To content
Department of Physics

Scientific Papers

  1. J. Bünemann und F. Gebhard, Coulomb matrix elements in multi-orbital Hubbard models, J. Phys.: Condens. Matter 29, 165601 (2017).
  2. T. Linneweber, J. Bünemann, U. Löw, F. Gebhard und F. B. Anders, Exchange couplings for Mn ions in CdTe: validity of spin models for dilute magnetic II-VI semiconductors, Phys. Rev. B 95, 045134 (2017).
  3. J. Bünemann, T. Linneweber, U. Löw, F. B. Anders und F. Gebhard, Interplay of Coulomb interaction and spin-orbit coupling, Phys. Rev. B 94, 035116 (2016)
  4. J. Bünemann, T. Linneweber und F. Gebhard, Approximation schemes for the study of multi-band Gutzwiller wave functions, DOI: 10.1002/pssb.201600166
  5. J. Kaczmarczyk, T. Schickling und J. Bünemann, Coexistence of nematic order and superconductivity in the Hubbard model, Phys. Rev. B 94, 085152 (2016).
  6. K. zu Münster und J. Bünemann, Gutzwiller variational wave function for multi-orbital Hubbard models in finite dimensions, Phys. Rev. B 94, 045135 (2016).
  7. T. Schickling, L. Boeri, J. Bünemann, und Florian Gebhard, Quasi-particle bands and structural phase transition of iron from Gutzwiller Density-Functional
    Theory
    , Phys. Rev. B 93, 205151 (2016).
  8. J. Kaczmarczyk, T. Schickling und J. Bünemann, Evaluation techniques for Gutzwiller wave functions in finite dimensions, phys. stat. sol. (b) 252, 2059 (2015).
  9. J. Kaczmarczyk, J. Spalek, T. Schickling und J. Bünemann, High-temperature superconductivity in the two-dimensional t − J model: Gutzwiller wave function solution, New J. Phys. 16, 073018 (2014).
  10. M. Zegrodnik, J. Spalek und J. Bünemann, Even-parity spin-triplet pairing by purely repulsive interactions for orbitally degenerate correlated fermions,
    New J. Phys. 16, 033001 (2014).
  11. T. Schickling, J. Bünemann, F. Gebhard und W. Weber, Gutzwiller density functional theory: a formal derivation and application to ferromagnetic nickel, New J. Phys. 16, 93034 (2014).
  12. J. Bünemann, S. Wasner, E. v. Oelsen und G. Seibold, Exact response functions within the time-dependent Gutzwiller approach, Philosophical Magazin 95, 550 (2015).
  13. G. Seibold, J. Bünemann und J. Lorenzana, Time-Dependent Gutzwiller Approximation: Interplay with Phonons, J. Supercond. Nov. Magn. 27 929 (2014).
  14. J. Bünemann, M. Capone, J. Lorenzana und G. Seibold, Linear-response dynamics from the time-dependent Gutzwiller approximation, New J. Phys. 15, 053050 (2013).
  15. M. Zegrodnik, J. Spa lek und J. Bünemann, Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation, New J. Phys. 15, 073050 (2013).
  16. J. Kaczmarczyk, J. Spalek, T. Schickling und J. Bünemann, Superconductivity in the two-dimensional Hubbard model: Gutzwiller wave function solution,Phys. Rev. B 88, 115127 (2013).
  17. J. Büneman, The Gutzwiller Density Functional Theory, in Correlated Electrons: From Models to Materials, ed. by E. Pavarini, E. Koch, F. Anders und M. Jarrel, Forschungszentrum Jülich GmbH (2012).
  18. J. Büneman, T. Schickling und F. Gebhard, Variational Study of Fermi-surface Deformations in Hubbard Models, Europhys. Lett. 98, 27006 (2012).
  19. J. Büneman, F. Gebhard, T. Schickling und W. Weber, Numerical Minimisation of Gutzwiller Energy Functionals, phys. stat. sol. (b) 249, 1282 (2012).
  20. T. Schickling, F. Gebhard, J. Bünemann, L. Boeri, O. K. Andersen und W. Weber, Gutzwiller Theory of Band Magnetism in LaOFeAs, Phys. Rev. Lett. 108, 036406 (2012).
  21. E. v. Oelsen, G. Seibold und J. Bünemann, Time-Dependent Gutzwiller Theory for Multiband Hubbard Models, New J. Phys. 13, 113031 (2011).
  22. E. v. Oelsen, G. Seibold und J. Bünemann, Time-Dependent Gutzwiller Theory for Multiband Hubbard Models, Phys. Rev. Lett. 107, 076402 (2011).
  23. T. Schickling, F. Gebhard und J. Bünemann, Antiferromagnetic Order in Multiband Hubbard Models for Iron Pnictides, Phys. Rev. Lett. 106, 146402 (2011).
  24. J. Bünemann, A slave-boson mean-field theory for general multi-band Hubbard models, phys. stat. sol. (b) 248, 203 (2010).
  25. A. Hofmann, X. Y. Cui, J. Schäfer, S. Meyer, P. Höpfner, C. Blumenstein, M. Paul, L. Patthey, E. Rotenberg, J. Bünemann, F. Gebhard, T. Ohm, W. Weber und R. Claessen, Renormalization of Bulk Magnetic Electron States at High Binding Energies, Phys. Rev. Lett. 102, 187204 (2009).
  26. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser und W. Weber, Spin-orbit coupling in ferromagnetic nickel, Phys. Rev. Lett. 101, 236404 (2008).
  27. J. Bünemann und F. Gebhard, Equivalence of Gutzwiller and slave-boson mean-field theories for multiband Hubbard models, Phys. Rev. B 76, 193104 (2007).
  28. J. Bünemann, D. Rasch und F. Gebhard, Hybridization in Hubbard models with different bandwidths, J. Phys. Cond. Matt. 19, 436206 (2007).
  29. J. Bünemann, F. Gebhard, K. Radnóczi und P. Fazekas, Orbital order in degenerate Hubbard models: a variational study, J. Phys. Cond. Matt. 19, 326217 (2007).
  30. J. Bünemann, F. Gebhard, K. Radnóczi und P. Fazekas, Gutzwiller variational theory for the Hubbard model with attractive interaction, J. Phys. Cond. Matt. 17, 3807 (2005).
  31. J. Bünemann, F. Gebhard, T. Ohm, S. Weiser und W. Weber, Gutzwiller-correlated wave functions: application to ferromagnetic nickel, in Frontiers in Magnetic Materials, ed. by A.V. Narlikar (Springer, Berlin, 2005), pp. 117-151.
  32. J. Bünemann und F. Gebhard, Ginzburg–Landau equations and boundary conditions for superconductors in static magnetic fields, Ann. Phys. (Leipzig) 14, 281 (2005).
  33. J. Bünemann, R. Thul und F. Gebhard, Landau–Gutzwiller quasi-particles, Phys. Rev. B 67, 075103 (2003).
  34. J. Bünemann, F. Gebhard, T. Ohm, R. Umstätter, S. Weiser, W. Weber, R. Claessen, D. Ehm, A. Harasawa, A. Kakizaki, A. Kimura, G. Nicolay, S. Shin und V.N. Strocov, Atomic correlations in itinerant ferromagnets: quasi-particle bands of nickel, Europhys. Lett. 61, 667 (2003).
  35. T. Ohm, S. Weiser, R. Umstätter, W. Weber und J. Bünemann, Total energy studies for ferromagnetic nickel: What is the optimum combination of the multi-band Gutzwiller method and density functional theory?, J. Low Temp. Phys. 126, 1081 (2002).
  36. W. Weber, J. Büneman n und F. Gebhard, On the Way to a Gutzwiller Density Functional Theory, in K. Baberschke, M. Donath and W. Nolting (Eds), Bandferromagnetism (Springer, Berlin, 2001), p. 9.
  37. J. Bünemann und F. Gebhard, Random-phase approximation for multi-band Hubbard models, J. Phys. Cond. Matt. 13, 9985 (2001).
  38. J. Bünemann, Spin waves in itinerant ferromagnets, J. Phys. Cond. Matt. 13, 5327 (2001).
  39. J. Bünemann, F. Gebhard und W. Weber, Multi-band Gutzwiller wave functions for itinerant ferromagnetism, Foundations of Physics, 30, 2011 (2000).
  40. J. Bünemann, The Gutzwiller approximation for degenerate bands: a formal derivation, Eur. Phys. J. B 4 29 (1998).
  41. J. Bünemann, W. Weber und F. Gebhard, Multiband Gutzwiller wave functions for general on-site interactions, Phys. Rev. B 57, 6896 (1998).
  42. J. Bünemann, F. Gebhard und W. Weber, Gutzwiller-correlated wave functions for degenerate bands: exact results in infinite dimensions, J. Phys. Cond. Matt. 9, 7343 (1997).
  43. J. Bünemann und W. Weber, Generalized Gutzwiller method for n ≥ 2 correlated orbitals: Itinerant ferromagnetism in d(e g )-bands, Physica B 230, 4012 (1997).
  44. J. Bünemann und W. Weber, Generalized Gutzwiller method for n ≥ 2 correlated bands: First-order metal-insulator transitions, Phys. Rev. B 55, 4011 (1997).

 

 

Habilitation Thesis