To content



  • J. Methorst, N. van hilten, H.J. Risselada,
    Inverse design of cholesterol attracting transmembrane helices reveals a paradoxical role of hydrophobic length
    bioRxiv 2021.07.01.450699, 2021
  • T. John, J. Adler, C. Elsner. J. Petzold, M. Krueger, L.L. Martin, D. Huster, H.J. Risselada, B. Abel,
    Size Matters: A Mechanistic Model of Nanoparticle Curvature Effects on Amyloid Fibril Formation
    bioRxiv 2021.07.01.450782, 2021
  • D. Mehner-Breitfeld, M.T. Ringel, D.A. Tichy, L.J. Endter, K.S. Stroh, H. Luensdorf, H.J. Risselada, Thomas Brueser
    TatA and TatB generate a hydrophobic mismatch that is important for function and assembly of the Tat translocon in Escherichia coli
    bioRxiv 2021.05.26.445790 (→eLife), 2021
  • K.S Stroh, H.J. Risselada
    Quantifying membrane curvature sensing of peripheral proteins by simulated buckling and umbrella sampling
    in press (JCTC), 2021
  • H.J. Risselada
    A coarse-grained force-field with an eye for atomic detail
    Nature Methods, 18(4):342-343, 2021


  • H.J. Risselada, H. Grubmüller
    How proteins open fusion pores: Insights from molecular simulations
    Eu. Biophys. J., 50(2):279-293, 2020 (Special issue attributed to the ending of DFG SFB803)
  • Laura J. Endter, H.J. Risselada
    Where are those lipidic nano rings?
    J. Colloid Interface Sci., 587:789-796, 2020
  • Laura J. Endter, Y.G.Smirnova, H.J. Risselada
    Density Field Thermodynamic Integration (DFTI): A ’soft’ approach to calculate the free energy of surfactant self-assemblies
    J. Phys. Chem. B, 124(31):6775–6785, 2020
  • N. van Hilten, K.F. Stroh, H.J. Risselada
    Membrane Thinning Induces Sorting of Lipids and the Amphipathic Lipid Packing Sensor (ALPS) Protein Motif
    Front. Phys., 11:250, 2020
  • L.A. Belyaeva, L. Jiang, A. Soleimani, J. Methorst, H.J. Risselada, G.F. Schneider
    Liquids relax and unify strain in graphene
    Nat. Comm. 11(898), 2020
  • E.M. Blokhuis, M. D'Agostino, A. Mayer, H.J. Risselada
    Fusion pores live on the edge
    J. Chem. Phys. Lett., 11(4):1204–1208, 2020
  • T. John, J. Bandak, N. Sarveson, C. Hackl, H.J. Risselada, A. Prager, C. Elsner, B. Abel
    Growth, Polymorphism, and Spatially Controlled Surface Immobilization of Biotinylated Variants of IAPP21-27 Fibrils
    bio Macromolecules, 21(2):783–792, 2020
  • H.J.Risselada, A. Mayer
    SNAREs, tethers and SM proteins: How to overcome the final barriers to membrane fusion?
    Biochem. J., 477(1):243-258, 2020


  • V. Zoni, V. Nieto, L.J. Endter, H.J. Risselada, L. Monticelli, S. Vanni
    To Bud or Not to Bud: A Perspective on Molecular Simulations of Lipid Droplet Budding
    Front. Mol. Biosci., 6(124), 2019
  • H.J. Risselada
    Cholesterol: The Plasma Membrane’s Constituent that Chooses Sides.
    Biophys. J., 116(12): 2235--2236, 2019.
  • Y.G. Smirnova, H.J. Risselada, M. Müller
    Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins
    PNAS 116(7): 2571-2576, 2019


  • T. John, A. Gladytz, C. Kubeil, L.L. Martin, H.J. Risselada, and B. Abel
    Impact of nanoparticles on amyloid peptide and protein aggregation: a review with a focus on gold nanoparticles
    Nanoscale 10(45):20894-20913, 2018
  • M. D'Agostino, H. J. Risselada, L. Endter, and A. Mayer
    SNARE-mediated membrane fusion arrests at fusion pore expansion to regulate the volume of an organelle
    Embo J. 37(19): e99193, 2018
  • H. Grubmüller, R. Jahn, H. J. Risselada
    Steric and energetic challenges in SNARE-mediated fusion of membranes
    J. Phys. D: Appl. Phys. 51: 343001, 2018 (theme "The 2018 biomembrane curvature and remodeling roadmap")


  • M. D'Agostino, H. J. Risselada, A. Lürick, C. Ungermann, and A. Mayer
    A tethering complex drives the terminal stage of SNARE-dependent membrane fusion
    Nature, 551: 634-638, 2017
  • H.J. Risselada
    Membrane fusion stalks and 'lipid rafts': A love-hate Relationship
    Biophysical J. (Letter), 112(12): 2475-2478, 2017


  • G. Bubnis, H.J. Risselada, H. Grubmüller
    Exploiting Lipid Permutation Symmetry to Compute Membrane Remodeling Free Energies
    Phys. Rev. Lett., 117:188102, 2016
  • M. D'Agostino, H.J. Risselada, A. Mayer
    Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition
    EMBO reports, 17(11):1590-1608, 2016
  • A. Gladytz, B. Abel, H.J. Risselada
    Gold-Induced Fibril Growth:The Mechanism of Surface-Facilitated Amyloid Aggregation
    Angew. Chem. Int. Ed. 55:12242-46, 2016
  • A. Gladytz, T. John, T. Gladytz, R. Hassert, M. Pagel, S. Naumov, H.J. Risselada, S. Naumov, A.G. Beck-Sickinger, B. Abel,
    Peptides@mica: from affinity to adhesion mechanism
    Phys. Chem. Chem. Phys., 18:23516-23527, 2016


  • H. Osadnik, M. Schöpfel, E. Heidrich, D. Mehner, H. Lilie, C. Parthier, H.J. Risselada, H. Grubmüller, M.T. Stubbs, T. Brüser
    The PspF-binding domain PspA1-144 and the PspAF complex -- New insights into the coiled-coil dependent regulation of AAA+ proteins
    Mol. Microbiol., 98(4):743-759, 2015
  • J. Taubert, B. Hou, H.J. Risselada, D. Mehner, H. Lünsdorf, H. Grubmüller, T. Brüser
    TatBC-Independent TatA/Tat Substrate Interactions Contribute to Transport Efficiency
    PLoS ONE, 10(3):e011976, 2015
  • H.J. Risselada
    Simulations Move Toward a Cure for Viral Diseases
    Structure, 23(3):439-440, 2015
  • D. Milovanovic, A. Honigmann,..., H.J. Risselada, ..., S.W. Hell, G. Van den Bogaart, R. Jahn
    Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains
    Nature communications, 6:5984, 2015


  • H.J. Risselada, Y. Smirnova, H. Grubmüller
    Free energy landscape of rim-pore expansion in membrane fusion
    Biophys. J., 107: 2287-2295, 2014
  • H.J. Risselada, G. Bubnis, H. Grubmüller
    Expansion of the fusion stalk and its implication for biological membrane fusion
    Proc. Natl. Acad. Sci. USA., 111:11043-110487, 2014


  • Y.G. Smirnova, S. Aeffner, H.J. Risselada, T. Salditt, S.J. Marrink, M. Müller, V. Knecht
    Interbilayer repulsion forces between tension-free lipid bilayers from simulation
    Soft Matter, 9:10705-10718, 2013
  • A. Honigmann, G. Van den Bogaart, E. Iraheta, H.J. Risselada, D. Milovanovic, V. Mueller, S. Mueller, U. Diederichsen, D. Fasshauer, H. Grubmüller, S.W. Hell, C. Eggeling, K. Kühnel, R. Jahn
    Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment
    Nat. Struct. Mol. Biol., 20:679-686, 2013


  • H.J. Risselada, G. Marelli, M. Fuhrmans, Y.G. Smirnova, H. Grubmüller, S.J. Marrink, M. Müller
    Line-Tension Controlled Mechanism for Influenza Fusion
    PLoS ONE, 7:e38302, 2012
  • T. Fischer, H.J. Risselada, R.L.C Vink
    Membrane lateral structure: The influence of immobilized particles on domain size
    Phys. Chem. Chem. Phys., 14:14500-14508, 2012
  • H.J. Risselada, H. Grubmüller
    How SNARE molecules mediate membrane fusion: Recent insights from molecular simulations
    Curr. Opin. Struct. Biol., 22:187-196, 2012


  • G. Van den Bogaart, K. Meyenberg K, H.J. Risselada, H. Amin, K.I. Willig, B.E. Hubrich, M. Dier, S.W. Hell, H. Grubmüller, U. Diederichsen, R. Jahn
    Membrane protein sequestering by ionic protein-lipid Interactions
    Nature, 479:552-55, 2011
  • G. Van den Bogaart, S. Thutupalli, H.J. Risselada, M. Holt, D. Riedel, S. Herminghaus, H. Grubmüller, R. Jahn
    Synaptotagmin-1: a distance regulator acting upstream of SNARE nucleation?
    Nat. Struct. Mol. Biol., 18: 805-812, 2011
  • H.J. Risselada, C. Kutzner, H. Grubmüller
    Caught in the act: Visualization of SNARE-mediated fusion events in molecular detail
    Chembiochem, 12:1049-1055, 2011
  • H.J. Risselada, S.J. Marrink, M. Müller
    Curvature-dependent elastic properties of liquid-ordered domains result in inverted domain sorting on uni-axially compressed vesicles
    Phys. Rev. Lett., 106: 148102, 2011


  • A.J. Rzepiela, L.V. Schafer, N. Goga, H.J. Risselada, A.H. de Vries, S.J. Marrink
    Reconstruction of atomistic details from coarse grained structures
    J. Comp. Chem., 31:1333-1343, 2010
  • M. Louhivuori, H.J. Risselada, E. van der Giessen, S.J. Marrink.
    Release of stress through mechanosensitive channels in pressurized liposomes
    Proc. Natl. Acad. Sci. USA., 107:19856-19860, 2010


  • S. Esteban-Martin, H.J. Risselada, J. Salgado, S.J. Marrink
    Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations
    JACS, 131:15194-15202, 2009
  • H.J. Risselada, S.J. Marrink
    The freezing process of small lipid vesicles at molecular resolution
    Softmatter, 5:4531-4541, 2009
  • H.J. Risselada, S.J. Marrink
    Curvature effects on lipid packing in liposomes revealed by coarse grained molecular dynamics simulations
    Phys. Chem. Chem. Phys., 11:2056-2067, 2009
  • O.H.S. Ollila, H.J. Risselada, M. Louhivuori, E. Lindahl, I. Vattulainen, S.J. Marrink
    3D Pressure distribution in lipid membranes and membrane-protein complexes
    Phys. Rev. Lett., 102:078101, 2009


  • H.J. Risselada, S.J. Marrink
    The molecular face of lipid rafts in model membranes
    Proc. Natl. Acad. Sci. USA., 105:17367-17372, 2008
  • S. Baoukina, L. Monticelli, H.J. Risselada, S.J. Marrink, D.P. Tieleman
    The molecular mechanism of lipid monolayer collapse
    Proc. Natl. Acad. Sci. USA., 105:10803-10808, 2008
  • H.J. Risselada, A.E. Mark, S.J. Marrink
    The application of mean field boundary potentials in simulations of lipid vesicles
    J. Phys. Chem. B, 112:7438-7447, 2008
  • V. Knecht, H.J. Risselada, A.E. Mark, S.J. Marrink
    Electrophoretic mobility does not always reflect the charge on an oil droplet
    J. Colloid. Int. Sci., 318:477-486, 2008


  • S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries
    The MARTINI forcefield: coarse grained model for biomolecular simulations
    J. Phys. Chem. B, 111:7812-7824, 2007


  • S.J. Marrink, J. Risselada, A.E. Mark
    Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model
    Chem. Phys. Lip., 135:223-244, 2005


To event list

Location & approach

The campus of TU Dort­mund University is located close to interstate junction Dort­mund West, where the Sauerlandlinie A 45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B 1 / A 40. The best interstate exit to take from A 45 is “Dort­mund-Eichlinghofen” (closer to South Campus), and from B 1 / A 40 “Dort­mund-Dorstfeld” (closer to North Campus). Signs for the uni­ver­si­ty are located at both exits. Also, there is a new exit before you pass over the B 1-bridge leading into Dort­mund.

To get from North Campus to South Campus by car, there is the connection via Vogelpothsweg/Baroper Straße. We recommend you leave your car on one of the parking lots at North Campus and use the H-Bahn (suspended monorail system), which conveniently connects the two campuses.

TU Dort­mund University has its own train station (“Dort­mund Uni­ver­si­tät”). From there, suburban trains (S-Bahn) leave for Dort­mund main station (“Dort­mund Hauptbahnhof”) and Düsseldorf main station via the “Düsseldorf Airport Train Station” (take S-Bahn number 1, which leaves every 20 or 30 minutes). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duisburg.

You can also take the bus or subway train from Dort­mund city to the uni­ver­si­ty: From Dort­mund main station, you can take any train bound for the Station “Stadtgarten”, usually lines U41, U45, U 47 and U49. At “Stadtgarten” you switch trains and get on line U42 towards “Hombruch”. Look out for the Station “An der Palmweide”. From the bus stop just across the road, busses bound for TU Dort­mund University leave every ten minutes (445, 447 and 462). Another option is to take the subway routes U41, U45, U47 and U49 from Dort­mund main station to the stop “Dort­mund Kampstraße”. From there, take U43 or U44 to the stop “Dort­mund Wittener Straße”. Switch to bus line 447 and get off at “Dort­mund Uni­ver­si­tät S”.

The AirportExpress is a fast and convenient means of transport from Dortmund Airport (DTM) to Dortmund Central Station, taking you there in little more than 20 minutes. From Dortmund Central Station, you can continue to the university campus by interurban railway (S-Bahn). A larger range of international flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the university station.

The H-Bahn is one of the hallmarks of TU Dort­mund University. There are two stations on North Campus. One (“Dort­mund Uni­ver­si­tät S”) is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the “Technologiepark” and (via South Campus) Eichlinghofen. The other station is located at the dining hall at North Campus and offers a direct connection to South Campus every five minutes.

The facilities of TU Dortmund University are spread over two campuses, the larger Campus North and the smaller Campus South. Additionally, some areas of the university are located in the adjacent “Technologiepark”.

Site Map of TU Dortmund University (Second Page in English).