zweite wesentliche N�aherung. Wie bereits erw�ahnt,

ist die adiabatische, statische Behandlung der Gitterfreiheitsgrade hier

nicht von vornherein gerechtfertigt. Der Grund f�ur die gemachte N�ahe-

rung ist eher pragmatischer Natur: Das Spin-Phonon-System soll mit

den vorgestellten e�zienten numerischen Methoden untersucht werden

k�onnen.

Eine analytische nichtadiabatische Behandlung des Phononensys-

tems hat im antiadiabatischen Limes, also im Grenzfall sehr schneller,

energiereicher Phononen, vor allem zwei Konsequenzen f�ur das resultie-

rende e�ektive Spinmodell. Zum einen f�uhrt die Spin-Phononkopplung

zu l�angerreichweitigen Spinwechselwirkungen, insbesondere zur �Uber-

n�achstnachbar-Wechselwirkung, also zu Frustration [124,139]. Zum an-

deren treten durch Ausintegration der Phononen temperaturabh�angige

Kopplungen auf [124,139,140]. Da es sich bei der Frustration um einen

marginalen Operator handelt, der also erst ab einer gewissen St�arke zur

spontanen Dimerisierung f�uhrt, ist zu erwarten, da� Dimerisierung erst

oberhalb einer gewissen Spin-Phonon-Kopplungsst�arke gc auftritt. Dies

kann in numerischen Studien best�atigt werden [141,142].

Die numerischen Rechnungen unter Ber�ucksichtigung von Phonon-

Fluktuationen zeigen den nicht zu vernachl�assigenden Ein
u� der Pho-

nondynamik �uber die Tatsache eines endlichen gcs hinaus. Da� eine

statische Dimerisierung mitunter mit experimentellen Ergebnissen un-

vereinbar ist, zeigt sich auch im Rahmen der vorliegenden Arbeit bei der

Analyse der NMR-Spektren. In diesem Zusammenhang ist die Ber�uck-

sichtigung von Fluktuationen (hier phasonische) im nachhinein durch

eine geeignete Mittelung m�oglich, was zu einer guten �Ubereinstimmung

zwischen Theorie und Experiment f�uhrt.

Generell sollte man das hier untersuchte Modell eher als e�ektives,
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ph�anomenologisches Spinmodell des zugrundeliegenden Spin-Phonon-

Systems betrachten. Die vollst�andige (nichtadiabatische) Behandlung

dieses Systems ist nat�urlich erstrebenswert. Diesbez�uglich sind in j�unge-

rer Zeit auch Fortschritte sowohl hinsichtlich der numerischen Untersu-

chungen [141{143] als auch der analytischen Behandlung gemacht wor-

den. Jedoch sind die bisherigen Analysen bzw. Resultate noch weit von

einem so umfangreichen, auf verschiedene Aspekte bezogenen Vergleich

zwischen Theorie und Experiment entfernt, wie er im Rahmen des hier

gew�ahlten Zuganges m�oglich ist.

Auf der Basis des dimerisierten frustrierten 1-d Heisenbergmodells

mit adiabatischer Behandlung des Phononensystems wird in der vor-

liegenden Arbeit ein abgerundetes Bild zum Verst�andnis der SP-Phase

und damit zusammenh�angender Ph�anomene in CuGeO3 entwickelt.

Im Rahmen der vorgestellten T-DMRG-Rechnungen bieten sich wei-

tere Vergleiche z.B. mit experimentellen Daten von CuGeO3 unter

Druck [129] und von CuGeO3 im Magnetfeld an. Au�erdem ist mittels

der Berechnung der Energie-Energie-Korrelationsfunktion die Untersu-

chung der U-D- und der U-I-Phasengrenze m�oglich. Dies bietet erstma-

lig die M�oglichkeit, die so - quasi exakt - berechnete Phasengrenze mit

dem experimentellen Resultat f�ur CuGeO3 zu vergleichen und die von

Cross und Fisher [42] gemachten N�aherungen zu �uberpr�ufen. Rechnun-

gen zu den oben genannten Punkten sind in Gang bzw. teilweise schon

abgeschlossen.
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