To content
Department of Physics

Publications

  1. M. Cimander, V. Wiechert, J. Bär, T. Satoh, J. Bünemann, G. Uhrig, and D. Bossini, Coherence transfer from optically induced THz magnons to charges, Nat Commun 17, 1480 (2026)
  2. Jörg Bünemann, Group Theory in Physics, An Introduction with a Focus on Solid State Physics, Springer (2024)
  3. J. Bünemann and F. Gebhard, Coulomb matrix elements in multi-orbital Hubbard models, J. Phys.: Condens. Matter 29, 165601 (2017).
  4. T. Linneweber, J. Bünemann, U. Löw, F. Gebhard, and F. B. Anders, Exchange couplings for Mn ions in CdTe: validity of spin models for dilute magnetic II-VI semiconductors, Phys. Rev. B 95, 045134 (2017).
  5. J. Bünemann, T. Linneweber, U. Löw, F. B. Anders, and F. Gebhard, Interplay of Coulomb interaction and spin-orbit coupling, Phys. Rev. B 94, 035116 (2016)
  6. J. Bünemann, T. Linneweber, and F. Gebhard, Approximation schemes for the study of multi-band Gutzwiller wave functions, DOI: 10.1002/pssb.201600166
  7. J. Kaczmarczyk, T. Schickling, and J. Bünemann, Coexistence of nematic order and superconductivity in the Hubbard model, Phys. Rev. B 94, 085152 (2016).
  8. K. zu Münster and J. Bünemann, Gutzwiller variational wave function for multi-orbital Hubbard models in finite dimensions, Phys. Rev. B 94, 045135 (2016).
  9. T. Schickling, L. Boeri, J. Bünemann, and Florian Gebhard, Quasi-particle bands and structural phase transition of iron from Gutzwiller Density-Functional
    Theory
    , Phys. Rev. B 93, 205151 (2016).
  10. J. Kaczmarczyk, T. Schickling, and J. Bünemann, Evaluation techniques for Gutzwiller wave functions in finite dimensions, phys. stat. sol. (b) 252, 2059 (2015).
  11. J. Kaczmarczyk, J. Spalek, T. Schickling, and J. Bünemann, High-temperature superconductivity in the two-dimensional t − J model: Gutzwiller wave function solution, New J. Phys. 16, 073018 (2014).
  12. M. Zegrodnik, J. Spalek und J. Bünemann, Even-parity spin-triplet pairing by purely repulsive interactions for orbitally degenerate correlated fermions,
    New J. Phys. 16, 033001 (2014).
  13. T. Schickling, J. Bünemann, F. Gebhard, and W. Weber, Gutzwiller density functional theory: a formal derivation and application to ferromagnetic nickel, New J. Phys. 16, 93034 (2014).
  14. J. Bünemann, S. Wasner, E. v. Oelsen, and G. Seibold, Exact response functions within the time-dependent Gutzwiller approach, Philosophical Magazin 95, 550 (2015).
  15. G. Seibold, J. Bünemann und J. Lorenzana, Time-Dependent Gutzwiller Approximation: Interplay with Phonons, J. Supercond. Nov. Magn. 27 929 (2014).
  16. J. Bünemann, M. Capone, J. Lorenzana, and G. Seibold, Linear-response dynamics from the time-dependent Gutzwiller approximation, New J. Phys. 15, 053050 (2013).
  17. M. Zegrodnik, J. Spalek, and J. Bünemann, Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation, New J. Phys. 15, 073050 (2013).
  18. J. Kaczmarczyk, J. Spalek, T. Schickling, and J. Bünemann, Superconductivity in the two-dimensional Hubbard model: Gutzwiller wave function solution,Phys. Rev. B 88, 115127 (2013).
  19. J. Büneman, The Gutzwiller Density Functional Theory, in Correlated Electrons: From Models to Materials, ed. by E. Pavarini, E. Koch, F. Anders und M. Jarrel, Forschungszentrum Jülich GmbH (2012).
  20. J. Büneman, T. Schickling und F. Gebhard, Variational Study of Fermi-surface Deformations in Hubbard Models, Europhys. Lett. 98, 27006 (2012).
  21. J. Büneman, F. Gebhard, T. Schickling, and W. Weber, Numerical Minimisation of Gutzwiller Energy Functionals, phys. stat. sol. (b) 249, 1282 (2012).
  22. T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen, and W. Weber, Gutzwiller Theory of Band Magnetism in LaOFeAs, Phys. Rev. Lett. 108, 036406 (2012).
  23. E. v. Oelsen, G. Seibold, and J. Bünemann, Time-Dependent Gutzwiller Theory for Multiband Hubbard Models, New J. Phys. 13, 113031 (2011).
  24. E. v. Oelsen, G. Seibold, and J. Bünemann, Time-Dependent Gutzwiller Theory for Multiband Hubbard Models, Phys. Rev. Lett. 107, 076402 (2011).
  25. T. Schickling, F. Gebhard und J. Bünemann, Antiferromagnetic Order in Multiband Hubbard Models for Iron Pnictides, Phys. Rev. Lett. 106, 146402 (2011).
  26. J. Bünemann, A slave-boson mean-field theory for general multi-band Hubbard models, phys. stat. sol. (b) 248, 203 (2010).
  27. Jörg Bünemann, The Gutzwiller Variational Theory and Related Methods for Correlated Electron Systems, Habilitation Thesis (2009)
  28. A. Hofmann, X. Y. Cui, J. Schäfer, S. Meyer, P. Höpfner, C. Blumenstein, M. Paul, L. Patthey, E. Rotenberg, J. Bünemann, F. Gebhard, T. Ohm, W. Weber, and R. Claessen, Renormalization of Bulk Magnetic Electron States at High Binding Energies, Phys. Rev. Lett. 102, 187204 (2009).
  29. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser, and W. Weber, Spin-orbit coupling in ferromagnetic nickel, Phys. Rev. Lett. 101, 236404 (2008).
  30. J. Bünemann and F. Gebhard, Equivalence of Gutzwiller and slave-boson mean-field theories for multiband Hubbard models, Phys. Rev. B 76, 193104 (2007).
  31. J. Bünemann, D. Rasch, and F. Gebhard, Hybridization in Hubbard models with different bandwidths, J. Phys. Cond. Matt. 19, 436206 (2007).
  32. J. Bünemann, F. Gebhard, K. Radnóczi und P. Fazekas, Orbital order in degenerate Hubbard models: a variational study, J. Phys. Cond. Matt. 19, 326217 (2007).
  33. J. Bünemann, F. Gebhard, K. Radnóczi, and P. Fazekas, Gutzwiller variational theory for the Hubbard model with attractive interaction, J. Phys. Cond. Matt. 17, 3807 (2005).
  34. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser, and W. Weber, Gutzwiller-correlated wave functions: application to ferromagnetic nickel, in Frontiers in Magnetic Materials, ed. by A.V. Narlikar (Springer, Berlin, 2005), pp. 117-151.
  35. J. Bünemann and F. Gebhard, Ginzburg–Landau equations and boundary conditions for superconductors in static magnetic fields, Ann. Phys. (Leipzig) 14, 281 (2005).
  36. J. Bünemann, R. Thul und F. Gebhard, Landau–Gutzwiller quasi-particles, Phys. Rev. B 67, 075103 (2003).
  37. J. Bünemann, F. Gebhard, T. Ohm, R. Umstätter, S. Weiser, W. Weber, R. Claessen, D. Ehm, A. Harasawa, A. Kakizaki, A. Kimura, G. Nicolay, S. Shin, and V.N. Strocov, Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel, Europhys. Lett. 61, 667 (2003).
  38. T. Ohm, S. Weiser, R. Umstätter, W. Weber, and J. Bünemann, Total energy studies for ferromagnetic nickel: What is the optimum combination of the multi-band Gutzwiller method and density functional theory?, J. Low Temp. Phys. 126, 1081 (2002).
  39. W. Weber, J. Bünemann and F. Gebhard, On the Way to a Gutzwiller Density Functional Theory, in K. Baberschke, M. Donath and W. Nolting (Eds), Bandferromagnetism (Springer, Berlin, 2001), p. 9.
  40. J. Bünemann and F. Gebhard, Random-phase approximation for multi-band Hubbard models, J. Phys. Cond. Matt. 13, 9985 (2001).
  41. J. Bünemann, Spin waves in itinerant ferromagnets, J. Phys. Cond. Matt. 13, 5327 (2001).
  42. J. Bünemann, F. Gebhard, and W. Weber, Multi-band Gutzwiller wave functions for itinerant ferromagnetism, Foundations of Physics, 30, 2011 (2000).
  43. J. Bünemann, The Gutzwiller approximation for degenerate bands: a formal derivation, Eur. Phys. J. B 4 29 (1998).
  44. J. Bünemann, W. Weber, and F. Gebhard, Multiband Gutzwiller wave functions for general on-site interactions, Phys. Rev. B 57, 6896 (1998).
  45. J. Bünemann, F. Gebhard, and W. Weber, Gutzwiller-correlated wave functions for degenerate bands: exact results in infinite dimensions, J. Phys. Cond. Matt. 9, 7343 (1997).
  46. J. Bünemann and W. Weber, Generalized Gutzwiller method for n ≥ 2 correlated orbitals: Itinerant ferromagnetism in d(e g )-bands, Physica B 230, 4012 (1997).
  47. J. Bünemann and W. Weber, Generalized Gutzwiller method for n ≥ 2 correlated bands: First-order metal-insulator transitions, Phys. Rev. B 55, 4011 (1997).

 

 

Habilitation Thesis